Keywords: Cone penetration test, CPT, dilatometer, DMT, cone factor, N kt,

Similar documents
Liquefaction potential of Rotorua soils

Cone Penetration Test (CPT) Interpretation

ASSESSMENT OF SHEAR STRENGTH IN SILTY SOILS

Soil Behaviour Type from the CPT: an update

Soil type identification and fines content estimation using the Screw Driving Sounding (SDS) data

CPT Data Interpretation Theory Manual

Interpretation of Flow Parameters from In-Situ Tests (P.W. Mayne, November 2001)

GNS Science, Lower Hutt, New Zealand NZSEE Conference

Suitability of the SDMT method to assess geotechnical parameters of post-flotation sediments.

The Casagrande plasticity chart does it help or hinder the NZGS soil classification process?

ScienceDirect. Correlations between cone penetration test and seismic dilatometer Marchetti test with common laboratory investigations

SOME OBSERVATIONS RELATED TO LIQUEFACTION SUSCEPTIBILITY OF SILTY SOILS

DMT-predicted vs measured settlements under a full-scale instrumented embankment at Treporti (Venice, Italy)

CPT Guide 5 th Edition. CPT Applications - Deep Foundations. Gregg Drilling & Testing, Inc. Dr. Peter K. Robertson Webinar # /2/2013

Strength Characterization of Soft Marine Deposits off East Africa Using the CPT-Stinger Method. Velosa C.L., Remmes B., and Bik M.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

CPT: Geopractica Contracting (Pty) Ltd Total depth: m, Date:

Consolidation lateral stress ratios in clay from flat Dilatometer tests

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

(C) Global Journal of Engineering Science and Research Management

ISC 5 SELF-BORING PRESSUREMETER TESTS AT THE NATIONAL FIELD TESTING FACILITY, BALLINA 5 9 SEPT 2016

Chapter 5 Shear Strength of Soil

New Plymouth CBD Site Subsoil Class: Results from ground investigation

Evaluation of soil liquefaction using the CPT Part 2

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3.

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 4, 2011

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /(ASCE)GT

CHARACTERIZATION OF SENSITIVE SOFT CLAYS FOR DESIGN PURPOSES

Vibroflotation Control of Sandy Soils using DMT and CPTU

Cone Penetration Testing in Geotechnical Practice

Evaluation of Flow Liquefaction: influence of high stresses

SHEAR STRENGTH OF SOIL

ABSTRACT. Use and Application of Piezocone Penetration Testing in Presumpscot Formation

A kinematic hardening critical state model for anisotropic clays

Use of CPT for design, monitoring, and performance verification of compaction projects

Shear Strength of. Charles Aubeny. Department of Civil Engineering Texas A&M University

Johns Hopkins University NSF Workshop Nov 2005 Integrated Site Characterization: In-Situ & Lab Testing with Constitutive Modeling Framework

Chapter 12 Subsurface Exploration

Enhanced In-Situ Testing for Geotechnical Site Characterization. Graduate Course CEE 6423

In Situ Tests and the Pre-failure Deformation Behaviour of Soils

Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering. Offshore subsoil investigations

CPT Applications - Liquefaction 2

Geotechnical Parameters of Alluvial Soils from in-situ Tests

H.1 SUMMARY OF SUBSURFACE STRATIGRAPHY AND MATERIAL PROPERTIES (DATA PACKAGE)

Geotechnical characterization of a heterogeneous unsuitable stockpile

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading.

Chapter (11) Pile Foundations

SOME GEOTECHNICAL PROPERTIES OF KLANG CLAY

Interpretation of in-situ tests some insights

Liquefaction Assessment using Site-Specific CSR

Liquefaction resistance and possible aging effects in selected Pleistocene soils of the Upper North Island

Estimation of Shear Wave Velocity Using Correlations

Interpretation of the CPT in engineering practice

Cyclic strength testing of Christchurch sands with undisturbed samples

Waterview Connection Tunnels

Theory of Shear Strength

Soil strength. the strength depends on the applied stress. water pressures are required

Case Study - Undisturbed Sampling, Cyclic Testing and Numerical Modelling of a Low Plasticity Silt

DIFFICULTIES IN ASSESSING LIQUEFACTION POTENTIAL FROM CONVENTIONAL FIELD TESTING

Master Thesis, Department of Geosciences. Interpretation of CPTu results in silty clay and assessment of strength parameters

Geotechnical characteristics of shallow soil formations at Boubyan Island, Kuwait

Engineering Units. Multiples Micro ( ) = 10-6 Milli (m) = 10-3 Kilo (k) = Mega (M) = 10 +6

Keywords: Fines Correction, Ic Cutoff, Liquefaction, Hamilton Ash, Waikato.

Strength-Flow Parameters of Loose Silty Sands From Piezocone Tests

Canadian Geotechnical Journal. CPT-based Soil Behaviour Type (SBT) Classification System an update

Shear strength. Common cases of shearing In practice, the state of stress in the ground will be complex. Common cases of shearing Strength

Challenges in the Interpretation of the DMT in Tailings

Undrained Shear Strength of Very Soft to Medium Stiff Bangkok Clay from Various Laboratory Tests

Soil stiffness measured in oedometer tests

Ground Sampling and Laboratory Testing on Low Plasticity Clays

Theory of Shear Strength

Site characterisation for the Ballina field testing facility

3. EVOLUTION In 1948 the basic mechanical cone was developed (Figure 1) and this cone is still in use today as the

Behavior of Soft Riva Clay under High Cyclic Stresses

Engineeringmanuals. Part2

Analysis of a single pile settlement

APPENDIX F CORRELATION EQUATIONS. F 1 In-Situ Tests

Liquefaction induced ground damage in the Canterbury earthquakes: predictions vs. reality

Constitutive Model Input Parameters for Numerical Analyses of Geotechnical Problems: An In-Situ Testing Case Study.

Minnesota Department of Transportation Geotechnical Section Cone Penetration Test Index Sheet 1.0 (CPT 1.0)

Collapsible Soils Definitions

Set-up in Heavy Tamping Compaction of Sands

Comparison of the post-liquefaction behaviour of hard-grained and crushable pumice sands

Project S4: ITALIAN STRONG MOTION DATA BASE. Deliverable # D3. Definition of the standard format to prepare descriptive monographs of ITACA stations

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

NZ Transport Agency s Detailed Design Guidance for Piled Bridges at Sites Prone to Liquefaction and Lateral Spreading

14 Geotechnical Hazards

Evaluation of soil liquefaction using the CPT Part 1

POST CYCLIC SHEAR STRENGTH OF FINE GRAINED SOILS IN ADAPAZARI TURKEY DURING 1999 KOCAELI EARTHQUAKE

Evaluation of Cone Penetration Resistance in Loose Silty Sand Using Calibration Chamber

Effect of the overconsolidation ratio of soils in surface settlements due to tunneling

Examples of CPTU results in other soil types. Peat Silt/ clayey sands Mine tailings Underconsolidated clay Other

Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests

Evaluation of the Liquefaction Potential by In-situ Tests and Laboratory Experiments In Complex Geological Conditions

5th International Workshop "CPTU and DMT in soft clays and organic soils" Poznan, Poland, Sept , 2014

A comparison between two field methods of evaluation of liquefaction potential in the Bandar Abbas City

Introduction to Cone Penetration Testing

Calculation of 1-D Consolidation Settlement

Links between small and large strain behavior of Presumpscot clay

IGC. 50 th INDIAN GEOTECHNICAL CONFERENCE ESTIMATION OF FINES CONTENT FROM CPT PARAMETERS FOR CALCAREOUS SOILS OF WESTERN INDIAN OFFSHORE

Transcription:

Holtrigter, M., Thorp, A. & Barnes, R.D. () Proc. th NZGS Geotechnical Symposium. Eds. GJ Alexander & CY Chin, Napier M Holtrigter, A Thorp & R D Barnes Ground Investigation Limited, Auckland, NZ marco@g-i.co.nz (Corresponding author) Keywords: Cone penetration test,, dilatometer,, cone factor, N kt, ABSTRACT The near surface geology of the Auckland area generally comprises alluvial soils, volcanic tuff/ash and/or residual soils. These soils may be expected to display different engineering characteristics given their different geological origins. The soils are mostly cohesive and the undrained shear strength, s u, is of geotechnical interest. The cone penetration test () allows an estimate of s u to be made via application of bearing capacity theory using a cone factor, N kt. Typically, N kt varies from to, depending on the soil type, so it is often necessary to compare with a reference test to determine the N kt factor that is appropriate for the soil type on a sitespecific basis. In this study, we have undertaken flat dilatometer tests () next to tests at various sites in Auckland with the acting as the reference test. In this way, typical N kt factors for the different geological units have been suggested. INTRODUCTION The undrained shear strength of a cohesive soil can be estimated using the cone penetration test (). This is usually done by utilising a cone factor, N kt. The N kt value is generally not known and can vary over a large range depending on geology and soil type. This often leaves the geotechnical engineer having to guess what N kt value to use, if there are no reference tests to help establish a site specific correlation. The purpose of this study is to help provide an indication of what N kt values may be applicable to the different soil types in Auckland by using the test as a reference test. In this study, the authors have selected side-by-side and tests from various sites of various geological units across Auckland. The results have been compared to help determine suitable N kt values. BRIEF GEOLOGY OF AUCKLAND SOILS The geology of Auckland is shown on the GNS Geological Map and described in the associated booklet (Kermode, 99). In general terms, the near surface soils in the Auckland area are predominately cohesive (silts and clays) but have been formed by different geological processes. The most recent deposits (Holocene) are marine sediments in the harbours and under reclaimed land, and localised areas of stream and flood plain alluvium. A large proportion of the surface geology of Auckland is alluvium of the Tauranga Group (mostly Pleistocene), which comprise mostly firm to stiff silts and clays, but also contains Pumice material from the Taupo Volcanic Zone as well as significant deposits of peat in places. More recent volcanic deposits from the Auckland Volcanic Field provide a coverage of tuff and ash (as well as Basalt lava flows and scoria) over parts of Auckland. The tuff and ash have generally weathered to form soft to very stiff sandy or silty clays. The volcanic soils can be interbedded or interspersed with the sedimentary alluvial deposits. The Waitemata Group sandstones and siltstones (Miocene), which

Holtrigter, M., Thorp, A. & Barnes, R.D. () underlie most of the Auckland area, form a mantle of residual soil (silts and clays, some sand) over a deep weathering profile. The Waitemata Group residual soils often present at, or near the surface. To the east of Auckland, uplifted Greywacke (Mesozoic) through the line of the Hunua ranges, is exposed in Waiheke and Motutapu Islands of the Hauraki Gulf, weathering to clays at the surface. Although the near surface soils are mostly clay-like, they vary in plasticity and silt content, are sandy in places, are usually layered and almost always non-homogeneous. This adds a further complication to the varying geological origins, which provide different clay minerology and (macro and micro) structural effects. This makes establishing correlations to geotechnical soil parameters difficult and standard correlations that are based on well behaved text book soils may not be applicable. UNDRAINED SHEAR STRENGTH The undrained shear strength, s u, is not a unique soil property. It varies depending on the mode of failure, the stress state of the soil, anisotropic effects and rate of failure. Furthermore, in situ tests may not necessarily be fully drained, as may be the case for silty soils, and so not truly represent undrained shear strength. Kamei (99) showed that anisotropy is a significant factor by comparison of isotropic consolidated triaxial tests (CIU) with K (coefficient of earth pressure at rest) consolidated triaxial tests (CK U). Figure shows that the CK C tests give lower undrained shear strengths than the CIU tests, both in compression and extension. This figure also shows that tests in extension are significantly less than tests in compression, which illustrates variation due to mode of failure. Mayne () also illustrated the effect of failure mode on s u, as illustrated in Figure. There may be a factor of between the highest and lowest measured undrained shear strengths of the same soil! The figure also illustrates the hierarchy of s u from highest to lowest, being: field vane test, triaxial compression, direct simple shear (DSS) and triaxial extension. Figure : s u variation between isotropic and K consolidated triaxial tests (Kamei, 99) Figure : s u variation between tests of different failure mode (Mayne, ) This presents a problem as to which test to use as a reference test when correlating to another test, in this case, the. Mayne () suggests that the DSS mode is most appropriate. This mode presents s u results that fall more-or-less mid-way between the other test modes and thus provides an average result. It is also the mode that best relates to the SHANSEP method (Stress History and Normalised Soil Engineering Properties) (Ladd et al 9) and theory of critical state soil mechanics (Wroth, 9). The DSS represents the simplest form of shearing.

Holtrigter, M., Thorp, A. & Barnes, R.D. () By the SHANSEP method (Ladd et al. 9): s u =..OCR. () where vo = the effective overburden pressure and OCR = overconsolidation ratio. The terms. and. in equation () are averaged values of a narrow range of variables determined experimentally. A similar relationship can be derived theoretically using critical state soil mechanics (CSSM) (Wroth, 9): s u = ½ sin. vo.ocr () where and = effective angle of friction and = c s/c c. c s and c c = swelling and compression index, respectively Both the SHANSEP method and the CSSM methods are related to the DSS mode of undrained shear strength.. Undrained shear strength from The undrained shear strength of clays can be estimated from results using the following equation (Lunne et al.): s u = q net/n kt () where q net = net cone resistance (q c vo) and N kt = cone factor Equation () is a direct application of bearing capacity theory, where N kt is then the bearing capacity factor for the cone. N kt is determined empirically, usually by correlation to a reference test. Typically, N kt is between and, with an average of (Robertson and Cabal, ). There are other methods of estimating s u, such as by using effective cone resistance, by using excess pore water pressure, by cavity expansion, or by critical state soil mechanics (Mayne, ). However, equation () is the most common method.. Undrained shear strength from A correlation for undrained shear strength from was established by Marchetti (9), via the relationship with OCR: OCR = (..K D). () Where K D = horizontal stress index (strongly correlated to K ) By applying the SHANSEP method, represented by equation (), the relationship for s u becomes: s u =..(..K D). ()

Holtrigter, M., Thorp, A. & Barnes, R.D. () This relationship has been found to provide a reliable estimation of undrained shear strength by numerous researchers (e.g. Lacasse & Lunne, 9 and Powell & Uglow, 9). However, most research has been in soft to firm normally to moderately overconsolidated sedimentary clays. Marchetti () stressed that equation () is applicable only to text book clays. SIDE-BY-SIDE AND RESULTS sets of - sounding pairs have been selected for this study from the Ground Investigation Ltd s database. These have been supplemented by borehole information from the New Zealand Geotechnical database to assist with identifying geological units. The approximate locations where the tests were performed are shown on Figure. The pairs were selected based on distance between tests (less than m), availability of nearby borehole information and uniformity of ground conditions between tests. It was difficult to find tests that met the last criteria as most of the sites display layered soils and lateral variation. Figure : Approximate locations of test sites used in this study The data was separated into groups according to geology. The geological units chosen being; Marine Sediments; Peat; Alluvium; Volcanic soils; Residual Waitemata Group soils and; Residual Waipapa Group soils (Greywacke). Some cleaning of the data was carried out by way of depth shifts and removal of anomalies, such as inconsistent spikes in data. The data was then plotted on graphs of q net vs. These are shown on Figure for the various geological units.. Marine Sediments/Intertidal Mud There are only two data sets of Marine Sediments used in this study. These are from the tidal mudflats adjacent to the SH causeway on Auckland s northwestern motorway. The plot on Figure (a) suggests an N kt of with a strong correlation. The soils here are normally or very slightly overconsolidated sedimentary soils and so should behave as a text book soil and so the derived s u should be reliable. The N kt = seems low considering the typical range, however, Lunne et al. (99) showed that N kt decreases with increasing B q (normalised pore pressure ratio). In very sensitive fine-grained soils, where B q is around., the N kt can be as low as. The plots from this data set show B q at. or slightly higher (indicating sensitive soil). In this instance, N kt = appears correct. This validates to some extent the use of the as a reference test. It also highlights the need to consider the porewater pressure response and the need for good

Su (kpa) Su (kpa) Su (kpa) Su (kpa) Su (kpa) s u (kpa) Holtrigter, M., Thorp, A. & Barnes, R.D. () (a) Marine Sediments (b) Peat Nkt = Nkt = q net (kpa) q net (kpa) (c) Alluvium (d) Auckland Volcanic Field (Tuff) N kt = N kt = qnet (kpa) qnet (kpa) (e) Waitemata Group Residual Soil (f) Greywacke Residual Soil N kt = N kt = qnet (kpa) qnet (kpa) Figure : Plots of derived s u vs. q net

Holtrigter, M., Thorp, A. & Barnes, R.D. () u readings in soft clays. Alternative methods of determining s u by excess porewater pressure or by effective cone resistance should also be considered in these soft deposits. Figure (a) shows a depth plot of derived s u overlain with the s u derived from an adjacent using N kt =. The marine sediment/mud is underlain by older alluvial materials, to which Nkt = appears to be applicable (see Section. below).. Peat There is one - pair in peat soil. At this site, the peat is mostly amorphous, tending to organic clay in places and with some fibrous material. Figure (b) shows the resulting plot of s u and q net. There is considerable natural variability in this material and, therefore, it is difficult to get an exact match between the and data. Hence the plot shows a reasonable scatter. However, an average value of N kt = could be taken from that plot. When the su is plotted with depth along with the su derived from N kt =, as shown in Figure (b) there is reasonable agreement considering the variability of the soil.. Alluvium The data for the Alluvium set is mostly in the Puketoka Formation of the Tauranga Group, but may also include some more recent (Holocene) alluvium. The results of side-by-side and tests in alluvial deposits are shown on Figure (c). There is reasonable scatter, much of which is likely the result of material variability between the tests. Most data falls within the range N kt = to, which is the typical range for most soils. Regression of this data gives a N kt = approx.. Using this value and applying it to one of the / pairs shows good agreement (Figure c). These alluvial deposits appear to behave as expected and N kt = is likely to be appropriate for these soils as a general value.. Volcanic Tuff/Ash Figure (d) shows some scatter but the average again appears to be around N kt = for this data set (three / pairs). Using N kt =, shows good reasonable agreement between and derived s u values on the depth plot in Figure (d). This value (N kt = ) appears to work well for this particular data set, but the same value may not be applicable for all volcanic clays in Auckland. There is likely to be a large amount of variability in this material and so caution should be taken when assigning a N kt value in these soils. Site specific correlation may be required. It should also be noted that the s u correlations using the standard Marchetti (9) correlations based on SHANSEP may not be applicable for these soils. Another reference test may be required for a site specific correlation.. Waitemata and Waipapa Group Residual Soils There are data sets in the Waitemata Group but only one in the Greywacke residual soils. Both these geological units show a similar trend in the s u vs. q net plots on Figures (e) and (f) with N kt tending to the higher end, averaging between and. There is considerable scatter in the Waitemata Group soils, most of which may be attributable to the natural variation and layered nature of the material. A depth plot of the Waitemata Group materials in shown on Figure (e) showing derived s u values with those derived from using an N kt =. This seems high and may be a reflection of the derived s u values possibly not being applicable to these residual soils. Further research will be required to establish the -s u correlations in these soils.

Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Holtrigter, M., Thorp, A. & Barnes, R.D. () (a) Intertidal Mud overlaying Alluvium- recalculated (b) Peat (c) Alluvium..... Intertidal Mud Nkt:.. Alluvium Nkt: 9.. 9 9. Boundary 9 (d) Auckland Volcanic Field (Tuff) 9 (e) Alluvium Overlying Waitemata Group- recalculated Boundary Alluvium Nkt: Waitemata Group Nkt: Figure : Depth plots of and derived s u values

Holtrigter, M., Thorp, A. & Barnes, R.D. () CONCLUSIONS The undrained shear strength, s u, derived from side-by-side and tests over a range of Auckland clays have been compared to determine typical N kt values for the various geological units. In this approach, the is used as the reference test to which the is compared. It appears that a N kt value of is a good fit in general for the Alluvial clays. In this study, N kt = also appears to work well for amorphous peats and volcanic soils, however, caution should be applied in these materials and site-specific correlation is advised. In marine intertidal muds, an N kt = appears to be applicable, but will be dependent on the normalised pore pressure. Good pore pressure response, u, in the test is important to allow a more comprehensive assessment of s u in soft clays. In the residual Waitemata Group soils, N kt values appear high (around ) using the approach of this paper. It is possible that the standard -s u correlations may not be applicable in these soils. Until correlations have been developed, site-specific correlation with another reference test is suggested to determine N kt in these residual soils. REFERENCES Kamei, T. (99) Undrained shear strength and interrelationships among CIUC, CKoUC, CIUE and CKoUE tests. Geoscience Rept. Shimane Univ.,, p.-. Kermode, L.O. (99) Geology of the Auckland urban area. Scale :,. Institute of Geological & Nuclear Sciences geological map. sheet + p. Institute of Geological and Nuclear Sciences Ltd, Lower Hutt, New Zealand. Lacasse, S. and Lunne, T. (9) Calibration of dilatometer correlations. Proceedings ISOPT-. Orlando FL. Vol. : p.9-. Ladd, C.C., Foott, R., Ishihara, K., Schlosser, F. and Poulos, H.G. (9) Stress deformation and strength characteristics. Proceedings 9 th ICSMFE. Tokyo, Vol. : p. -9. Lunne, T., Robertson, P.K. and Powell, J.J.M. (99) The cone penetration test in geotechnical practice. EF Spon/Blackie Academic, Routledge Publishing, New York. P.. Marchetti, S. (9) In situ tests by flat dilatometer. ASCE Jnl GED. Vol., No. GT, Mar: p. 99-. Marchetti, S. () Keynote lecture: Updates to the TC Report. - Conf. Rome Mayne, P.W. () Invited Keynote: Evaluating effective stress parameters and undrained shear strength of soft-firm clays from and. In Pursuit of Best Practices Proc. th Intl. Conf. on Geotechnical & Geophysical Site Characterisation. ISC-, Jupiters Resort, Gold Coast, Australian Geomechnics Society. Vol. : p.9-. Powell, J.J.M. and Uglow, I.M. (9) The interpretation of the Marchetti dilatometer test in UK clays. ICE Proc. Conf. Penetration Testing in the UK. Univ. of Birmingham, July, Paper No. : p.9-. Robertson, P.K. and Cabal, K.L. () Guide to Cone Penetration Testing for Geotechnical Engineering. Gregg Drilling & Testing, Inc. th Edition Wroth, C.P. (9) The interpretation of in situ soil tests. Geotechniqu (): p. 9-9.