Polymer Chemistry. Li Guang Hua ( 李光华 ) Lab: 材料楼 409#,321# Cell phone:

Similar documents
Chapter 13 - Polymers Introduction

Polymer Chemistry. Li Guang Hua ( 李光华 ) Lab: 材料楼 409#,321# Cell phone:

Paul Rempp and Edward W. Merrill. Polymer Synthesis. 2nd, revised Edition. Hüthig & Wepf Verlag Basel Heidelberg New York

MATERIALS SCIENCE POLYMERS

POLYMER CHEMISTRY Lecture/Lession Plan -2

(c) Dr. Payal B. Joshi

Fisika Polimer Ariadne L Juwono. Sem /2007

Periodic table with the elements associated with commercial polymers in color.

Lecture No. (1) Introduction of Polymers

Combustion and thermal degradation of polymers

TOPIC 7. Polymeric materials

Oxidationof polymers. Degradation taking place in the presence of oxygen and temperature

Chapter 14: Polymer Structures

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers

Polymer Reaction Engineering

Liquid Crystal. Liquid Crystal. Liquid Crystal Polymers. Liquid Crystal. Orientation of molecules in the mesophase

Chapter 11. Polymer Structures. Natural vs man-made

Polymeric Materials. Sunan Tiptipakorn, D.Eng.

CH 2 = CH - CH =CH 2

Introduction to Macromolecular Chemistry

5. Photochemistry of polymers

Photoinitiation, Photopolymerization, and Photocuring

Anionic Polymerization - Initiation and Propagation

Cationic Polymerization

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

POLYMER STRUCTURES ISSUES TO ADDRESS...

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16

Chemistry of Benzene: Electrophilic Aromatic Substitution

CHAPTER OUTLINE. I. Elemental Carbon II. Crude Oil : the Basic Resource III. Hydrocarbons IV. Separating Hydrocarbons by Fractional Distillation

Radical Initiation 2017/2/ ) Thermal Decomposition of Initiators

UNIVERSITY OF NATAL DURBAN EXAMINATIONS : NOVEMBER 2001 ORGANIC CHEMISTRY FOR CHEMICAL ENGINEERS DSC 2OE2. Time : 2 Hours Total Marks : 100

Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures. Dr. Coates

Introduction to Polymerization Processes

SCH4U Synthesis and Polymers. Synthesis Reactions and Addition and Condensation Polymers

Learning Guide for Chapter 11 - Alkenes I

Crosslinking and Scission

Chem 1075 Chapter 19 Organic Chemistry Lecture Outline

Chapter 5. Ionic Polymerization. Anionic.

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

Note: Brief explanation should be no more than 2 sentences.

III. Molecular Structure Chapter Molecular Size Size & Shape

Materials of Engineering ENGR 151 POLYMER STRUCTURES

A. Review of Acidity and pk a Common way to examine acidity is to use the Bronsted-Lowry acid-base equation:

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state

Chapter : 15. POLYMERS. Level-1:Questions

POLYMER CHEMISTRY. An Introduction. Malcolm P. Stevens University of Hartford SECOND EDITION

There are two main electronic effects that substituents can exert:

Development of Photosensitive Polyimides for LCD with High Aperture Ratio. May 24, 2004

See for options on how to legitimately share published articles.

The Fundamentals of Materials Science

Viking Longships, Venetian Galleys, and a New Fluoro-Polyphosphazene Architecture

The functionality of a monomer is the number of binding sites that is/are present in that monomer.

Introduction to Macromolecular Chemistry

Polymers and Composite Materials

Contents. Principles: Theory and Practice

Polypropylene. Monomer. mer

C h a p t e r N i n e t e e n Aromatics II: Reactions of Benzene & Its Derivatives


Metal Structure. Chromium, Iron, Molybdenum, Tungsten Face-centered cubic (FCC)

CHEM Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W

12/27/2010. Chapter 15 Reactions of Aromatic Compounds

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer =

IB Topics 4 & 14 Multiple Choice Practice

POLYMERS: MACROMOLECULES

Functionalization of Polypropylene for Energy Storage Application

Ligand Substitution Reactivity of Coordinated Ligands

Solutions for Assignment-8

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Candidates Performance in Paper I (Q1 5) and II B

Polymer Nanotube Nanocomposites

CHEM 303 Organic Chemistry II Problem Set III Chapter 14 Answers

CHAPTER 12. Substituted Benzene

1.3) Plastics Advantages and disadvantages Thermoplastics and thermosetting plastics.

Ch 16 Electrophilic Aromatic Substitution

12.5 Organometallic Compounds

Ethers can be symmetrical or not:

Chemistry Class 12 th NCERT Solutions

Ch 14 Conjugated Dienes and UV Spectroscopy

Chemical Engineering Seminar Series

Reaction mechanism 1/17/19. HCl. HCl. 3 radical can form here. Br 2. hint!

High Performance Building Blocks

CHAPTER 24 Organic Chemistry

Quiz 8 Introduction to Polymers

Innovative. Technologies. Chemie des Klebens Chemistry of Adhesives. Dr. Jochen Stock, Laboratory Manager CRL Germany: Neuss, November 27 th, 2013

Reactions of Aromatic Compounds. Aromatic compounds do not react like other alkenes. With an appropriate catalyst, however, benzene will react

This name hints at how polymers are made

Polymer Systems and Film Formation Mechanisms in High Solids, Powder, and UV Cure Systems

Chapter 15 Reactions of Aromatic Compounds

CHEM 242 REACTIONS OF ARENES: CHAP 12 ASSIGN ELECTROPHILIC AROMATIC SUBSTITUTION A B C D E

II. Submolecular Structure Chapter Chemical Composition

Radiation Effects on Polymeric Materials

QUELQUES RAPPELS SUR LA NATURE ET LES EFFETS DU FUEL GAZEUX LORS DE LA MODÉLISATION DE LA PYROLYSE

This approach has been utilized in the preparation of many derivatives of dimethicone copolyol compounds 3.

1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer.

Polymers are high molecular mass macromolecules composed of repeating structural

N_HW1 N_HW1. 1. What is the purpose of the H 2 O in this sequence?

Transcription:

Polymer Chemistry Li Gua Hua ( 李光华 ) Lab: 材料楼 409#,321# E-mail : lighua@gmail.com Cell phone: 15978133590 School of Chemistry & Chemical Eineerin g

CHAPTER 6 Reactions of Vinyl Polymers : 1. Introduction 2. Functional Group Reactions 3. Ri-Formi Reactions 4. Crosslinki 5. Block and Graft Copolymer Formation 6. Polymer Degradation (1) School of Chemistry & Chemical Eineeri

1. INTRDUCTIN (I) Monomer PZN Polymer 1 Polymer 2 Chemical reaction Chemical reaction Synthesize new polymers. Endow new functionality to polymers. (2) School of Chemistry & Chemical Eineeri

1. INTRDUCTIN (II) Chemical modifications of vinyl polymers are grouped into five general categories: Introductionormodification offunctionalgroups. DP unchaed Introduce cyclic unites into polymer backbone. DP unchaed Reactions leadi to block and graft copolymers DP Crosslinki reactions DP Degradation reactions DP (3) School of Chemistry & Chemical Eineeri

1. INTRDUCTIN (III) Influence factors of polymer reactions : Physicalfactors Structure of polymer chain Crystallinity (%) of polymer Solubility of polymer Crosslinki or steric effects Crystalline regions Amorphous regions Chemical factors Probability effect CH 2 CH 2 CH 2 CH 2 CH 2 CH CH CH CH CH Zn CH 2 CH 2 CH 2 CH 2 CH 2 CH CH CH CH CH Cl Cl Cl Cl Cl Cl (4) School of Chemistry & Chemical Eineeri

1. INTRDUCTIN (IV) Neighbori group effect CH 2 C C CH 2 CH C CH 2 C H 2 C CH C C + N 2 H N 2 CH 2 C CH 2 CH C 2 C 2 (5) School of Chemistry & Chemical Eineeri

2. FUNCTINAL GRUP REACTINS (I) F Introduction of New Functional Groups CH 2 CH 2 n Cl 2 chlorination CHCH 2 Cl Chlorinated PE (CPE) n Increase flame resistance and solubility compared with PE CH 2 CH 2 n Cl 2, S 2 chlorosulfonation CH 2 CH S 2 Cl n Provide sites for subsequent crosslinki reaction (6) School of Chemistry & Chemical Eineeri

2. FUNCTINAL GRUP REACTINS (II) CH 2 CH F 2 fluorination CF 2 CF C 6 H 5 n C 6 F 11 n Enhance chemical inertness and improve solvent barrier CH 2 CH CH 2 Cl AlCl 3 CH 2 CH n CH 2 Cl n Benzene ri : nitration, sulfonation, chloromethylation, etc. (7) School of Chemistry & Chemical Eineeri

2. FUNCTINAL GRUP REACTINS (III) F Conversion of Functional Groups Some polymers : difficult or impossible to prepare by direct PZN CH 2 CH C H/KH Δ CH 2 CH + C H n n Poly(vinyl alcohol) (PVA) R PZN nch 2 CH CH 2 CH tautomer CH C H (8) School of Chemistry & Chemical Eineeri

2. FUNCTINAL GRUP REACTINS (IV) CH 2 C C 1) H 2, H 2) H + CH 2 C C 2 H n Si( ) 3 Isotactic or syndiotactic n Isotactic or syndiotactic R PZN R PZN n CH 2 C CH 2 C CH C Si( ) 3 (9) School of Chemistry & Chemical Eineeri

3. RING-FRMING REACTINS (I) Introduction of cyclic units into polymers : Rigidity Glass transition temperature (T g ) Thermal stability EX., Carbon fiber Rayon fiber pyrolysis 1000~2000 o C Carbon fiber (1870s by Edison) C% : 85 ~ 99% (high streth) PAN fiber pyrolysis 1000~2000 o C graphitization 2500~2800 o C Graphite fiber (Carbon fiber) C% > 99% (high modulus) (10) School of Chemistry & Chemical Eineeri

3. RING-FRMING REACTINS (II) Δ C C C N N N N N N Δ Ladder graphite-type polymer HCN N 2 N N N H H H High streth, high modulus, high thermal stability Widely used in high performance composites (11) School of Chemistry & Chemical Eineeri

3. RING-FRMING REACTINS (III) Carbon-arcfurnace 4000 K Carbonnanotube The nanotubes are much stroer than conventional graphite fibers, and hold promise of yieldi composites with superior properties. diamond C 60 (1985) graphite (10, 10) tube (1991) (12) School of Chemistry & Chemical Eineeri

3. RING-FRMING REACTINS (IV) HCH H + CH 2 H poly(vinyl formal) CH 2 CH CH 2 CH CH 2 CH vinylon ( 维尼龙 ) H H H PVA C 3 H 7 CH CH 2 H + H C 3 H 7 poly(vinyl butyral) Used as a plastic film in laminated safety glass (13) School of Chemistry & Chemical Eineeri

4. CRSSLINKING (I) For the commercial standpoint, crosslinki is fundamental to the rubber and elastomer industries. Vulcanization ( 硫化, 交联 ) A general term applied to the crosslinki of polymers, particularly elastomers Use peroxides, sulfur Radiation crosslinki Photochemical crosslinki Crosslinki through labile functional groups Ionic crosslinki (14) School of Chemistry & Chemical Eineeri

F Vulcanization 4. CRSSLINKING (II) R + CH 2 CH 2 CHCH 2 + RH CHCH 2 + CHCH 2 CHCH 2 CHCH 2 CH 2 CH CHCH 2 + R CHCH CHCH 2 + RH CHCH CHCH 2 + CHCH CHCH 2 CHCH CHCH 2 CHCH CHCH 2 (15) School of Chemistry & Chemical Eineeri

4. CRSSLINKING (III) CHCH CHCH 2 + CH 2 CH CHCH 2 CHCH CHCH 2 CH 2 CH CHCH 2 CH 2 CH CHCH 2 CHCH CHCH 2 + CHCH CHCH 2 CH 2 CH CH 2 CH 2 S 8 δ δ CH 2 CH CHCH 2 + S m S n CH 2 CH CHCH 2 S m + S n (16) School of Chemistry & Chemical Eineeri

4. CRSSLINKING (IV) CH 2 CH CHCH 2 S m CH 2 CH CHCH 2 CH 2 CH CH 2 CH 2 S m + CHCH CHCH 2 S 8 CHCH CHCH 2 S m CH 2 CH CHCH 2 CHCH CHCH 2 S m CH 2 CH CH 2 CH 2 + CHCH CHCH 2 CH 2 CH CHCH 2 CHCH CHCH 2 S m CH 2 CH CHCH 2 (17) School of Chemistry & Chemical Eineeri

4. CRSSLINKING (V) The rate of vulcanization with sulfur is slow. Accelerator : S S S [( ) 2 NCS ] 2 Zn 2+ Zinc dithiocarbamate 二硫代氨基甲酸盐 ( ) 2 NCSSCN( ) 2 tetramethylthiuram disulfide Activator : Zinc oxide; Stearic acid (18) School of Chemistry & Chemical Eineeri

4. CRSSLINKING (VI) F Radiation crosslinki Radiation : photons, electrons, neutrons, or protons Crosslinki & degradation The doses of radiation High doses of radiation Degradation Polymer structure (low doses of radiation) 1,1-disubstituted vinyl polymers Degradation Helogen-substituted vinyl polymers Loss of helogen Most other vinyl polymers Crosslinki (19) School of Chemistry & Chemical Eineeri

4. CRSSLINKING (VII) For LDPE CH 2 CH 2 radiation CHCH 2 + H CH 2 CH 2 + H (neighbori chain) CHCH 2 + H 2 CHCH 2 + CHCH 2 CHCH 2 CHCH 2 CH 2 CH R CHCH R + H CH CH + RH (20) School of Chemistry & Chemical Eineeri

4. CRSSLINKING (VIII) F Photochemical crosslinki (photocrosslinki) Ultraviolet or visible light-induced crosslinki Applications : Printed circuits for electronic equipment Printi inks Coatis for optical fibers Varnishes for paper and carbon board ( 复写纸 ) Finishes for vinyl floori, wood, paper and metal Curi of dental materials Surface treatment (21) School of Chemistry & Chemical Eineeri

4. CRSSLINKING (IX) Two basic methods of photocrosslinki Incorporati photosensitizers into polymer C benzophenone hv * C CH 2 CH R H C + CH 2 C R combination Crosslinked polymer (22) School of Chemistry & Chemical Eineeri

4. CRSSLINKING (X) CH 2 CH 2 + CH 2 C CH 2 CHCH 2 CH hv C R C R C C R R chromophore CH 2 CHCH 2 CH 2 C + RC R Crosslinked polymer (23) School of Chemistry & Chemical Eineeri

Photocycloaddition 4. CRSSLINKING (XI) C CH CHAr + hv C Ar ArCH CH C Ar C [2π+ 2π] cycloaddition + hv [4π+ 4π] cycloaddition (24) School of Chemistry & Chemical Eineeri

4. CRSSLINKING (XII) F Crosslinki through labile functional groups H 2 N Ar NH 2 CH S 2 NH Ar NHS 2 CH CH 2 CH 2 2 CH CH 2 S 2 Cl H R H CH CH CH 2 S 2 RS 2 CH 2 (25) School of Chemistry & Chemical Eineeri

4. CRSSLINKING (XIII) F Ionic crosslinki CH 2 CH S 2 Cl Pb, H 2 CH 2 CH CHCH 2 S 2 Pb 2+ 2 S polyelectrolyte CH 2 CH 2 x CH 2 C C 2 H y Ca(H) 2 CH 2 CH 2 x CH 2 C C 2 y Physical crosslinki Ca 2+ CH 2 CH 2 C 2 x CH 2 C CH3 ionomoer y (26) School of Chemistry & Chemical Eineeri

5. BLCK & GRAFT CPLYMER (I) F Block copolymers A B Unique phase behavior Solution Solid State H 2 c cmc (Micelle) 10 ~ 50 nm Spheres gyroid lamellae cylinder (BCC) (hex) volume fraction (f) of B block Thermoplastic elastomers, plastic modifiers, adhesives, membranes, polymer blends, DDS, nanocomposites, etc. (27) School of Chemistry & Chemical Eineeri

5. BLCK & GRAFT CPLYMER (I) By anionic PZN + n-buli THF -78 o C PS Li PS-b-PMMA Li H PS-b-PMMA By cationic PZN + coinitiator TiCl 1. 4 PIB -80 o C 2. H PIB-b-PS (28) School of Chemistry & Chemical Eineeri

5. BLCK & GRAFT CPLYMER (II) By livi radical PZN C CH Br MMA CuCl/bpy C CH CH 2 C C Br PMMA macroinitiator n MA CuCl/bpy C CH CH 2 C CH 2 CH Br C C n m (29) School of Chemistry & Chemical Eineeri

5. BLCK & GRAFT CPLYMER (III) By difunctional initiators N C C NH CH 2 CH 2 Cl 2 Azo-alkyl halide The others CHCH 2 H Ph + CN CHCH 2 Ph CNH (30) School of Chemistry & Chemical Eineeri

5. BLCK & GRAFT CPLYMER (IV) CHCH 2 C R CH 2 CHCH 2 C R C H Δ M CHCH 2 C R C (31) School of Chemistry & Chemical Eineeri

5. BLCK & GRAFT CPLYMER (V) F Graft copolymers Grafti from X X X nm X X X = initiati group (CH 2 CH 2 ) y CH 2 CH CH 2 =CH 2 peroxide CH 2 CH CH 2 C C CCH 2 (CH 2 CH 2 ) x C (32) School of Chemistry & Chemical Eineeri

5. BLCK & GRAFT CPLYMER (VI) Grafti onto CH 2 CH BF 3 H CH 2 CH CH 2 CH Ph + CH 2 CH Ph N + H 2 C CNHCH 2 CH 2 C (33) School of Chemistry & Chemical Eineeri

5. BLCK & GRAFT CPLYMER (VII) Grafti through M + Initiator macromer or macromonomer (34) School of Chemistry & Chemical Eineeri

6. PLYMER DEGRADATIN (I) Degradation : Reduction of molecular weight The mode of degradation Depropagation or depolymerzation Random chain scission Elimination of side groups The methods of degradi polymers Chemical degradation (chemical reagents: 2, H 2, etc.) Thermal degradation (heat) Radiation degradation (photons, protons, electrons, neutrons ) Ultrasonic or mechanical degradation Microbiological degradation (microbe) (35) School of Chemistry & Chemical Eineeri

6. PLYMER DEGRADATIN (II) F Chemical degradation xidation H CH 2 CHCH 2 CCH 2 CH R R R Saturated polymer CH 2 CHCH 2 R + CCH 2 CH + H R R CH 2 CH CH CH 2 2 CH 2 CH CH CH Unsaturated polymer H CH 2 CH CH CH 2 + H degradation & crosslinki (36) School of Chemistry & Chemical Eineeri

6. PLYMER DEGRADATIN (III) CH 2 CH CH CH 2 2 Unsaturated polymer CH 2 CH CH CH 2 CH 2 CH CH CH 2 2 CH 2 CH rder of resistance to oxidation CH 2 C > CH 2 CH 2 n > CH 2 CH > CH 2 CH CH CH 2 n n n (37) School of Chemistry & Chemical Eineeri

6. PLYMER DEGRADATIN (IV) F Thermal degradation The order of thermal stability of polyolefins For C-C main chain > > CH 2 CH 2 n CH 2 CH CH 2 C n n For C-H bond > CH 2 > CH > C C CH 2 (38) School of Chemistry & Chemical Eineeri

6. PLYMER DEGRADATIN (V) F Thermal degradation Elimination of side groups Δ CH 2 CH n CH CH n + C PVAc HC Random chain scission CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 + CH 2 CH 2 CH CH 2 + CH 2 (39) School of Chemistry & Chemical Eineeri

6. PLYMER DEGRADATIN (VI) Depropagation or depolymerzation R R R CH 2 CCH 2 C CH 2 C + CH 2 C R R R R R 1,1-disubstituted polymer : PMMA Poly(α-methyl styrene) (40) School of Chemistry & Chemical Eineeri

6. PLYMER DEGRADATIN (VII) F Radiation degradation Radiation : photons, electrons, neutrons, or protons Crosslinki & degradation R R CH 2 CCH 2 C R R UV Δ 1,1-disubstituted polymer depolymerization R R CH 2 CCH 2 C R R UV R.T. Crosslinki & degradation (41) School of Chemistry & Chemical Eineeri

PLYMER DEGRADATIN (VIII) ther vinyl polymers UV crosslinki All vinyl polymers High dosage of radiation degradation Photodegrable plastics UV + R C R C UV + (42) School of Chemistry & Chemical Eineeri

H.W. : 1, 2, 4; 7, 10 (42) School of Chemistry & Chemical Eineeri