Roland Brosch! Institut Pasteur! Evolution of the Mycobacterium tuberculosis complex!

Similar documents
The Genus Mycobacterium Nonmedical

Comprehensive Phylogenetic Analysis of Mycobacteria

PALAEOMICROBIOLOGICAL EVIDENCES OF THE ORIGIN OF MYCOBACTERIUM TUBERCULOSIS. BY TITUS OLUKITBI - Ph.D. Trainee

chapter 5 the mammalian cell entry 1 (mce1) operon of Mycobacterium Ieprae and Mycobacterium tuberculosis

Pathogenesis of Mycobacterium tuberculosis and its Interaction with the Host Organism. Jean Pieters John D. McKinney Editors

Computational genomics-proteomics and Phylogeny analysis of twenty one mycobacterial genomes (Tuberculosis & non Tuberculosis strains)

Comparative Genomics and Transcriptomic Analysis of. Mycobacterium Kansasii

The Mycobacterial Comparison Project

A genomic insight into evolution and virulence of Corynebacterium diphtheriae

Nature Genetics: doi: /ng Supplementary Figure 1. Icm/Dot secretion system region I in 41 Legionella species.

Microbes usually have few distinguishing properties that relate them, so a hierarchical taxonomy mainly has not been possible.

Microbial Taxonomy. Slowly evolving molecules (e.g., rrna) used for large-scale structure; "fast- clock" molecules for fine-structure.

Table 1: Classification of mycobacteria associated with their growth characteristics. *: Members of the M. tuberculosis-complex.

A Phylogenetic Analysis of the Genus Nocardia with 16s rrna Gene Sequences

Molecular phylogeny - Using molecular sequences to infer evolutionary relationships. Tore Samuelsson Feb 2016

Genomes and Their Evolution

Evidence That Mutation Is Universally Biased towards AT in Bacteria

Microbial Taxonomy. Microbes usually have few distinguishing properties that relate them, so a hierarchical taxonomy mainly has not been possible.

Insights into horizontal acquisition patterns of dormancy and reactivation regulon genes in mycobacterial species using a partitioning-based framework

Microbial Taxonomy and the Evolution of Diversity

Comparative Sequence Analysis of Mycobacterium leprae and the New Leprosy-Causing Mycobacterium lepromatosis

Differentiation of Mycobacteria on the Basis of Chemotype

Chemometrics. Classification of Mycobacteria by HPLC and Pattern Recognition. Application Note. Abstract

8/23/2014. Phylogeny and the Tree of Life

Horizontal transfer and pathogenicity

Stepping stones towards a new electronic prokaryotic taxonomy. The ultimate goal in taxonomy. Pragmatic towards diagnostics

Extensive genomic diversity among Mycobacterium marinum strains revealed by whole genome sequencing

Microbial Diversity. Yuzhen Ye I609 Bioinformatics Seminar I (Spring 2010) School of Informatics and Computing Indiana University

The Prokaryotic World

Genetic Drift in Human Evolution

How the host sees and responds to pathogens

Computational Identification of Rho-Independent Terminators in the Genomes of Mycobacterium Tuberculosis

The minimal prokaryotic genome. The minimal prokaryotic genome. The minimal prokaryotic genome. The minimal prokaryotic genome

Comparative genomics: Overview & Tools + MUMmer algorithm

GENERAL INTRODUCTION 1

is that biomedically relevant traits, such as host range nonsynonymous single nucleotide polymorphisms (SNPs),

Estimation of gene insertion/deletion rates with missing data

Microbiology Helmut Pospiech

Evolution and pathogenicity in the deadly chytrid pathogen of amphibians. Erica Bree Rosenblum UC Berkeley

Chapters 25 and 26. Searching for Homology. Phylogeny

COMPARATIVE GENOMIC ANALYSIS OF MYCOBACTERIA (ACTINOBACTERIA): REDUNDANCY IN FUNCTION AMONG SERINE THREONINE PROTEIN KINASES

Growth of Mycobacterium tuberculosis in a Defined Medium Is Very Restricted by Acid ph and Mg 2 Levels

Chapter 26: Phylogeny and the Tree of Life Phylogenies Show Evolutionary Relationships

Host-pathogen association analysis of tuberculosis patients via Unified Biclustering Framework

Bio 1B Lecture Outline (please print and bring along) Fall, 2007

MiGA: The Microbial Genome Atlas

What examples can you think of?

Phylogeny and systematics. Why are these disciplines important in evolutionary biology and how are they related to each other?

Introduction to polyphasic taxonomy

Concepts and Methods in Molecular Divergence Time Estimation

Understanding relationship between homologous sequences

This is a repository copy of Microbiology: Mind the gaps in cellular evolution.

Lecture 11 Friday, October 21, 2011

Outline Classes of diversity measures. Species Divergence and the Measurement of Microbial Diversity. How do we describe and compare diversity?

Origins of Life. Fundamental Properties of Life. Conditions on Early Earth. Evolution of Cells. The Tree of Life

Drosophila melanogaster and D. simulans, two fruit fly species that are nearly

Fitness constraints on horizontal gene transfer

Massive gene acquisitions in Mycobacterium indicus pranii provide a perspective on mycobacterial evolution

Mycobacterium interjectum, a New Species Isolated from a

Leber s Hereditary Optic Neuropathy

Genomic expression catalogue of a global collection of BCG vaccine strains. show evidence for highly diverged metabolic and cell-wall adaptations.

CRISPR-SeroSeq: A Developing Technique for Salmonella Subtyping

Computational approaches for functional genomics

Gene expression in prokaryotic and eukaryotic cells, Plasmids: types, maintenance and functions. Mitesh Shrestha

Introduction to Bioinformatics Integrated Science, 11/9/05

Chapter 19. Microbial Taxonomy

Chapter 26 Phylogeny and the Tree of Life

Lecture Notes: BIOL2007 Molecular Evolution

SPECIES OF ARCHAEA ARE MORE CLOSELY RELATED TO EUKARYOTES THAN ARE SPECIES OF PROKARYOTES.

Genome reduction in prokaryotic obligatory intracellular parasites of humans: a comparative analysis

In silico analysis of subcellular localization of putative proteins of Mycobacterium tuberculosis H37Rv strain

Taxonomy. Content. How to determine & classify a species. Phylogeny and evolution

Supplementary Information for Hurst et al.: Causes of trends of amino acid gain and loss

Warm-Up- Review Natural Selection and Reproduction for quiz today!!!! Notes on Evidence of Evolution Work on Vocabulary and Lab

UoN, CAS, DBSC BIOL102 lecture notes by: Dr. Mustafa A. Mansi. The Phylogenetic Systematics (Phylogeny and Systematics)

SWEEPFINDER2: Increased sensitivity, robustness, and flexibility

Modeling Bacterial Evolution with Comparative-Genome-Based Marker Systems: Application to Mycobacterium tuberculosis Evolution and Pathogenesis

Outline. I. Methods. II. Preliminary Results. A. Phylogeny Methods B. Whole Genome Methods C. Horizontal Gene Transfer

A. Incorrect! In the binomial naming convention the Kingdom is not part of the name.

Human Evolution

BINF6201/8201. Molecular phylogenetic methods

Human Evolution. Darwinius masillae. Ida Primate fossil from. in Germany Ca.47 M years old. Cantius, ca 55 mya

How to Use This Presentation

I519 Introduction to Bioinformatics, Genome Comparison. Yuzhen Ye School of Informatics & Computing, IUB

Outline. Genome Evolution. Genome. Genome Architecture. Constraints on Genome Evolution. New Evolutionary Synthesis 11/8/16

Homology and Information Gathering and Domain Annotation for Proteins

Biology 211 (2) Week 1 KEY!

Microbiota: Its Evolution and Essence. Hsin-Jung Joyce Wu "Microbiota and man: the story about us

Alternative tools for phylogeny. Identification of unique core sequences

Practical Bioinformatics

The Division between Fast- and Slow-Growing Species Corresponds to Natural Relationships among the Mycobacteria

SCIENTIFIC EVIDENCE TO SUPPORT THE THEORY OF EVOLUTION. Using Anatomy, Embryology, Biochemistry, and Paleontology

MOLECULAR PHYLOGENY AND GENETIC DIVERSITY ANALYSIS. Masatoshi Nei"

Phylogeny and the Tree of Life

Bioinformatics Study On Mirror DNA In Mycobacterium Tuberculosis Using Fast Parallel Complement Blast Strategy.

Strategies Used by Pathogenic and Nonpathogenic Mycobacteria To Synthesize rrna

Chapter 16: Reconstructing and Using Phylogenies

The invention of the microscope has opened to us a world of extraordinary numbers. A singular drop of pond water reveals countless life forms

11/5/2018. Update on Modern Bacterial Taxonomy for Bench Microbiologists. Why is Taxonomy Important? Bacterial Taxonomy for Clinical Microbiologists

Rapid speciation following recent host shift in the plant pathogenic fungus Rhynchosporium

Transcription:

Evolution of the Mycobacterium tuberculosis complex! or what have we learned on this subject since the publication of the! M. tuberculosis H37Rv genome! Roland Brosch! Integrated! Mycobacterial! Pathogenomics! Institut Pasteur!

mycobacteria M. fortuitum ATCC49403! M. fortuitum! M. senegalense! M. fortuitum ATCC49404! M. peregrinum! M. aichiense! M. gilvum! M. mucogenicum! M. mucogenicum! Mycobacterium M. neoaurum! M. diernhofer! M. obuense! M. chubuense! M. aurum! M. fallax! M. chelonae! M. abscessus! M. chitae! M. confluentis! M. madagascariense! M. vaccae! M. phlei! MCRO17! M. flavescens! M. smegmatis! MCRO10! M. chromogenicum! MCRO7! M. thermoresistible! M. gadium! Slow growing mycobacteria! http://wwwabi.snv.jussieu.fr/~erocha/research/ordervsdisorder.html

M. fortuitum! M. peregrinum! M. triviale! M. simiae! M. genavense! MCRO18! MCRO19! M. interjectum! M. intermedium! M. terrae! M. hiberniae! M. nonchromogenicum! MCRO6! M. cookii! M. celatum! M. xenopi! M. shimoidei! M. asiaticum! M. gordonae! M. marinum! M. ulcerans! M. tuberculosis Complex! M. leprae! M. szulgai! M. malmoense! M. haemophilum! M. gastri/ kansasii! M. scrofulaceum! M. paraffinicum! M. intracellulare! M. avium! slowly growing mycobacteria.! fish pathog & human opportun. pathogen! aquatic mycobacterium,! etiological agent of Buruli ulcer! aquatic mycobacterium,! produces mycolactone! M. tuberculosis! M. canettii! M. africanum! M. microti! M. pinnipedii! M. bovis! M. bov. BCG! etiological agent of leprosy! reductive evolution! 16S rrna tree - Springer et al., J. Clin. Microbiol., (1996)! Johneʼs disease

What are the molecular determinants for the evolutionary success of M. tuberculosis as a human pathogen?!

Genome of M. tuberculosis H37Rv!!!!!! 4,4 Mb GC 65.6% 4000 genes! genes for aerobic, micro-aerophilic and anaerobic! abundance of genes involved in lipid metabolism! eukaryotic like Serine/Threonine Protein Kinases! 1998 novel gene/protein families e.g. PE/PPE, ESAT-6,! Cole ST, Brosch R, Parkhill J, et al.,! (1998), Nature 393, 537-544.!

Comparative genomics between different species! To extract the biological information from genome sequence data! M. tuberculosis H37Rv! Comparison! M. marinum! Based 16S rrna genetically similar! other species! allows insights into the more distant events!

Genome of M. marinum! genome size! G+C! 6.6 Mb! 65.7 %! (M. tub.)! (4.4 Mb)! (65.6 %)! protein encoding genes! orthologs in both genoms! 5424! (3,974)! 3066! Pseudogenes! 65! (17)! 2008 Stinear et al., (2008), Genome Res.!

Identification of ~ 600 M. tuberculosis - specific CDS! Mycobacterial core genome (not including M. leprae) ~ 2500 genes At least 80 regions containing 600 genes seem to have been gained by the ancestor of M. tuberculosis through horizontal gene transfer during its more distant evolution (soil?) Stinear et al., (2008), Genome Res.!

M. tuberculosis-specific CDS Many encode known virulence factors sulfolipid locus virs locus pilin gene fumarate reductase locus (Rv1552-55)

? possible early evolution of M. tuberculosis Gordon et al., (2009), Bioessays!

Comparative genomics within the tubercle bacilli! Comparison! M. tuberculosis H37Rv! M. bovis BCG! genetically very similar! but attenuated! the more recent events! other tubercle bacilli! 20 Regions of Difference (RD) described! Gordon et al., 1999 Mol Micro; Behr et al., 1999 Science;!

Comparative genomics identifies! Regions of Difference (RD)! Example of RD9! RD region! RD flanking primers! RD flanking primers! M. canettii! M. tuberculosis! M. africanum! M. microti! M. pinnipedii! M. bovis! BCG! RD flanking primers!

RD9! M. tuberculosis! sigc! 2325 kb! 2329 kb! Rv2074! 2333 kb! cobl! Rv2075c! Rv2067c! blac! cobk! cobm! Rv2073c! 2325 kb! sigc! RD9 region! sequence conservation! 2329 kb! present in all tested M. tuberculosis strains! cobl! Rv2067c! blac! cobk! of the RD9 junction region! in different subspecies! AAATTACTGTGGCCCTGCGC...!.GGTGGCACGCCGGGCCGG! Rv2074! 2333 kb! Rv2075c! Rv2073c! AAATTACTGTGGCCCACGCCGGGCCGG! M. africanum! M. microti! M. bovis! BCG!

Comparative genomics identifies! M. tuberculosis deletion region 1 (TbD1)! TbD flanking primers! TbD region! TbD flanking primers! M. canettii! M. tuberculosis! M. africanum! M. microti! M. pinnipedii! M. bovis! BCG! TbD flanking primers! TbD1= M. tuberculosis deletion region 1!

Region TbD1 absent from many M. tuberculosis strains! M. bovis! M. africanum! M. microti! BCG! ancestral M. tub.! M. tuberculosis H37Rv,! M. tuberculosis CDC1551,! M. tuberculosis Beijing 210! M. tuberculosis C! M. tuberculosis F11!

Deletion events and the M. tuberculosis complex! most junction regions of RDs are located within genes! deletion events --> not insertion events! conserved deletions! among members of the M. tuberculosis complex! most probably occurred! in a common progenitor strain!

M. tuberculosis! Evolutionary pathway of the M. tuberculosis complex! Numerous sequence! polymorphisms! RD can! M. canettii! ancestral, gr.1, SE Asian! Common ancestor of the! M. tuberculosis complex! RD 9! TbD 1! RD 7! RD 8! RD 10! katg c463 CTG CGG! gyra c95 ACC AGC! e.g. gr.1, Beijing! e.g. gr.2, CDC1551! e.g. gr.3, H37Rv! modern! M. africanum! highly clonal population structure! perfect correlation of RDs with SNPs! (and resistance to pyrazinamide)! mmpl6 551 AAC AAG! oxyr n285 G A! RD mic! RD 12! RD 13! RD seal! M. microti! M. pinnipedii (seal)! oryx! no recent horizontal gene transfer! detectable! Brosch et al. 2002, PNAS 99:3684-9.! pnca c57 CAC GAC! RD 4! RD 1! RD 2! goat-m. caprae! classical! BCG Tokyo! M. bovis! Mostowy S et al. 2002, J Infect Dis 186:74-80.! RD 14! BCG Pasteur!

.. confirmed by genome analysis of M. bovis! M. tuberculosis H37Rv!!4,411,532 bp! M. tuberculosis CDC1551!4,403,836 bp! M. bovis AF2122/97!!4,345,492 bp! Single Nucleotide Polymorphisms! M. tub. H37Rv! 1135! M. tub. CDC1551! 2348! 2380! M. bovis!

M. bovis phylogeny! based on SNPs! Garcia Pelayo et al., Infect. Immun., 2009

M. tuberculosis! Focus on the M. tuberculosis cluster! Numerous sequence! polymorphisms! RD can! M. canettii! ancestral, gr.1, SE Asian! Common ancestor of the! M. tuberculosis complex! RD 9! TbD 1! RD 7! RD 8! RD 10! katg c463 CTG CGG! gyra c95 ACC AGC! e.g. gr.1, Beijing! e.g. gr.2, CDC1551! e.g. gr.3, H37Rv! modern! M. africanum! mmpl6 551 AAC AAG! RD mic! RD seal! M. microti! oxyr n285 G A! M. pinnipedii (seal)! RD 12! RD 13! oryx! Brosch et al. 2002, Proc Natl Acad Sci U S A. 99:3684-9.! pnca c57 CAC GAC! RD 4! RD 1! RD 2! RD 14! goat-m. caprae! classical! BCG Tokyo! BCG Pasteur! M. bovis!

Spoligotyping (Spacer-Oligo-Typing) Direct Repeat (DR) region in the genome of

Ancestral M. tub.! katg 463 group 1! region TbD1 present,! spacer 33 present! M. tub. Beijing family! katg 463 group 1! region TbD1 absent! spacers 1-34 deleted! M. tub. katg 463 group 2 or 3! region TbD1 absent! spacers 33-36 deleted! M. bovis! RD7-13 deleted,! spacers 39-43 deleted! after Kremer et al., J. Clin. Microb., 1998!

Example of strains isolated in Bangladesh! Signature! ancestral M. tub.! TbD1 present,! gr.1, katg, CTG! spacer 33 present! TbD1 absent! Delhi family,! gr.1, katg, CTG! Spacers 23-34 deleted! Beijing family,! gr.1, katg, CTG! Spacers 1-34 deleted! M. tub.,! gr. 2 or 3, katg, CGG! Spacers 33-36 deleted! Banu et al., J. Clin. Microb., 2004!

The oldest cas of human tuberculosis known in Britain (Iron age)! 2,200 years ago! --> TbD1 region deleted --> modern M. tuberculosis! Tb Tb Tayloret al., J Clin Microbiol, 2005!

RD-analyses (LSP) allowed to reveal stable association between strains of M. tuberculosis and their human host populations /geographical distribution Hirsh et al. 2004, PNAS! Gagneux et al. 2006, PNAS!

Strict correlation! of RDs and SNPs! Baker et al., 2004 Gutacker et al., 2006 Filliol et al., 2006 after Gagneux & Small., Lancet Infect Dis., 2007!

Broad diversity! of worldwide! M. tuberculosis! Strains! Multi-Locus-Sequence-Ananlysis! (MLST) based on 89 concatenated! gene sequences for 108 strains! after Hershberg et al., PLoS Biol., 2008!

M. tuberculosis! Focus on M. canetti! RD can! M. canettii! ancestral, gr.1, SE Asian! Common ancestor of the! M. tuberculosis complex! RD 9! TbD 1! RD 7! RD 8! RD 10! katg c463 CTG CGG! gyra c95 ACC AGC! e.g. gr.1, Beijing! e.g. gr.2, CDC1551! e.g. gr.3, H37Rv! modern! M. africanum! mmpl6 551 AAC AAG! RD mic! RD seal! M. microti! oxyr n285 G A! M. pinnipedii (seal)! RD 12! RD 13! oryx! Brosch et al. 2002, Proc Natl Acad Sci U S A. 99:3684-9.! pnca c57 CAC GAC! RD 4! RD 1! RD 2! RD 14! goat-m. caprae! classical! BCG Tokyo! BCG Pasteur! M. bovis!

Mycobacterium canettii and smooth tubercle bacilli! ~ 60 clinical isolates with! smooth colony morphology! Georges Canetti! Smooth tubercle bacilli! from tuberculosis patients! in Djibouti / East Africa! 14 lineages according to molecular! typing characteristics (lineages A-N)! M. tuberculosis! Synonymous SNP 10-50 x higher than! in the classical M. tuberculosis complex!

In some of these strains the DR region (groups E, G, H, and I), or IS1081 are missing (groups E, F); Most of the contain ISMyca1, an IS specific of M. canettii in several copies. Almost all show the RD12can deletion

Minor variation of 16S rrna sequence M. tub.h37rv M. tub. E M. afr. F A B G C H D I

Clear evidence of horizontal transfer among smooth tubercle bacilli gyrb gyra hsp65 rpob katg soda Gutierrez et al., 2005, PLoS Pathog.!

High genetic diversity of M. proto-tuberculosis strains Classical Mtb complex M. proto-tuberculosis 140060008= pulmonary TB! 140070008= lymph node TB! 140070010= cutaneous TB! 140070017= lymph node TB! 4 M. proto-tuberculosis! strains presently sequenced! at the Génoscope in Evry,! in collaboration with! Philip SUPPLY, IP Lille! 1 M. canettii strain sequenced! at the Sanger Institute! Whole genome restriction profiles XbaI

Sequenced at the Génoscope (IPL/IPP)! Sequenced at the Sanger Institute! Phylogenetic distance! of the 14 lineages (A-N)! Classical M. tub. complex! Smooth strains! B A C, D J F L E I H G M N K 56 smooth and 10 MTBC strains, 12 House Keeping Genes! Brisse et al. unpublished

Genome sizes of M. prototuberculosis strains! M. prototub. A! M. canetti 140010059! M. prototub. D! 140060008! M. prototub. L! 140070008! M. prototub. K! 140070010! M. prototub. J! 140070017! 4,481 kb! 4,448 kb! 4,437 kb! 4,525 kb! ~ 4,510 kb! M. tub. H37Rv! 4,411kb! M. africanum! 4,389 kb! M. bovis! 4,345 kb!

Visualisation of SNPs in M.prototub. 140070010 versus of M.tub. H37Rv and by ACT!

Visualisation of SNPs in M.prototub. 140070010 versus of M.tub. H37Rv and by ACT!

M. tuberculosis! Conclusions! M. canettii and other extant! M. prototuberculosis strains! M. prototuberculosis! Common ancestor of the! M. tuberculosis complex! The classical M. tuberculosis complex! RD 9! TbD 1! successful lineage that evolved by clonal expansion! Tubercle bacilli are much older than thought! The longer co-evolution explains the paradox between:! katg c463 CTG CGG! gyra c95 ACC AGC! RD 7! RD 8! RD 10! mmpl6 551 AAC AAG! M. tuberculosis being considered as evolutionary young! extraordinary balance of host adaptation (cavities )! Comparison of smooth & classical tubercle bacilli! RD mic! oxyr n285 G A! RD 12! RD 13! RD seal! pnca c57 CAC GAC! RD 4! RD 1! RD 2! RD 14! ancestral, SE Asian! e.g. Beijing! e.g. CDC1551! e.g. H37Rv! M. africanum! M. microti! M. pinnipedii! oryx! goat-m. caprae! classical! BCG Tokyo! BCG Pasteur! modern! M. bovis! potential to identify factors that contributed to the evolutionary succes! of M. tuberculosis!

Philip SUPPLY! Michael MARCEAU! Christina GUTIERREZ! Julien TAP! Sylvain BRISSE! Cecile PARMENTIER! Valerie BARBE! Sophie MANGENOT! Stéphane CRUVEILLER! Gregory SALVIGNOL! Claudine MEDIGUE! Steve GORDON! Thierry GARNIER! Stewart COLE! Stephen BENTLEY! Julian PARKHILL! http://www.pasteur.fr/recherche/unites/pmi