Special Topic: Binary Vapor Cycles

Similar documents
( )( ) 7 MPa q in = = 10 kpa q out. 1 h. = s. Thus, and = 38.9% (b) (c) The rate of heat rejection to the cooling water and its temperature rise are

T Turbine 8. Boiler fwh fwh I Condenser 4 3 P II P I P III. (a) From the steam tables (Tables A-4, A-5, and A-6), = = 10 MPa. = 0.

v v = = Mixing chamber: = 30 or, = s6 Then, and = 52.4% Turbine Boiler process heater Condenser 7 MPa Q in 0.6 MPa Q proces 10 kpa Q out

Solutions to Homework #10

8-4 P 2. = 12 kw. AIR T = const. Therefore, Q &

1 = The rate at which the entropy of the high temperature reservoir changes, according to the definition of the entropy, is

Problem 1 The turbine is an open system. We identify the steam contained the turbine as the control volume. dt + + =

Thermodynamics Lecture Series

MAE320-HW7A. 1b). The entropy of an isolated system increases during a process. A). sometimes B). always C). never D).

2b m 1b: Sat liq C, h = kj/kg tot 3a: 1 MPa, s = s 3 -> h 3a = kj/kg, T 3b

Chapter 8 EXERGY A MEASURE OF WORK POTENTIAL

Chapter 7 ENTROPY. 7-3C The entropy change will be the same for both cases since entropy is a property and it has a fixed value at a fixed state.

Chapter 12 Radiation Heat Transfer. Special Topic: Heat Transfer from the Human Body

since (Q H /T H ) = (Q L /T L ) for reversible cycles. Also, since Q diff is a positive quantity. Thus,

KNOWN: Air undergoes a polytropic process in a piston-cylinder assembly. The work is known.

6-5. H 2 O 200 kpa 200 C Q. Entropy Changes of Pure Substances

Psychrometrics. PV = N R u T (9.01) PV = N M R T (9.02) Pv = R T (9.03) PV = m R T (9.04)

SIMPLE RANKINE CYCLE. 3 expander. boiler. pump. condenser 1 W Q. cycle cycle. net. shaft

SENSITIVITY ANALYSIS FOR COUNTER FLOW COOLING TOWER- PART I, EXIT COLD WATER TEMPERATURE

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 11 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition

Then the amount of water that flows through the pipe during a differential time interval dt is (1) 4

& out. R-134a 34 C

( ) Given: In a constant pressure combustor. C4H10 and theoretical air burns at P1 = 0.2 MPa, T1 = 600K. Products exit at P2 = 0.

Given A gas turbine power plant operating with air-standard Brayton cycle

Carnot Factor of a Vapour Power Cycle with Regenerative Extraction

Unit 12 Refrigeration and air standard cycles November 30, 2010

ENGINEERING OF NUCLEAR REACTORS. Tuesday, October 9 th, 2014, 1:00 2:30 p.m.

Step 1: Draw a diagram to represent the system. Draw a T-s process diagram to better visualize the processes occurring during the cycle.

4-93 RT RT. He PV n = C = = Then the boundary work for this polytropic process can be determined from. n =

Chapters 19 & 20 Heat and the First Law of Thermodynamics

Design of Robust PI Controller for Counter-Current Tubular Heat Exchangers

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

Delft University of Technology DEPARTMENT OF AEROSPACE ENGINEERING

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

Lecture 38: Vapor-compression refrigeration systems

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 26. Use of Regeneration in Vapor Power Cycles

The average velocity of water in the tube and the Reynolds number are Hot R-134a

(b) The heat transfer can be determined from an energy balance on the system

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump

Chapter 7: 17, 20, 24, 25, 32, 35, 37, 40, 47, 66 and 79.

the first derivative with respect to time is obtained by carefully applying the chain rule ( surf init ) T Tinit

NUCLEAR THERMAL-HYDRAULIC FUNDAMENTALS

Teaching schedule *15 18

SOLUTION MANUAL CHAPTER 12

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Calculation of Entropy Changes. Lecture 19

ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number:

300 kpa 77 C. (d) If we neglect kinetic energy in the calculation of energy transport by mass

Journal of Chemical and Pharmaceutical Research, 2013, 5(12): Research Article

Chapter 10. Closed-Loop Control Systems

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine?

SPC 407 Sheet 2 - Solution Compressible Flow - Governing Equations

ME Thermodynamics I

Exergy and the Dead State

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December ISSN

Developing Transfer Functions from Heat & Material Balances

Heat Recovery for next Generation of Hybrid Vehicles: Simulation and Design of a Rankine Cycle System

EVAPORATION. Robert evaporator. Balance equations Material balance (total) Component balance. Heat balance

Unsteady State Simulation of Vapor Compression Heat Pump Systems With Modular Analysis (This paper will not be presented.)

To receive full credit all work must be clearly provided. Please use units in all answers.

Design By Emulation (Indirect Method)

Department of Civil Engineering & Applied Mechanics McGill University, Montreal, Quebec Canada

Readings for this homework assignment and upcoming lectures

KNOWN: Pressure, temperature, and velocity of steam entering a 1.6-cm-diameter pipe.

MAE 11. Homework 8: Solutions 11/30/2018

Chapter 3 Thermoelectric Coolers

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY

ME 200 Thermodynamics 1 Fall 2017 Exam 3

Radiation Heat Transfer

Methods for transfer matrix evaluation applied to thermoacoustics

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

SOLUTIONS

Kelvin Planck Statement of the Second Law. Clausius Statement of the Second Law

Lecture 12 - Non-isolated DC-DC Buck Converter

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

Simulation and Analysis of Biogas operated Double Effect GAX Absorption Refrigeration System

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m.

Conductance from Transmission Probability

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

Inference for Two Stage Cluster Sampling: Equal SSU per PSU. Projections of SSU Random Variables on Each SSU selection.

Answer Key THERMODYNAMICS TEST (a) 33. (d) 17. (c) 1. (a) 25. (a) 2. (b) 10. (d) 34. (b) 26. (c) 18. (d) 11. (c) 3. (d) 35. (c) 4. (d) 19.

Physics 207 Lecture 23

Chapter A 9.0-V battery is connected to a lightbulb, as shown below. 9.0-V Battery. a. How much power is delivered to the lightbulb?

Lecture 21. The Lovasz splitting-off lemma Topics in Combinatorial Optimization April 29th, 2004

Thermodynamics Lecture Series

Nonisothermal Chemical Reactors

CFD Analysis and Optimization of Heat Transfer in Double Pipe Heat Exchanger with Helical-Tap Inserts at Annulus of Inner Pipe

Finite Difference Formulae for Unequal Sub- Intervals Using Lagrange s Interpolation Formula

Number of extra papers used if any

Hydraulic validation of the LHC cold mass heat exchanger tube.

1 Power is transferred through a machine as shown. power input P I machine. power output P O. power loss P L. What is the efficiency of the machine?

This appendix derives Equations (16) and (17) from Equations (12) and (13).

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor

(SP 1) DLLL. Given: In a closed rigid tank,

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1

Velocity or 60 km/h. a labelled vector arrow, v 1

RP 2.4. SEG/Houston 2005 Annual Meeting 1513

Systems Analysis. Prof. Cesar de Prada ISA-UVA

Transcription:

0- Special opic: Bary Vapor ycle 0- Bary poer cycle i a cycle ic i actually a combation o to cycle; one te ig temperature region, and te oter te lo temperature region. It purpoe i to creae termal eiciency. 0- onider te eat excanger o a bary poer cycle. e orkg luid o te toppg cycle (cycle A enter te eat excanger at tate and leave at tate. e orkg luid o te bottomg cycle (cycle B enter at tate and leave at tate. Neglectg any cange ketic and potential energie, and aumg te eat excanger i ell-ulated, te teady-lo energy balance relation yield u, A E 0 (teady E Eytem 0 + E e B A B e E + A i i B or A ( B ( 0- Steam i not an ideal luid or vapor poer cycle becaue it critical temperature i lo, it aturation dome reemble an verted V, and it condener preure i too lo. 0- Becaue mercury a a ig critical temperature, relatively lo critical preure, but a very lo condener preure. It i alo toxic, expenive, and a a lo entalpy o vaporization. 0- In bary vapor poer cycle, bot cycle are vapor cycle. In te combed ga-team poer cycle, one o te cycle i a ga cycle.

0- Revie roblem 0- It i to be demontrated tat te termal eiciency o a combed ga-team poer plant cc can be expreed a cc g + g ere g W g / i n an d W / g, are te termal eiciencie o te ga and team cycle, repectively, and te eiciency o a combed cycle i to be obtaed. Analyi e termal eiciencie o ga, team, and combed cycle can be expreed a cc Wtotal Wg g g, W g, g, ere i te eat upplied to te ga cycle, ere i te eat rejected by te team cycle, and ere g, i te eat rejected rom te ga cycle and upplied to te team cycle. Ug te relation above, te expreion g + g cc g, g, g + g + g, g, g, + + + g, g, can be expreed a ereore, te proo i complete. Ug te relation above, te termal eiciency o te given combed cycle i determed to be cc g + g 0. + 00. 00. 00. 0. g, 0- e termal eiciency o a combed ga-team poer plant cc can be expreed term o te termal eiciencie o te ga and te team turbe cycle a +. It i to be on tat te value o cc i greater tan eiter o or. Analyi By actorg term, te relation cc g + g g + ( g > g g oitive ce < or cc g + g + g ( > g oitive ce < cc g + g cc g g can be expreed a u e conclude tat te combed cycle i more eicient tan eiter o te ga turbe or team turbe cycle alone.

0-0- A team poer plant operatg on te ideal Ranke cycle it reeatg i conidered. e reeat preure o te cycle are to be determed or te cae o gle and double reeat. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Analyi (a Sgle Reeat: From te team table (able A-, A-, and A-, x 0 ka 0. + x + x 00 0 ka (b Double Reeat : Ma 00 x and x 00 g g.+ 0. + 00. kj/kg K ( 0.(. ( 0.(. SINGLE Ma 0 ka. kj/kg. kj/kg K 00 DOUBL Ma 0 ka Any preure x elected beteen te limit o Ma and. Ma ill atiy te reuirement, and can be ued or te double reeat preure.

0-0 0-0E A geotermal poer plant operatg on te imple Ranke cycle ug an organic luid a te orkg luid i conidered. e exit temperature o te geotermal ater rom te vaporizer, te rate o eat rejection rom te orkg luid te condener, te ma lo rate o geotermal ater at te preeater, and te termal eiciency o te Level I cycle o ti plant are to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Analyi (a e exit temperature o geotermal ater rom te vaporizer i determed rom te teadylo energy balance on te geotermal ater (bre, bre,0,000 Btu/ brec p ( (, lbm/(.0 Btu/lbm F(. F F (b e rate o eat rejection rom te orkg luid to te air te condener i determed rom te teady-lo energy balance on air, air airc p ( (,,00 lbm/( 0. Btu/lbm F(. MBtu/. F (c e ma lo rate o geotermal ater at te preeater i determed rom te teady-lo energy balance on te geotermal ater, geo,0,000 Btu/ geo (d e rate o eat put i and geo geo,0 c p ( (.0 Btu/lbm F( lbm/.0. F +, 0, 000 + 0,, 000 vaporizer reeater, 0, 000 Btu / en, W W t 00 0 kw 0 kw. Btu 0.%,0,000 Btu/ kw

0-0- A team poer plant operate on te imple ideal Ranke cycle. e turbe let temperature, te poer put, te termal eiciency, and te mimum ma lo rate o te coolg ater reuired are to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Analyi (a From te team table (able A-, A-, and A-, (b and v v u, p, at @. ka v ( ( 0.0000 m /kg( 000. ka.0 kj/kg @. ka @. ka + p, g @. ka g @. ka. kj/kg 0.0000 m /kg 0.. +.0. kj/kg.0 kj/kg.0 kj/kg Ma. kj/kg 0. t W kj ka m... kj/kg.0. 0. kj/kg. 0.. kj/kg. kj/kg.%. kj/kg ( 0.( 0,000, kj/ kj/ t Ma. ka (c e ma lo rate o te coolg ater ill be mimum en it i eated to te temperature o te team te condener, ic i 0., cool c W 0,000, 0, kj/ 0, kj/ (. kj/kg ( 0.. kg/

0-0- A team poer plant operatg on an ideal Ranke cycle it to tage o reeat i conidered. e termal eiciency o te cycle and te ma lo rate o te team are to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Analyi (a From te team table (able A-, A-, and A-, en, u, (b v v p, @ ka v( ( 0.0000 m /kg(,000 ka.0 kj/kg @ ka + p, Ma 00 Ma Ma Ma 00 ka x. kj/kg 0.0000 m /kg kj ka m. +.0. kj/kg Ma 00 t 0. kj/kg.0 kj/kg K 00. kj/kg. kj/kg. kj/kg K. kj/kg. kj/kg. kj/kg K. 0. 0.0 g. + x. + ( + ( + ( g.. 0. kj/kg 0. 0.. kj/kg ka ( 0.0(.0. kj/kg Ma Ma 0.. +. 00. +.. 0. kj/kg W. kj/kg.% 0. kj/kg 0,000 kj/. kj/kg. kg/ Ma

0-0- An 0-MW team poer plant operatg on a regenerative Ranke cycle it an open eedater eater i conidered. e ma lo rate o team troug te boiler, te termal eiciency o te cycle, and te irreveribility aociated it te regeneration proce are to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Analyi Boiler II Open urbe -y y ondener I 0 Ma 0. Ma y 0 ka -y (a From te team table (able A-, A-, and A-, v v pi, @0 ka @0 ka.kj/kg v( / p kj ( 0.000m /kg( 00 0ka / ( 0. pi, 0. Ma at. liuid v v 0.000 m /kg ka m 0.kJ/kg +.+ 0..kJ/kg pii, @ 0. Ma @ 0. Ma 0.0 kj/kg 0.000m /kg v ( / p kj ( 0.000 m /kg( 0,000 00 ka /( 0. ka m 0. kj/kg + 0.0 + 0..0 kj/kg pii, 0 Ma 00 x 0. Ma. kj/kg. kj/kg K..0 0. g.0 + x g 0.0 + ( 0.( 0.0. kj/kg ( ( 0.0(.. kj/kg..

0- x 0 ka. 0. 0. g. + x g.+ ( 0.(. 0. kj/kg ( ( 0.0(.. kj/kg. 0. e raction o team extracted i determed rom te teady-lo energy balance euation applied to te eedater eater. Notg tat W ke pe 0, E E E E E 0 (teady ytem 0 ( y ( i i mee m + m m y + ere y i te raction o team extracted rom te turbe ( /. Solvg or y, en, and y 0.0. 0.....0. kj/kg ( y( ( 0.(.. W m... kj/kg 0,000 kj/. kg/. kj/kg (b e termal eiciency i determed rom Alo, t 0. Ma. kj/kg @ 0. Ma. kj/kg.%. kj/kg @ 0 ka. kj/kg K.0 kj/kg K 0. kj/kg K. kj/kg en te irreveribility (or exergy detruction aociated it ti regeneration proce i i regen 0gen 0 + mee mii 0 urr L [ y ( y ] ( 0 K [.0 ( 0.(. ( 0.( 0. ]. kj/kg 0

0-0- An 0-MW team poer plant operatg on an ideal regenerative Ranke cycle it an open eedater eater i conidered. e ma lo rate o team troug te boiler, te termal eiciency o te cycle, and te irreveribility aociated it te regeneration proce are to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Analyi Boiler II Open urbe -y y ondener I 0 Ma 0. Ma y 0 ka -y (a From te team table (able A-, A-, and A-, v v pi, @ 0 ka @ 0 ka. kj/kg 0.000 m v ( ( 0.000 m /kg( 00 0 ka + pi, 0. Ma at.liuid v v pii, /kg kj ka m.+ 0.0.0 kj/kg @ 0. Ma @ 0. Ma 0.0 kj/kg 0.000 m ( ( 0.000 m /kg( 0,000 00 ka v + pii, 0 Ma 00 0. Ma x 0 ka x. kj/kg. kj/kg K 0.0 kj/kg /kg kj ka m 0.0 + 0. 0. kj/kg..0 0. g.0 + x 0.0 + ( 0.( 0.0. 0. 0. g. + x.+ g g 0. kj/kg. kj/kg ( 0.(. 0. kj/kg

0- e raction o team extracted i determed rom te teady-lo energy euation applied to te eedater eater. Notg tat W ke pe 0, E E E 0 (teady ytem 0 E ( y ( i i mee m + m m y + E ere y i te raction o team extracted rom te turbe ( /. Solvg or y, en, and y 0.0. 0.... 0.. kj/kg ( y( ( 0.( 0.. W m...0 kj/kg 0,000 kj/. kj/kg. 0 kg/ (b e termal eiciency i determed rom Alo, t. kj/kg.0%. kj/kg. kj/kg K @ 0. Ma @ 0 ka.0 kj/kg K 0. kj/kg K. kj/kg en te irreveribility (or exergy detruction aociated it ti regeneration proce i i regen 0gen 0 + mee mii 0 urr L [ y ( y ] ( 0 K [.0 ( 0.(. ( 0.( 0. ].0 kj/kg 0

0-0- An ideal reeat-regenerative Ranke cycle it one open eedater eater i conidered. e raction o team extracted or regeneration and te termal eiciency o te cycle are to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Analyi (a From te team table (able A-, A-, and A-, v v pi, @ ka @ ka. kj/kg 0.000 v ( ( 0.000 m /kg( 00 ka kj ka m 0. kj/kg +. + 0.. kj/kg pi, 0. Ma at. liuid v v m @ 0. Ma @ 0. Ma /kg 0. kj/kg 0.000 m /kg v( ( 0.000 m /kg( 0,000 00 ka pii, kj ka m 0. kj/kg + 0. + 0. 0. kj/kg pii, 0 Ma 00.0 Ma.0 Ma 00. kj/kg. kj/kg K. kj/kg. kj/kg. kj/kg K 0. Ma 0. kj/kg. 0. ka 0. x g. + x. + g Boiler II ( 0.(.. kj/kg Open 0 Ma 0. Ma ka I y Ma urbe -y onden. e raction o team extracted i determed rom te teady-lo energy balance euation applied to te eedater eater. Notg tat W ke pe 0, E E E 0 (teady ytem 0 E ( y ( i i mee m + m m y + E ere y i te raction o team extracted rom te turbe ( /. Solvg or y, y 0.. 0. 0.. (b e termal eiciency i determed rom +. 0. +.. ( ( ( ( ( y( ( 0.0(... kj/kg. kj/kg and t.%. kj/kg. kj/kg

0-0- A nonideal reeat-regenerative Ranke cycle it one open eedater eater i conidered. e raction o team extracted or regeneration and te termal eiciency o te cycle are to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Analyi Boiler urbe II Open I y -y ondener y -y (a From te team table (able A-, A-, and A-, v v @ ka @ ka. kj/kg 0.000 m v ( ( 0.000 m /kg( 00 ka pi, 0. Ma at. liuid v v @ 0. Ma /kg pi, kj ka m 0. kj/kg +. + 0.. kj/kg @ 0. Ma 0. kj/kg 0.000 m /kg ( ( 0.000 m /kg( 0,000 00 ka pii, v kj ka m 0. kj/kg + 0. + 0. 0. kj/kg pii, 0 Ma 00.0 Ma. kj/kg. kj/kg K. kj/kg ( ( 0.(.. kj/kg..

0-.0 Ma 00 0. Ma ka x. kj/kg. kj/kg K 0. kj/kg. kj/kg (. ( 0.(. 0. 0... + ( 0.(.. 0. (. ( 0.(.. g + x g. kj/kg. kj/kg e raction o team extracted i determed rom te teady-lo energy balance euation applied to te eedater eater. Notg tat W ke pe 0, E E E E E 0 (teady ytem 0 ( y ( i i mee m + m m y + ere y i te raction o team extracted rom te turbe ( /. Solvg or y, y 0.. 0... (b e termal eiciency i determed rom and t ( + ( (. 0. + (... kj/kg ( y( ( 0.(.. 0. kj/kg 0. kj/kg.%. kj/kg

0-0 0- A team poer plant operate on an ideal reeat-regenerative Ranke cycle it one reeater and to eedater eater, one open and one cloed. e raction o team extracted rom te turbe or te open eedater eater, te termal eiciency o te cycle, and te poer put are to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Analyi Boiler loed II Hig- urbe (a From te team table (able A-, A-, and A-, v v pi, 0 Open I y. kj/kg z I 0.0000 m /kg v ( ( 0.0000 m /kg( 00 ka Lo- urbe -y-z ondener kj ka m 0.0 kj/kg +. + 0.0. kj/kg @ ka @ ka pi, 0. kj/kg 0. Ma @ 0. Ma at.liuid v v @ 0. Ma 0.000 m /kg pii, v( kj ( 0.000 m /kg(,000 00 ka ka m.0 kj/kg + 0.+.0 0. kj/kg pii, 0. Ma at.liuid v v 0 0 Ma 00.0 Ma.0 Ma 00 0. @ 0. Ma. kj/kg @ 0. Ma 0. kj/kg 0. kj/kg 0.000 m /kg Ma 0. Ma ( + ( 0.000 m /kg(,000 00 ka. kj/kg. kj/kg K 0 0 + v. kj/kg. kj/kg K Ma y 0 0. Ma z ka - y - z kj ka m

0-0. Ma 0 0. Ma 0 ka 0 x 0. kj/kg 000. kj/kg 0.0 g + x. +. kj/kg. 0.. g ( 0.0(.0 e raction o team extracted i determed rom te teady-lo energy balance euation applied to te eedater eater. Notg tat W ke pe 0, E 0 (teady E Eytem 0 E i i E e e ( ( y( ( ere y i te raction o team extracted rom te turbe ( /. Solvg or y, y For te open FWH, y. 0. 0. 0. + E + E E + ( y z + z ( i i E E 0.0 0 (teady ytem e e ere z i te raction o team extracted rom te turbe ( / at te econd tage. Solvg or z, z 0 ( y( 0.. ( 0.0( 0.. 000.0. (b ( + ( 0 (.. + (. 0.. kj/kg ( y z( ( 0.0 0.(.0. and t. 0.. kj/kg 0. kj/kg.%. kj/kg (c W m ( kg/(. kj/kg, kw 0. 0. kj/kg

0-0- A cogeneration poer plant i modiied it reeat and tat produce MW o poer and upplie MW o proce eat. e rate o eat put te boiler and te raction o team extracted or proce eatg are to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Analyi (a From te team table (able A-, A-, and A-, @ ka @ 0 Ma 00. kj/kg 0. kj/kg. kj/kg. kj/kg K Boiler roce eater urbe Ma. kj/kg II I Ma. kj/kg 00. kj/kg K. 0. x 0. g. ka Ma + x g. + ( 0.(. Ma. kj/kg e ma lo rate troug te proce eater i proce,000 kj/. kg/ ka (. 0. kj/kg Alo, W ( + ( ( + (.( or, 000 kj/.. +... ( ( ( It yield. kg/ and m.. 0. kg/ Mixg camber: E E E 0 (teady 0 or, en, ytem E E m m m m + m i i e e + ( 0.(. + (.( 0.. ( + ( (. kg/(. 0.0 kj/kg + ( 0. kg/(,00 kw (b e raction o team extracted or proce eatg i. kg/ y.%. kg/ total 0.0 kj/kg.. kj/kg ondener