Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions

Similar documents
Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions

Introduction to Power Semiconductor Devices

DC and AC modeling of minority carriers currents in ICs substrate

Proposal of a New High Power Insulated Gate Bipolar Transistor

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

New Functions. Test mode and Specimen failure. Power cycle test system with thermal analysis capability using structure function.

Introduction to Transistors. Semiconductors Diodes Transistors

Spring Semester 2012 Final Exam

Solid State Electronics. Final Examination

The Devices. Jan M. Rabaey

The Devices: MOS Transistors

Semiconductor Physics fall 2012 problems

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Semiconductor Physics Problems 2015

Recitation 17: BJT-Basic Operation in FAR

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

SGP30N60HS SGW30N60HS

Most matter is electrically neutral; its atoms and molecules have the same number of electrons as protons.

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

Long Channel MOS Transistors

Date: Page 1 AN-Number: AN Short Circuit Behaviour of IGBT³ 600 V

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 18: A Broad Introduction to Dielectric Breakdown Date:

Breakdown mechanisms in advanced SiGe HBTs: scaling and TCAD calibration

13. Bipolar transistors

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating

This is the 15th lecture of this course in which we begin a new topic, Excess Carriers. This topic will be covered in two lectures.

SGB02N120. Fast IGBT in NPT-technology. Power Semiconductors 1 Rev. 2_3 Jan 07

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62.

I C P tot 138 W

6.012 Electronic Devices and Circuits

Bipolar Transistor WS 2011

TrenchStop Series. P t o t 270 W

Decemb er 20, Final Exam

EE 3329 Electronic Devices Syllabus ( Extended Play )

Schottky Rectifiers Zheng Yang (ERF 3017,

MOSFET: Introduction

Current mechanisms Exam January 27, 2012

TrenchStop Series. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 40 Turn off safe operating area V CE 600V, T j 150 C - 40.

Hot-carrier reliability of 20V MOS transistors in 0.13 µm CMOS technology

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

TSP10N60M / TSF10N60M

Transistors - a primer

1200 V 600 A IGBT Module

Lecture 19 - p-n Junction (cont.) October 18, Ideal p-n junction out of equilibrium (cont.) 2. pn junction diode: parasitics, dynamics

500V N-Channel MOSFET

IGW25T120. TrenchStop Series

Soft Switching Series

Lecture 35 - Bipolar Junction Transistor (cont.) November 27, Current-voltage characteristics of ideal BJT (cont.)

60 30 Pulsed collector current, t p limited by T jmax I Cpuls 90 Turn off safe operating area V CE 900V, T j 175 C - 90 Diode forward current

IGW15T120. TrenchStop Series

ECEN 3320 Semiconductor Devices Final exam - Sunday December 17, 2000

Soft Switching Series I C I F I FSM

Diodes for Power Electronic Applications

Electronic Circuits. Bipolar Junction Transistors. Manar Mohaisen Office: F208 Department of EECE

CMOS Logic Gates. University of Connecticut 181

250 P C = 25 C Power Dissipation 160 P C = 100 C Power Dissipation Linear Derating Factor

Device Physics: The Bipolar Transistor

NGTB30N120LWG IGBT. 30 A, 1200 V V CEsat = 1.75 V E off = 1.0 mj

Punch-Through in Resurf Devices

NGTB25N120LWG IGBT. 25 A, 1200 V V CEsat = 1.85 V E off = 0.8 mj

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

MIL-STD-883E METHOD THERMAL CHARACTERISTICS

FGH40T120SQDNL4. IGBT - Ultra Field Stop. 40 A, 1200 V V CEsat = 1.7 V E off = 1.1 mj

Section 12: Intro to Devices

CMOS Logic Gates. University of Connecticut 172

Basic Physics of Semiconductors

GT10Q301 GT10Q301. High Power Switching Applications Motor Control Applications. Maximum Ratings (Ta = 25 C) Equivalent Circuit. Marking

NGTB40N135IHRWG. 40 A, 1350 V V CEsat = 2.40 V E off = 1.30 mj

NGTB20N120IHRWG. 20 A, 1200 V V CEsat = 2.10 V E off = 0.45 mj

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

SEMICONDUCTORS. Conductivity lies between conductors and insulators. The flow of charge in a metal results from the

NGTG50N60FLWG IGBT. 50 A, 600 V V CEsat = 1.65 V

Chapter 13 Small-Signal Modeling and Linear Amplification

SOI/SOTB Compact Models

SGP20N60 SGW20N60. Fast IGBT in NPT-technology

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 3.5 Turn off safe operating area V CE 1200V, T j 150 C - 3.

CHAPTER 2 AN OVERVIEW OF TCAD SIMULATOR AND SIMULATION METHODOLOGY

NGTB40N60FLWG IGBT. 40 A, 600 V V CEsat = 1.85 V

SKP10N60 SKB10N60, SKW10N60

B. Both A and R are correct but R is not correct explanation of A. C. A is true, R is false. D. A is false, R is true

Lecture 18. New gas detectors Solid state trackers

Vulnerabilities in Analog and Digital Electronics. Microelectronics and Computer Group University of Maryland & Boise State University

Appendix 1: List of symbols

TrenchStop Series I C

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

AO V Dual N-Channel MOSFET

University of Central Florida. IEEE Electron Devices Colloqium Feb nd 2008

V CE I C (T C =100 C) V CE(sat) (T C =25 C) 1.55V. Symbol V GE I C I CM I LM I F I FM. t SC P D T L. R θ JA

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

c. VH: Heating voltage between the collector and emitter.

6.012 Electronic Devices and Circuits

Memories Bipolar Transistors

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

AO V Dual P + N-Channel MOSFET

ECE 145A/218A Power Amplifier Design Lectures. Power Amplifier Design 1

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

An Improved Junction Termination Design Using Deep Trenches for Superjunction Power Devices

Transcription:

Author manuscript, published in "Microelectronics Reliability vol.47 (7) pp.173-1734" Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions A. Benmansour, S. Azzopardi, JC. Martin, E. Woirgard hal-3248, version 1-25 Sep 8 Abstract IMS Laboratory ENSEIRB, 351 cours de la Liberation 3345 Talence Cedex, France (contact: adel.benmansour@ims-bordeaux.fr) Two extreme configurations under short circuit conditions leading to the punch through Trench IGBT failure under the effect of the temperature and the gate resistance have been studied. By analyzing internal physical parameters, it was highlighted that the elevation of the temperature causes an acceleration of the failure which is due to a thermal phenomenon, whereas the influence of the gate resistance on the failure evolution is minimal. 1. Introduction The short circuit capability is one of the figures of merit which defines the robustness of the power semiconductor components, especially the IGBT. Depending on the thermal and electrical conditions, during short circuit event, different types of failure can occur [1-8]. In the literature, some studies describe the various short circuit failure modes, but almost do not give internal device behaviour analysis. In fact, an internal 2D investigation seems to be necessary to have a good understanding of the failure mechanisms. This paper deals with the investigation of the temperature and gate resistance effects on the failure evolution under short circuit conditions. 2. Failure modes occurs during the on state of the device, between turn on and turn off. The main origin is the second breakdown associated to the rapid increase of the intrinsic temperature [3-4]. The failure mode C occurs during the turn off transient, and [2; 6] explains that this kind of failure can occur due to a dynamic latchup. The failure mode D occurs several micro seconds after turn off and this mechanism is associated to the temperature [5-8]. I A A B C D V A Time It is common to distinguish four failure modes under short circuit operation [7] as represented in figure 1. The failure mode A occurs at the beginning of the short circuit during the turn on. The reason can be the high applied voltage leading to early breakdown or to the latch-up phenomenon [1-2]. The failure mode B Time Fig. 1. Different failure modes under short circuit.

hal-3248, version 1-25 Sep 8 3. Device structure The Trench IGBT investigated is controlled by a trench gate and it is a punch through type. So, the PNP emitter and the base are separated by a heavily doped N+ layer (figure 2). Lifetime is controlled by ion implantation. The maximum time during short circuit is about 1µs. The structure is 2µm width and 37µm long. Fig.2. The structure of the Trench IGBT 4. Device model & simulation circuit In order to perform a short circuit simulation model as realistic as possible, it is necessary to fit the static and dynamic characteristics for various temperatures, including the short circuit waveforms. In the simulator software, and by taking into account the main physical mechanisms like mobility degradation, recombination and impact ionization, always with temperature computation, it is possible to have a good matching between the measurements and the simulations. It is also important to consider electrical elements attached to the physical structure (figure 3). The physical simulation is performed with GENESISe ISE-TCAD software [9]. V G y Fig.3. Short circuit simulation circuit 5. Results and discussion Cathode (K) a b P+ N+ b x R G IGBT R A L A A G P N- drift L K R K N+ P+ a Anode (A) Two electrical configurations under short circuit conditions has been chosen in order to investigate the K Gate (G) V DD gate resistance and the temperature effects on the failure evolution : mode B and C. 5.1 Failure mechanism during on state : mode B and gate resistance variation effects The failure under mode B of the trench IGBT is initiated under V DD =6V and Icsat=3A at the temperature T=298K under short circuit conditions. Figure 4 presents the simulation of the dynamic characteristic of the short circuit for different gate resistance Rg values (Ω, 1Ω, 5Ω, 5Ω and 1Ω). Ia (A) 1 8 6 4 t 1 t 2 t 3 t 4 Rg = 1 Ω Rg = 5 Ω Rg = 5 Ω Rg = 1 Ω Rg = Ω,,9 1,8 2,7 3,6 4,5 5,4 6,3 7,2 t (µs) Fig.4. Global waveforms for mode B It was highlighted that an increase of the gate resistance induces an increase of a delay at the turn on. Whereas, the gate resistance rise has a minor effect on the failure release, only the failure current slope is reduced with the gate resistance increase. A 2D analysis is presented for the gate resistance Rg=1Ω at three times t 1, t 2 and t 3 and for Rg=1Ω at t 4. At time t 1 which corresponds to the time for a maximum current conduction under a high collector voltage, figure 5(a) depicts that the main current (electron current) runs through the channel of the MOSFET. The hole current is running through the P + region to reach directly the cathode contact of the IGBT. At that time, since the collector voltage is high (6V), the electric field within the structure is maximum in the N drift region near to the Pbase / N drift junction. At this location, the value of the electric field is strong enough to generate carrier by impact ionization as indicated in figure 5(b) showing a moderate impact generation rate, the generated current represents 6.8% of the total current. The power density is maximum at the Pbase / N drift junction close to the channel where the current density is also high. As a consequence, the mapping of the temperature indicates that the temperature reaches a maximum value in the N drift region. At time t 2, the gate voltage is still applied. Figure 5(c) depicts that the electron current runs through the channel of the MOSFET and the hole current goes T V AK 6 5 4 3 1 Vak (V), T ( K)

hal-3248, version 1-25 Sep 8 through the P + region to reach directly the cathode contact of the IGBT. The electric field stays high along the reversed biased Pbase / N drift junction due to the high voltage continuously applied on the device. At the vicinity of this junction, the impact ionization (figure 5(d)) is higher and higher and reaches 13.2% of the total current. At this instant, the temperature mapping reaches a high value (but not the highest one during the short circuit). At time t 3, the gate voltage is still applied. The whole current is mainly composed by hole current running through the P + region. The electric field stays high along the reversed biased Pbase / N drift junction due to the high voltage continuously applied on the device (figure 5(e)). At the vicinity of this junction, the impact ionization distribution shown in figure 5(f) rises due to the rise of the current, the part of the generated current reaches 39.3% of total current. The power density still increases. At this instant, the temperature reaches its maximum value (about 45 K) due to the failure of the device (figure 4). At time t 4, which is taken during the failure as t 3 but for Rg=1Ω, figure 5(g), represents the same current density distribution as in figure 5(e). Whereas in figure 5(h), the impact ionization repartition in the active region is less important for Rg=1Ω. (a) - Current flow lines at t 1 (b) - Impact ionization at t 1 When we consider the ratio between the hole and the electron current (depicted in figure 6) during the whole transient, we notice that this ratio keeps a constant value (about.6) before the failure. Figure 6 confirms this preliminary result. During the failure, the hole current becomes higher than electron current, we can conclude that there is no impact ionization mechanism leading to breakdown. Current density (A/cm2) 4,6,8 1, 1,2 1,4 1,6 1,8 Distance (µm) Ie at t1 Ih at t1 Ie at t2 Ih at t2 Ie at t3 Ih at t3 Ie at t4 Ih at t4 Fig.6. 1D current density evolution along b-b cut line 5.2 Failure mechanism during turn off : mode C and temperature variation effects The mode C failure analysis of the trench IGBT is initiated under V DD =25V and Icsat=A short circuit conditions with a gate resistance Rg=1Ω. Figure 7 presents the simulation of the dynamic characteristic of short circuit for various temperature T= 298K, 423K and 473K. It was highlighted that an increase of the temperature seems to accelerate the destruction of the component. At T=298K, the failure occurs few microseconds after turn-off whereas at T=473K, the failure happens directly during turn-off. A 2D analysis is presented for the temperature T=423K and three times t 1, t 2 and t 3 are pointed out, whereas t 4 is an analysis time for the temperature T=298K. (c) Current flow lines at t 2 (d) - Impact ionization at t 2 1 t 1 t 2 t 3 t 4 8 T T = 298Κ T = 423Κ T = 473Ω 6 5 (e) - Current flow lines at t 3 (f) - Impact ionization at t 3 Ia (A) 6 4 V AK 4 3 Vak (V), T ( K) 1 (g) - Current flow lines at t 4 (h) - Impact ionization at t 4 Fig.5. 2D physical distribution of some parameters during failure mode B. 5 1 15 2 25 t (µs) Fig.7. Global waveforms for mode C At time t 1 which corresponds to the time for a maximum current conduction under a high collector

hal-3248, version 1-25 Sep 8 voltage, figure 8(a) depicts that the main current (electron current) runs through the channel of the MOSFET. The hole current is running through the P+ region to reach directly the cathode contact of the IGBT. At that time, since the collector voltage is high (V), the electric field within the structure is maximum in the N drift region near the Pbase / N drift junction. At this location, the value of the electric field is not high enough to generate carriers by impact ionization. The power density is maximum at the Pbase / N drift junction close to the channel where the current density is also high. Then, the temperature mapping indicates that the highest value is maximum in the N drift region as shown in figure 8(b). (a) - Current flow lines at t 1C (c) Current flow lines at t 2C (e) - Current flow lines at t 3C (b) - Temperature at t 1C (d) - Temperature at t 2C (f) - Temperature at t 3C temperature mapping (figure 8(d)) reaches a high value (but not the highest one during the short circuit). At time t 3, without any control on the gate electrode, the current starts running again inside the structure as depicted in figure 7. However, in figure 8(e), we can observe that the current runs not only through the P + region but also through the base-emitter junction of the parasitic bipolar NPN component towards the N + contact. The electric field is still high but the value starts decreasing with the decrease of the applied voltage and the increase of the current. The impact generation rate is low. The increase of the total current in the device induces an increase of the power density. This final stage corresponds to the device failure since the current can not be controlled anymore. In that case, the temperature mapping illustrated in figure 8(f) shows an increase of the temperature within the device with a highest value close to 11K. At time t 4, which is taken to analyse the Trench IGBT at the temperature T=298K, we can observe on figure 8(g) that the current density distribution is the same as in figure 8(e); In fact, at t 3 for T=423K and t 4 for T=298K, the component is failing, and the mechanism seems to be the same one for the two temperatures. The temperature distribution highlighted in figure 8(f) and 8(h) is similar at t 3 and t 4. This observation is confirmed in figure 9. Temperature (K) 1 1 8 6 4 t 4 t 3 t 2 t 1 (g) - Current flow lines at t 4C (h) - Temperature at t 4C Fig.8. 2D physical distribution of some parameters during failure mode C. At time t 2, the gate voltage has been reduced to zero and the channel of the MOSFET has been cut off. The device did not turn off as expected and the whole current has been reduced but not removed completely from the structure (figure 8(c)). The electric field stays high along the reversed biased Pbase / N drift junction due to the high voltage continuously applied on the device. At the vicinity of this junction, the impact ionization is still low and the generated current only represents.2% of total collector current. The power density continues increasing. At this instant, the 5 1 15 25 3 35 Distance (µm) Fig.9. 1D temperature distribution along a-a cut line 6. Summary Table 1 gives a summary of the main phenomena which causes each failure mode on trench IGBT under short circuit conditions. Furthermore, it gives the tendencies of the influence of the applied gate resistances and of the temperature on the failure types. Concerning the gate resistance and the temperature influence, for a fixed configuration of a failed short circuit simulation, an increase of the temperature will cause the failure earlier in time (from mode D to mode A). An increase of the gate resistance has more effect on the delay at turn-on and a low effect on the failure mode activation (from mode A to mode D).

hal-3248, version 1-25 Sep 8 Table 1 Sum up of the temperature and the gate resistance effects Mode A Mode B Mode C Mode D Gate voltage increasing Temperature increasing phenomena Impact Ionization 7. Conclusion The Trench IGBT physical internal behavior under various short circuit conditions has been investigated. For the failure mode occurring during the on-state and during turn-off, it was highlighted that a thermal phenomenon is responsible on the spontaneous current increasing. The activation of the event leading to failure seems to be closely related to the dissipated energy within the structure. It was highlighted that the gate resistance variation has no significant effect on the short circuit capability, whereas it is improved by a temperature reduction in the chip. References [1] L. Takata "Destruction mechanism of PT and NPT-IGBTs in the short circuit operation-an estimation from the quasi-stationary simulations", International Symposium on Power Semiconductor Devices Conference 1, 4-7 June, pp: 327 33 [2] T. Laska and al. "Short Circuit Properties of Trench- /Field-Stop IGBT s Design Aspects for a Superior Robustness", in Proc. International Symposium on Power Semiconductor Devices Conference., 3, pp : 173-176. [3] M. Trivedi and al. "Investigation of the short-circuit performance of an IGBT", IEEE Transition on Electron Device, vol.45, Issue: 1, Jan. 1998, pp: 313-32 [4] M. Trivedi and al. "Failure mechanisms of IGBTs under short-circuit and clamped inductive switching stress", IEEE Transition on Power Electronics, vol. 14, Issue: 1, Jan. 1999, pp: 18 116 [5] S. Lefebvre and al. Experimental Behavior of Single- Chip IGBT and COOLMOS Devices Under Repetitive Short-Circuit Conditions IEEE Transition on Electron Device, Vol. 52, No. 2, Feb. 5 [6] M. Ishiko and al. "Investigation of IGBT turn-on failure under high applied voltage operation", Microelectronics Reliability, Vol. 44, Iss. 9-11, Sept.-Nov. 4, pp 1431-1436 [7] A. Benmansour and al. "Failure mechanisms of Trench IGBT under various short-circuit conditions", accepted at Power Electronics Specialists Conference 7, Orlondo USA. [8] A. Benmansour and al. «Failure mechanism of trench IGBT under short-circuit after turn-off Microelectronics and Reliability, vol.46, Iss. 9-11, Sept.-Nov. 6, pp 1778-1783 [9] ISE TCAD Software, V1