Bloch Equations & Relaxation UCLA. Radiology

Similar documents
Basic Pulse Sequences I Saturation & Inversion Recovery UCLA. Radiology

} B 1 } Coil } Gradients } FFT

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Physics of MR Image Acquisition

Nuclear Magnetic Resonance Imaging

Introduction to Biomedical Imaging

Classical Description of NMR Parameters: The Bloch Equations

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging

Classical Description of NMR Parameters: The Bloch Equations

RF Excitation. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2006 MRI Lecture 4. Thomas Liu, BE280A, UCSD, Fall 2006

Physical fundamentals of magnetic resonance imaging

MRI Physics I: Spins, Excitation, Relaxation

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x )

The NMR Inverse Imaging Problem

Principles of Magnetic Resonance Imaging

Sketch of the MRI Device

FREQUENCY SELECTIVE EXCITATION

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x

Basic Pulse Sequences II - Spin Echoes. TE=12ms TE=47ms TE=106ms TE=153ms UCLA. Radiology

Biomedical Imaging Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging

RF Pulse Design. Multi-dimensional Excitation I. M229 Advanced Topics in MRI Kyung Sung, Ph.D Class Business

Bioengineering 278" Magnetic Resonance Imaging" Winter 2010" Lecture 1! Topics:! Review of NMR basics! Hardware Overview! Quadrature Detection!

Pulse Sequences: EPG and Simulations

Tissue Characteristics Module Three

Exam 8N080 - Introduction to MRI

Extended Phase Graphs (EPG)

Chapter 14:Physics of Magnetic Resonance

Part III: Sequences and Contrast

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Extended Phase Graphs (EPG)

EE591 Magnetic Resonance Imaging and Reconstruction Project Report. S i m u l a t i o n. Professor: Krishna Nayak ID: , Name: Yongjin Cho

The Physical Basis of Nuclear Magnetic Resonance Part I ESMRMB. Jürgen R. Reichenbach

Topics. Spin. The concept of spin Precession of magnetic spin Relaxation Bloch Equation

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

10.4 Continuous Wave NMR Instrumentation

Magnetic Resonance Imaging in a Nutshell

MRI in Review: Simple Steps to Cutting Edge Part I

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging

Chemistry 431. Lecture 23

M. Lustig, EECS UC Berkeley. Principles of MRI EE225E / BIO265

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013

Basic MRI physics and Functional MRI

RAD229: Midterm Exam 2015/2016 October 19, Minutes. Please do not proceed to the next page until the exam begins.

Nuclear Magnetic Resonance Imaging

Principles of MRI EE225E / BIO265. Lecture 14. Instructor: Miki Lustig UC Berkeley, EECS. M. Lustig, EECS UC Berkeley

More NMR Relaxation. Longitudinal Relaxation. Transverse Relaxation

Field trip: Tuesday, Feb 5th

Topics. The History of Spin. Spin. The concept of spin Precession of magnetic spin Relaxation

Lecture 12 February 11, 2016

Pulse Sequences: RARE and Simulations

Basis of MRI Contrast

EE225E/BIOE265 Spring 2016 Principles of MRI. Assignment 4. Due Friday Feb 19st, 2016, Self Grading Due Monday Feb 22nd, 2016

BME I5000: Biomedical Imaging

An introduction to Solid State NMR and its Interactions

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia

Contrast Mechanisms in MRI. Michael Jay Schillaci

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

Utrecht University. Radiofrequency pulse design through optimal control and model order reduction of the Bloch equation

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging

7. Basics of Magnetization Switching

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

Magnetization Gradients, k-space and Molecular Diffusion. Magnetic field gradients, magnetization gratings and k-space

Rad 226b/BioE 326b In Vivo MR: Relaxation Theory and Contrast Mechanisms

Magnetization Preparation Sequences

Spin Echo Review. Static Dephasing: 1/T2 * = 1/T2 + 1/T2 Spin echo rephases magnetization Spin echoes can be repeated. B.Hargreaves - RAD 229

We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by:

Magnetic Resonance Imaging in Medicine

CHEM / BCMB 4190/6190/8189. Introductory NMR. Lecture 10

Tissue Parametric Mapping:

A Brief Introduction to Medical Imaging. Outline

NMR Spectroscopy: A Quantum Phenomena

Principles of Nuclear Magnetic Resonance Microscopy

14 The Classical Description of NMR

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori

RAD229: Final Exam 2014/ SOLUTIONS You will have 3 hours to complete this Exam

Functional Magnetic Resonance Imaging (FMRI) is an imaging technique for

June 16, Signal generation and gradient fields in MRI. Maximilian Oehm. Summary of physical fundamentals. Motivation. Complex representation

The Theory of Nuclear Magnetic Resonance Behind Magnetic Resonance Imaging. Catherine Wasko Physics 304 Physics of the Human Body May 3, 2005

Principles of Magnetic Resonance

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

Diffusion Tensor Imaging (DTI): An overview of key concepts

RADIOLOGIV TECHNOLOGY 4912 COMPREHENSEIVE REVIEW/MRI WORSHEET #1- PATIENT CARE AND SAFETY/PHYSICAL PRINCIPLES

Factoring 15 with NMR spectroscopy. Josefine Enkner, Felix Helmrich

Lecture k-space. k-space illustrations. Zeugmatography 3/7/2011. Use of gradients to make an image echo. K-space Intro to k-space sampling

Correction Gradients. Nov7, Reference: Handbook of pulse sequence

Determining NMR relaxation times for porous media: Theory, measurement and the inverse problem

NMR/MRI examination (8N080 / 3F240)

Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast

BASIC MRI PHYSICS SPIN GYMNASTICS Don Plewes PhD, Walter Kucharczyk MD

Relaxation. Ravinder Reddy

PhD THESIS. prepared at INRIA Sophia Antipolis

Basic p rinciples COPYRIGHTED MATERIAL. Introduction. Atomic s tructure

Fundamental MRI Principles Module Two

Classical behavior of magnetic dipole vector. P. J. Grandinetti

1 Magnetism, Curie s Law and the Bloch Equations

Principles of MRI EE225E / BIO265. Name That Artifact. RF Interference During Readout. RF Interference During Readout. Lecture 19

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

NMR and MRI : an introduction

Transcription:

Bloch Equations & Relaxation

MRI Systems II B1 I 1 I ~B 1 (t) I 6 ~M I I 5 I 4

Lecture # Learning Objectives Distinguish spin, precession, and nutation. Appreciate that any B-field acts on the the spin system. Understand the advantage of a circularly polarized RF B-field. Differentiate the lab and rotating frames. Define the equation of motion in the lab and rotating frames. Know how to compute the flip angle from the B1-envelope function. Understand how to apply the RF hard pulse matrix operator.

Mathematics of Hard RF Pulses

Parameters & Rules for RF Pulses B RF pulses have a flip angle (α) - RF fields induce left-hand rotations All B-fields do this for positive γ RF pulses have a phase (θ) - Phase of 0 is about the x-axis - Phase of 90 is about the y-axis Z ~M RF ~! X Y

RF Flip Angle

Flip Angle Amount of rotation of the bulk magnetization vector produced by an RF pulse, with respect to the direction of the static magnetic field. Liang & Lauterbur, p. 74 Z ~M X Y! 1 = B 1 B-fields induce precession!

Rules for RF Pulses RF Phase Flip Angle Z Z X Y Z X Y RF 90 0 RF 90 90 B-fields induce left-handed nutation! X Y

How to determine α? B1,max RF = Z p 0 B e 1 (t) dt Rules: 1) Specify α ) Use B1,max if we can ) Shortest duration pulse

How to determine α? B1,max RF = B1,max = = Z p 0 B e 1 (t) dt / 4.57Hz/µT 60µT =0.098ms

RF Phase

Bulk Magnetization in the Lab Frame Z ~M X Y How do we mathematically account for α and θ?

Change of Basis (θ) Z ~M X X Y Y R Z ( ) = 4 cos sin 0 sin cos 0 0 0 1 5 Rotate into a coordinate system where M falls along the y -axis.

Rotation by Alpha Z ~M X X Y Y R X ( ) = 4 1 0 0 0 cos sin 0 sin cos 5 Rotate M by α about x -axis.

Change of Basis (-θ) Z ~M X X Y Y R Z ( ) = 4 cos ( ) sin( ) 0 sin ( ) cos ( ) 0 0 0 1 5 Rotate back to the lab frame s x-axis and y-axis.

RF Pulse Operator Z ~M X X Y Y R = R Z ( ) R X ( ) R Z ( ) c +s c c s c s c s s = 4 c s c s c s +c c c s s s c s c 5 This is the composite matrix operator for a hard RF pulse.

Types of RF Pulses

Types of RF Pulses Excitation Pulses Inversion Pulses Refocusing Pulses Saturation Pulses Spectrally Selective Pulses Spectral-spatial Pulses Adiabatic Pulses

Excitation Pulses Tip Mz into the transverse plane Typically 00µs to 5ms Non-uniform across slice thickness Imperfect slice profile Non-uniform within slice Termed B1 inhomogeneity Non-uniform signal intensity across FOV 90 Excitation Pulse Small Flip Angle Pulse

Inversion Pulses Typically, 180 RF Pulse non-180 that still results in -MZ Invert MZ to -MZ Ideally produces no MXY Hard Pulse Constant RF amplitude Typically non-selective Soft (Amplitude Modulated) Pulse Frequency/spatially/spectrally selective Typically followed by a crusher gradient 180 Inversion Pulse

Refocusing Pulses Typically, 180 RF Pulse Provides optimally refocused MXY Largest spin echo signal Refocus spin dephasing due to imaging gradients local magnetic field inhomogeneity magnetic susceptibility variation chemical shift Typically followed by a crusher gradient 180 Refocusing Pulse

Lecture # Summary - RF Pulses ~B 1 (t) = h cos(! RF t)î i sin(! RF t)ĵ Circularly Polarized RF Fields R = R Z ( ) R X ( ) R Z ( ) c +s c c s c s c s s = 4 c s c s c s +c c c s s s c s c 5 RF Pulse Operator Z = Z p 0 B e 1 (t) dt X ~M Y Choosing the flip angle.

Lecture # Summary - Rotating Frame d ~ M rot dt = ~ M rot ~! rot + ~ B rot Equation of Motion for the Bulk Magnetization in the Rotating Frame Without Relaxation ~B eff ~! rot + ~ B rot Definition of the effective B-field. ~! rot Fictitious field that demodulates description of the bulk magnetization. ~B rot The applied B-field in the Rotating Frame. d ~ M rot dt = ~ M rot ~ B eff Equation of Motion for the Bulk Magnetization in the Rotating Frame Without Relaxation

Free Precession in the Rotating Frame without Relaxation ~B eff = ~! rot + ~ B rot = B 0ˆk 0 + B 0ˆk0 =0 d ~ M rot dt = ~ M rot ~ B eff dm x 0 dt =0 dm y 0 dt =0 d ~ M rot dt = î 0 ĵ 0 ˆk0 M x 0 M y 0 M z 0 0 0 0 dm z 0 dt =0

Forced Precession in the Rotating Frame without Relaxation d ~ M rot dt = ~ M rot ~ B eff = ~ M rot B e 1(t)î 0 = î 0 ĵ 0 ˆk0 ~M x 0 My ~ 0 Mz ~ 0 B1(t) e 0 0 dm x 0 dt =0 dm y 0 dt = B e 1(t)M z 0 dm z 0 dt = B e 1(t)M y 0

To The Board

Bloch Equations & Relaxation

195 Nobel Prize in Physics for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith Felix Bloch b. Oct 1905 d. 10 Sep 198 Edward Purcell b. 0 Sep 191 d. 07 Mar 1997

Bloch Equations with Relaxation d ~ M dt = ~ M ~ B M xî+m yĵ T (M z M 0 ) ˆk T 1 + Dr ~ M Differential Equation Ordinary, Coupled, Non-linear No analytic solution, in general. Analytic solutions for simple cases. Numerical solutions for all cases. Phenomenological Exponential behavior is an approximation.

Bloch Equations - Lab Frame d ~ M dt = ~ M ~ B M xî+m yĵ T (M z M 0 ) ˆk T 1 { Precession { Transverse Relaxation { Longitudinal Relaxation Precession Magnitude of M unchanged Phase (rotation) of M changes due to B Relaxation T1 changes are slow O(100ms) T changes are fast O(10ms) Magnitude of M can be ZERO Diffusion Spins are thermodynamically driven to exchange positions. Bloch-Torrey Equations + Dr ~ M { Diffusion

Excitation and Relaxation Z X The magnetization relaxes after excitation (forced precession).

Bloch Equations Rotating Frame M rot t = M rot B eff M x 0 i 0 + M y 0 j 0 T (M z0 M 0 ) k 0 T 1 { Precession { Transverse Relaxation { Longitudinal Relaxation ~B eff ~! rot + ~ B rot Effective B-field that M experiences in the rotating frame. Applied B-field in the rotating frame. Fictitious field that demodulates the apparent effect of B0

T1 Relaxation

T1 and T Values Tissue T1 [ms] T [ms] gray matter 95 100 white matter 790 9 muscle 875 47 fat 60 85 kidney 650 58 liver 500 4 CSF 400 180 TI=5ms TE=1ms TI=00ms TE=1ms TI=500ms TE=1ms TI=1000ms TE=1ms Each tissue as unique relaxation properties.

T1 Relaxation Longitudinal or spin-lattice relaxation Typically 100s to 1000s of ms T1 increases with increasing B0 T1 decreases with contrast agents Short T1s are bright on T1-weighted image

T1 Relaxation 6 Tissue T1 [ms] T [ms] gray matter 95 100 white matter 790 9 Longitudinal Magnetization [a.u.] 1 0.8 0.6 0.4 0. 0 0 1000 000 000 4000 5000 Time [ms] White Matter Gray Matter

T1 Relaxation Free Precession in the Lab or Rotating Frame with Relaxation M z (t) =M 0 z e t T 1 + M 0 1 e t T 1 { Net Magnetization { Prepared Magnetization Decays (Mz 0 ) { Return to Thermal Equilibrium (M0) 1.00 M 0 Fraction of M0 0.75 0.50 0.5 Mz 0 0.00 0 00 400 600 800 1000 Time [ms]

T Relaxation

T Relaxation Transverse or spin-spin relaxation Molecular interaction causes spin dephasing T typically 10s to 100s of ms T relatively independent of B0 T always < T1 T decreases with contrast agents Long T is bright on T weighted image

T Relaxation 40 Tissue T1 [ms] T [ms] gray matter 95 100 white matter 790 9 Transverse Magnetization [a.u.] 1 0.8 0.6 0.4 0. 0 0 00 400 600 800 1000 Time [ms] White Matter Gray Matter

T Relaxation Fraction of Mxy Percent Signal [a.u.] 1.00 100 75 0.75 50 0.50 5 0.5 00 Free Precession in the Rotating Frame with Relaxation M xy (t) =Mxye 0 t/t Liver 4ms Fat 85ms CSF 180ms 0.00 0 00 400 600 800 Decay Time [ms]

Matlab

Bloch Equation Simulations

Rotating Frame Bloch Equations (Free Precession) dm dt = M xî +M yĵ (M z M 0 ) ˆk T T 1

Rotating Frame Bloch Equations (Free Precession) dm dt = M xî +M yĵ (M z M 0 ) ˆk T T 1 dm x dt dm y dt dm z dt 5 = 4 1 T 0 0 1 0 T 0 0 0 1 T 1 5 4 M x M y M z 5 + 4 0 0 M 0 T 1 5

Rotating Frame Bloch Equations dm dt = M xî +M yĵ (M z M 0 ) ˆk T T 1 dm x dt dm y dt dm z dt 5 = 4 1 T 0 0 1 0 T 0 0 0 1 T 1 d M dt = M+ 5 4 M x M y M z 5 + An affine transformation between two vector spaces consists of a translation followed by a linear transformation. http://en.wikipedia.org/wiki/affine_transformation 4 0 0 M 0 T 1 5

Why Homogenous Coordinates? Homogenous coordinates allow us to transform an affine (non-linear) equation in D to a linear equation in 4D. Affine Linear d M dt = M+ dm H dt = T H M H Now we can use the machinery of linear algebra for writing out the Bloch Equation mechanics. http://en.wikipedia.org/wiki/linear_transformation

Homogenous Coordinate Expressions Cartesian Coordinates Homogeneous Coordinates M M x x M= 4 M y 5 M H = 6 M y 7 4 M M z 5 z 1 Augment! T = 4 T xx T xy T xz T yx T yy T yz T zx T zy T zz Reduce 5 T H = 6 4 T xx T xy T xz T xt T yx T yy T yz T yt T zx T zy T zz T zt 0 0 0 1 7 5

Rotating Frame Bloch Equations (Free Precession) dm dt = M xî +M yĵ (M z M 0 ) ˆk T T 1 dm x dt dm y dt dm z dt 1 7 5 = 6 4 1 T 0 0 0 1 0 T 0 0 1 0 0 T 1 0 0 0 1 7 5 6 4 4 M x M x y M z y M z 1 7 5 5 + 6 4 0 0 M 0 T 1 1 7 5 dm H dt = T H M H

Advantages/Disadvantages + 1:1 Correlation with pulse diagram + Simple to implement (Matlab!) + Not ad hoc + Provides understanding in complex systems - Masks understanding in simple systems - Reduction to algebraic expression is cumbersome - Discrete (not continuous) - Perfect simulations are very difficult - Must consider assumptions - Image Prep vs. Imaging

B0 Fields

Bulk Magnetization - Precession M x (t) M y (t) M z (t) 5 = 4 cos B 0 t sin B 0 t 0 sin B 0 t cos B 0 t 0 0 0 1 5 4 M 0 x M 0 y M 0 z 5 ~M(t) =R z ( B 0 t) ~ M 0

Bulk Magnetization - Precession B 0,H = 6 4 cos Bt sin Bt 0 0 sin Bt cos Bt 0 0 0 0 1 0 7 5 0 0 0 1 M x (0 ) M y (0 ) M z (0 ) 1 7 5 = 6 4 cos Bt sin Bt 0 0 sin Bt cos Bt 0 0 0 0 1 0 0 0 0 1 7 5 6 4 M x (0+) M y (0+) M z (0+) 1 7 5 Homogeneous coordinate expression for precession.

RF Pulses

RF Pulse Operator R = R Z ( ) R X ( ) R Z ( ) c +s c c s c s c s s = 4 c s c s c s +c c c s s s c s c 5 ~M(0 + )=RF ~ M(0 )

RF Pulse Homogeneous Operator RF,H = 6 4 c +s c c s c s c s s 0 c s c s c s +c c c s 0 s s c s c 0 0 0 0 1 7 5

RF Pulse Homogeneous Operator RF,H = 6 4 c +s c c s c s c s s 0 c s c s c s +c c c s 0 s s c s c 0 0 0 0 1 7 5 ~M + H =RF,H ~ M H

RF Pulse Homogeneous Operator RF,H = 6 4 c +s c c s c s c s s 0 c s c s c s +c c c s 0 s s c s c 0 0 0 0 1 7 5 ~M + H =RF,H ~ M H 6 4 M + x M + y M + z 1 7 5 = 6 4 c +s c c s c s c s s 0 c s c s c s +c c c s 0 s s c s c 0 0 0 0 1 7 5 6 4 M x M y M z 1 7 5

Relaxation

Relaxation Operator 4 M + x M + y M + z 5 = = 6 4 6 4 e e t T t T e e t T t T e e t T 1 7 4 5 M x M y M z 5 + t T 1 M 0 1 e 1 6 4 t T 1 0 0 M 0 1 e 6 7 4 5 M x M y M z 1 t T 1 7 5 7 5

Relaxation Operator E (T 1,T, t, M 0 )= E 0 0 0 0 E 0 0 0 0 E 1 M 0 (1 E 1 ) 0 0 0 1 E 1 = e t/t 1 E = e t/t M + =E(T 1,T, t, M 0 ) M *In general we drop the sub-scripted H

B0, RF Pulse, & Relaxation Operators ~M + = B 0,H ~ M M + = RF M M + =E(T 1,T, t, M 0 ) M

Matlab Example - B0 % This function returns the 4x4 homogenous coordinate expression for % precession for a particular gyromagnetic ratio (gamma), external % field (B0), and time step (dt). % % SYNTAX: db0=pam_b0_op(gamma,b0,dt) % % INPUTS: gamma - Gyromagnetic ratio [Hz/T] % B0 - Main magnetic field [T] % dt - Time step or vector [s] % % OUTPUTS: db0 - Precessional operator [4x4] % % DBE@ 01.1.015 function db0=pam_b0_op(gamma,b0,dt) if nargin==0 gamma=4.57e6; % Gyromagnetic ratio for 1H B0=1.5; % Typical B0 field strength dt=ones(1,100)*1e-6; % 100 1µs time steps end db0=zeros(4,4,numel(dt)); % Initialize the array for n=1:numel(dt) dw=*pi*gamma*b0*dt(n); % Incremental precession (rotation angle) % Precessional Operator (left handed) db0(:,:,n)=[ cos(dw) sin(dw) 0 0; -sin(dw) cos(dw) 0 0; 0 0 1 0; 0 0 0 1]; end return 4 cos B 0 t sin B 0 t 0 sin B 0 t cos B 0 t 0 0 0 1 5

Matlab Example - Free Precession %% Filename: PAM_Lec0_B0_Free_Precession.m % % Demonstrate the precession of the bulk magnetization vector. % % DBE@ 015.01.06 %% Define some constants gamma=4.57e6; % Gyromagnetic ratio for 1H [MHz/T] B0=1.5; % B0 magnetic field strength [T] dt=0.01e-8; % Time step [s] nt=500; % Number of time points to simulate t=(0:nt-1)*0.01e-8; % Time vector [s] M0=[sqrt()/ 0 sqrt()/ 1]'; % Initial condition (I.C.) M=zeros(4,nt); M(:,1)=M0; % Initialize the magnetization array % Define the first time point as the I.C. %% Simulate precession of the bulk magnetization vector db0=pam_b0_op(gamma,b0,dt); % Calculate the homogenous coordinate transform for n=:nt M(:,n)=dB0*M(:,n-1); end ~M(t) =R z ( B 0 t) ~ M 0 0.8 0.6 Bulk Magnetization Components as f(t) M x M y M z 0.4 %% Plot the results figure; hold on; p(1)=plot(t,m(1,:)); p()=plot(t,m(,:)); p()=plot(t,m(,:)); % Plot the Mx component % Plot the My component % Plot the Mz component % Increase plot thickness set(p,'linewidth',); -0.4 ylabel('magnetization [AU]'); -0.6 xlabel('time [s]'); legend('m_x','m_y','m_z'); -0.8 0 0.5 1 1.5.5.5 4 4.5 5 title('bulk Magnetization Components as f(t)'); Time [s] 10-8 Magnetization [AU] 0. 0-0.

Hard RF Pulses function db1=pam_b1_op(gamma,b1,dt,theta) Z % Define the incremental flip angle in time dt alpha=*pi*gamma*b1*dt; % Change of basis R_theta=[ cos(theta) sin(theta) 0 0; -sin(theta) cos(theta) 0 0; 0 0 1 0; 0 0 0 1]; % Flip angle rotation R_alpha=[1 0 0 0; 0 cos(alpha) sin(alpha) 0; 0 -sin(alpha) cos(alpha) 0; 0 0 0 1]; % Homogeneous expression for RF MATRIX db1=r_theta.'*r_alpha*r_theta; return X R 90 0 = R 90 0 4 Y 1 0 0 0 0 1 0 1 0 5

Hard RF Pulses function db1=pam_b1_op(gamma,b1,dt,theta) Z % Define the incremental flip angle in time dt alpha=*pi*gamma*b1*dt; % Change of basis R_theta=[ cos(theta) sin(theta) 0 0; -sin(theta) cos(theta) 0 0; 0 0 1 0; 0 0 0 1]; % Flip angle rotation R_alpha=[1 0 0 0; 0 cos(alpha) sin(alpha) 0; 0 -sin(alpha) cos(alpha) 0; 0 0 0 1]; % Homogeneous expression for RF MATRIX db1=r_theta.'*r_alpha*r_theta; return X R 90 90 = R 90 90 4 Y 0 0 1 0 1 0 1 0 0 5

Thanks Daniel B. Ennis, Ph.D. ennis@ucla.edu 10.06.071 (Office) http://ennis.bol.ucla.edu Peter V. Ueberroth Bldg. Suite 1417, Room C 10945 Le Conte Avenue