HPLC Analysis of Monofluoro-S-Triazine Dye during the Dyeing Process

Similar documents
Kinetics of Hydrolysis of Halogeno-s-triazine Reactive Dyes as a Function of Temperature

Effect of alkali concentration on viscose dyeing of PV blended fabric with Reactive dye

Reactive Dyeing Mechanism. Reactive Dyeing Mechanism. Diffusion Factor. Adsorption Factor : Liquor ratio (Liquor-to-material ratio) (C) (B) (A)

Mathematical Modelling can lead to a better understanding of the role of variables

The influence of ph adjusted with different acids on the dyeability of polyester fabric

Triazinyl Betaines as Fibre Reactive Groups

FLUDEOXYGLUCOSE ( 18 F) INJECTION: Final text for addition to The International Pharmacopoeia (January 2009)

Dissolution of Polyfunctional Reactive Dyed Cotton in Cadoxen Solvent

Application of New Synthetic Fifth Generation Thickeners for Printing Cotton Fabric with Reactive Dyes

INFLUENCE OF SUPERCRITICAL CO 2 IN THE REACTIVITY OF A REACTIVE DYE WITH A MODEL ALCOHOL IN A TUBULAR REACTOR

ELECTROKINETIC PHENOMENA OF 3-AMINOPROPYLTRIETHOXYSILANE-BASED COTTON FINISHING

Characterization of Dye-ability and Diffusion Kinetics of Chemically Modified Cotton Fabrics towards Disperse and Direct Dyes

Leather Dyes Properties and Analysis

Determination of Carbonyl Compounds In Water by Dinitrophenylhydrazine Derivatization and HPLC/UV*

ABSTRACT. Keywords: Cibatex AE 4425, cross-linking, dichlorotriazine, vinylsulphone

International Journal of Science, Environment and Technology, Vol. 3, No 6, 2014,

Unit 4: Chemical Changes (Higher Content)

The effect of nonionic surfactant treatment on dyeing of cotton fabrics

J. O. OTUTU, D. OKORO AND E. K. OSSAI

Analysis of Metals, Halides, and Inorganic Ions Using Hydrophilic Interaction Chromatography

A RP-HPLC METHOD DEVELOPMENT AND VALIDATION OF PARA- PHENYLENEDIAMINE IN PURE FORM AND IN MARKETED PRODUCTS

Vpliv barvanja bombaža z reaktivnim barvilom na adsorpcijo srebra Izvirni znanstveni članek

CHEM4. General Certificate of Education Advanced Level Examination January Unit 4 Kinetics, Equilibria and Organic Chemistry

This method describes the identification of the following prohibited colorants in cosmetic products:

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits)

ELECTROCHEMICAL DEGRADATION OF REACTIVE BLUE 19 DYE IN TEXTILE WASTEWATER

H 3 CO H 3 CO S CH 3

Diquat 1,1 -ethylene-2,2 -bipyridium dibromide salt Paraquat 1,1 -dimethyl-4,4 -bipyridium dichloride salt Initial Preparation

Chemical Equilibrium

Chemical Modification of Jute Fibers for Improving its Hydrophobicity and Dyeability with Reactive Dyes

ANNEXURE - I MEDIA AND REAGENTS

INTERFACE PHENOMENA OF CATIONIZED COTTON WITH EPTAC

Thermodynamic Absorption Parameters of Disazo Dyes derived from P-aminophenol and 4-Aminobenzoic Acid on Polyester Fibre and Nylon 6 Fibre

Mechanisms of retention in HPLC

Draft Method proposal: determination of glucoheptonic acid (HGA) in fertilizers.

This is an author produced version of The Synthesis and Characterisation of Thiol-Bearing C. I. Disperse Red 1.

Simultaneous analysis of the major metal cations and ammonium by CZE

Recommended Procedures for Labeling. Labeling Proteins with Amine-Reactive ATTO-Labels (NHS-Esters) Introduction

CIPAC. CIPAC Free relevant impurities methods:

A COMPARATIVE ANALYSIS OF ELECTROKINETIC AND DYEING PROPERTIES OF ACRYLIC ACID GRAFTED BAMBOO RAYON

TIME 1 hour 30 minutes, plus your additional time allowance.

637. Thiamethoxam. HPLC method

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide

VALIDATION OF A UPLC METHOD FOR A BENZOCAINE, BUTAMBEN, AND TETRACAINE HYDROCHLORIDE TOPICAL SOLUTION

2.1 INTRODUCTION General Synthesis of Reactive Dyes with Azo 2.2 MATERIALS AND INSTRUMENTATION LABORATORY SCALE SYNTHESIS 33

A COMPARITIVE STUDY ON SILK DYEING WITH ACID DYE AND REACTIVE DYE

DYEING MECHANISM * FIXATION * MIGRATION * EXHAUSTION * ABSORPTION * DIFFUSION --_._-..

Simon Mazengarb, George A. F. Roberts 1

AS CHEMISTRY (7404/1)

Paper Reference. Wednesday 18 January 2006 Morning Time: 1 hour

2. Conductometry. Introduction This is a method of analysis based on measuring electrolytic conductance

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits)

Covalent (sharing of electron pairs) Ionic ( electrostatic attraction between oppositely charged ions)

Experiment UPHPLC: Separation and Quantification of Components in Diet Soft Drinks

Acids, Bases, & Neutralization Chapter 20 & 21 Assignment & Problem Set

CYCLOSERINE Final text for addition to The International Pharmacopoeia. (November 2008) CYCLOSERINUM CYCLOSERINE

Chromatographic Methods of Analysis Section - 4 : Ion Exchange Chrom. Prof. Tarek A. Fayed

A student prepared an ester by two different methods. alcohol + acid anhydride. alcohol + acyl chloride ...

Kinetic Isotope Effects

12 Nicarbazin Nicarbazin (4,4 -dinitro carbanilid (DNC) and 2-hydroxy-4,6-dimethyl pyrimidine (HDP))

Chromatography & instrumentation in Organic Chemistry

Chapter 7 Solution Chemistry. 7.1 The Nature of Solutions. Warm Up (p. 364) and Quick Check (p. 365)

DETERMINATION OF DRUG RELEASE DURING DISSOLUTION OF NICORANDIL IN TABLET DOSAGE FORM BY USING REVERSE PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4

School of Chemistry UNIVERSITY OF KWAZULU-NATAL, WESTVILLE CAMPUS JUNE 2009 EXAMINATION CHEM340: INSTRUMENTAL ANALYSIS.

How can oxidation be done

April 23, 2015 Lab 1 - Gravimetric Analysis of a Metal Carbonate

Method Development and Validation Of Prasugrel Tablets By RP- HPLC

Partner: Alisa 1 March Preparation and Properties of Buffer Solutions

High Performance Liquid Chromatography. Table 1: Allowed HPLC Adjustment of USP <621> and EP <2.2.46>

Principles of Thin Layer Chromatography

Supporting Information to Accompany:

Wool dyes. Contemporary wool dyeing and finishing Dr Rex Brady Deakin University

2. Which of these solutions is the least acidic? a) [H 3 O + ] = 4x10-4 M b) [H 3 O + ] = 0.04 M c) ph = 0.04 d) ph = 0.40 e) ph = 4.

A New Approach in Printing Wool and Wool/Polyester Fabrics with Disperse Dye Nanoparticles

Lesmahagow High School AHChemistry Inorganic and Physical Chemistry Lesmahagow High School CfE Advanced Higher Chemistry

Reactive fluorescent dye functionalized cotton fabric as a Magic Cloth for selective sensing and reversible separation of Cd 2+ in water

Introduction to Work in Laboratory

MOCK FINALS APPCHEN QUESTIONS

Carbonate content. SCAN-N 32:98 Revised White, green and black liquors and burnt lime sludge

Extraction Process Validation of Isatis Radix

5. What is the name of the phase transition that occurs when a solid is converted directly into a gas (without going through the liquid phase)?

Decolorized of Textile dye waste waters by Hydrogen peroxide, UV and Sunlight

Additional Science Chemistry

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Mengying Li.

ANALYTICAL TASK EXPERIMENTAL PROCEDURE

Annals of West University of Timisoara

Unit C1: Chemistry in our world Page 1 of 5

Pelagia Research Library

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. GB Translated English of Chinese Standard: GB5009.

Cyanide and sulfide analysis using amperometric detection and Metrosep A Supp /4.0

Paper Reference. Advanced Unit Test 6B (Synoptic) Thursday 24 January 2008 Morning Time: 1 hour 30 minutes

Acids and Bases. Click a hyperlink or folder tab to view the corresponding slides. Exit


CHEM4. (JUN14CHEM401) WMP/Jun14/CHEM4/E6. General Certificate of Education Advanced Level Examination June 2014

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate.

Transcription:

American Journal of Analytical Chemistry, 2014, 5, 215-224 Published Online March 2014 in SciRes. http://www.scirp.org/journal/ajac http://dx.doi.org/10.4236/ajac.2014.54027 HPLC Analysis of Monofluoro-S-Triazine Dye during the Dyeing Process Dejana Javoršek 1, Franci Kovač 2, Marija Gorenšek 1 1 Department of Textiles, Faculty of Natural Sciences and Engineering, University of Ljubljana, Ljubljana, Slovenia 2 Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia Email: dejana.javorsek@ntf.uni-lj.si, marija.gorensek@ntf.uni-lj.si, franci.kovac@fkkt.uni-lj.si Received 15 January 2014; revised 20 February 2014; accepted 28 February 2014 Copyright 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract In the research, the HPLC technique was applied in order to monitor the hydrolysis and dye-fibre bond-forming during the dyeing process. The results show that using a proper execution of calibration curves of the active and hydrolyzed form of the dye and defined equations, HPLC technique enable determining the exact amount of both dye forms anytime during dyeing. Dyeing process was performed in dyeing machine with use of combination of both alkalis Na 2CO 3 and NaOH and with use of one alkali Na 2CO 3. It was established that NaOH causes additional hydrolysis of the dye and that the use of Na 2CO 3 is more appropriate for Novacron Scarlet F-3G dye. The temperature of adsorption has no influence on dye fixation; an amount of fixed dye on fibre is up to 83.0%. Keywords Monofluoro-S-Triazine Dye; HPLC Analysis; Adsorption; Fixation; Hydrolysis 1. Introduction Reactive dyeing of cellulose materials represents a large progress in dyeing, due to the ability of dyes to form covalent bonds with nucleophilic groups of fibre. Reactive dyes have an equally complete pallet of colour shades as substantive dyes, yet their wet-fastness is far better. Therefore, reactive dyes are commonly used in their improved form with more reactive systems and massive chromogens [1]-[5]. For all that, during the dyeing process the hydrolysis of dyes in the dyebaths still occurs in a considerable extent. More than 50% of cost at reactive dyeing is intended for rinsing of the dyed material [6]. The experiments show that hydrolyzed reactive dyes cause problems in wastewaters, e.g. during the flocculation and coagulation, despite the agents being used for this purpose [7]. In spite of numerous hydrolysis studies of various reactive dyes with different reactive sys- How to cite this paper: Javoršek, D., Kovač, F. and Gorenšek, M. (2014) HPLC Analysis of Monofluoro-S-Triazine Dye during the Dyeing Process. American Journal of Analytical Chemistry, 5, 215-224. http://dx.doi.org/10.4236/ajac.2014.54027

tems in various media and different dyeing conditions [8]-[14], it seems that a theoretical analysis of impacts contributing to a positive fixation course of reactive dyes on a cellulose substrate should be performed. The cellulose substrate represents a large problem, since it prevents an easy passage of anionic dyes to the fibre surface due to the formation of the zeta potential on the fibre surface in an alkaline medium [15]. This problem is partly solved by masking the fibre charge with the addition of electrolyte, and with big planar chromogens of new reactive dyes [3]. Halogeno heterocyclic systems of dyes form bonds with cellulose fibres following the nucleophilic bimolecular heteroaromatic substitution mechanism [16]-[18]. The reaction is described as a base-catalyzed addition of the nucleophilic functional group of textile fibres to the electrophilic centre of the reactive group and the elimination of the leaving group. Various factors influence the reaction mechanism, i.e. the chromogen structure, esp. the groups in the chromogen that are closer to the reactive system, the leaving group, solvent etc. The fixation of the reactive dye to cellulose fibres is the key phase in the dyeing process and is accomplished as a part of the dyeing process. It depends on the fibre structure, fibre porousness, dye substantivity according to the dye structure, dye diffusion, dye reactivity, degree of fibre preparation, dyeing liquor, alkali concentration, use of crosslinking agents, introduction of various chemical groups into fibre, chemical modification, aftertreatments etc. The degree of fixation and consequently the colour yield can be increased with the use of fixation accelerators and shorter liquid ratio, dyeing at low temperature, modification of chromophore and reactive group, use of dyes with high substantivity and high reactivity treating cellulose fibres with swelling agents [19], and changing the morphology of fibres with a chemical modification [20]. It is known that a uniform rise in the fixation rate can be obtained by controlling the temperature of the dyeing process, adding alkali in stages, progressive metering of alkali, adding salt in stages etc. A basic problem that appears at dyeing of cellulose with reactive dyes is the reaction between the dye and water, i.e. hydrolysis, which is competitive with the reaction of the bond formation between the dye and textile substrate, i.e. fixation to fibres [21]. The analysis of the model of the monofluoro-s-triazine dye in a dyebath at real fixation conditions with a high performance liquid chromatography (HPLC) can show a realistic occurrence during the dyeing process. Our previous research has already represented the kinetics of hydrolysis of the commercial and purified monofluoro-s-striazine dye [22]. So the chosen model of the reactive dye used in the research was not selected randomly. It represents a simple model for the reactive dye with a halogen heterocyclic reactive system. The behaviour of the dye in dyebath was investigated at different adsorption temperatures (50 C, 60 C, 70 C and 80 C) and two fixation temperatures (50 C and 60 C). 2. Experimental 2.1. Materials A bleached cotton fabric (plain weave, 156 g/m 2 ) produced by Tekstina d.d., Ajdovščina, Slovenia, was prepared for dyeing with reactive dyes: the treatment in distilled water, the neutralization in an acidic bath at 95 C, boiling in distilled water, and two times rinsing in distilled water. The monofluoro-s-triazine dye (Novacron Scarlet F-3G, Mw = 713.6 g/mol) used in this research was supplied by Huntsman. 2.2. Methods 2.2.1. HPLC Analysis The dye solutions were analysed on a high performance liquid chromatograph HPLC (Thermo Separation Products). For the HPLC analysis, the ion-pair reversed-phase system and octadecil silane stationary phase in a 250 mm 4 mm column (Hypersil ODS 5 µm) were used. The mobile phase comprised two solvents composed of A and B. The solvent A was 100% acetonitrile (Riedel-de Haën) with the addition of 0.025 M tetra-n-butyl ammonium bromide (Fluka Chemika) as the ion-pairing reagent. The solvent B was a mixture of 30% of the solvent A and 70% of W (bidistilled water with the addition of 0.05 M ammonium dihydrogenphosphate (Fluka)). The isocratic method with the mobile phase of solvent proportion 40A:60B was used [23]. The analysed sample quantity was always 20 µl. All solutions and samples of the dyebath were filtered through a 0.45 µm PTFE filter prior to the HPLC analysis. The flow rate of the mobile phase through the column was 1.0 ml/min. 216

2.2.2. Execution of Calibration Curves on HPLC The commercial dye was purified. It was two times recrystallised according to the method by Chavan [24]. Dimethylformamide (99%, Fluka Chemie AG) tetrachloroethylene (99%, Fluka Chemie AG), a solvent-nonsolvent mixture was used to remove the inorganic salts. The purified active and hydrolyzed forms of the dye were used for the execution of calibration curves. The hydrolyzed form of the dye was produced by hydrolysis for 4 hours at 80 C in a ph 12 buffer. Afterwards, the solution was neutralized with the diluted hydrochloric acid up to the ph value 7. For the execution of calibration curve for the active form of the dye, the purified dye was dissolved in a ph 7 buffer. Different concentrations of the solutions (from 0.002 g/l to 0.100 g/l) of purified and hydrolyzed dye were prepared. The filtered dye solutions were injected into the HPLC column and the area below the curve peak of the active and hydrolyzed form of the dye was determined. The dye, which was dissolved in the ph 7 buffer, contained the active and hydrolyzed form. Therefore, it was necessary to subtract the area of the hydrolyzed dye and consider only the area below the curve peak of the active form of the dye at the execution of the calibration curve for the active form of the dye. Those calibration curves of the active and hydrolyzed dye were used for the exact determination of both dye forms during the dyeing procedure. 2.2.3. Dyeing Procedure The dyeing procedures were performed in dyeing machine (Werner Mathis AG) at adsorption temperatures (50 C, 60 C, 70 C and 80 C) and fixation temperatures (50 C and 60 C). Procedures are outlined in Table 1 and Figure 1. Dyebath have consisted of: A cotton fabric, B 3% dye, C 50 g/l Na 2 SO 4, D 5 g/l Na 2 CO 3, E 1.9 ml/l NaOH 32.5%. Liquor ratio was 1:20. After the addition of Na 2 CO 3 and NaOH ph value of dye solutions was measured. After addition of Na 2 CO 3, ph value was 11.1 and after addition of NaOH, ph value was 12.1. The state of the dye in dyebath was determined with HPLC by defining the quantity of the active and hydrolyzed form of the dye after 30 minutes (before the addition of alkalis), after 55 minutes (after the addition of NaOH), after 65 minutes (10 minutes after the addition of NaOH) and after 90 minutes (at the and of dyeing process). These quantities were used for determining the quantity of the adsorbed dye and dye bonded to the fabric. Therefore, 10 ml of the dyebath was withdrawn from dyebath process in different intervals into a 25 ml flask. 10 ml of solution was neutralized to ph 7 with 0.1 M HCl (Kemika) and diluted with up to 25 ml of bidistilled water. At the end of dyeing procedure, the fabric was rinsed and soaped according to the dye producer's recommendations: 10 min of cold rinsing, 10 min of neutralization at 60 C with the solution of 1 ml/l CH 3 COOH 30% (Riedel-de Haën), 15 min of soaping at 90 C with the addition of 2 g/l Cibapon R (Huntsman), 10 min of rinsing at 80 C, 10 min of rinsing at 60 C and 10 min of cold rinsing. All phases were performed at 1:40 liquor ratio. The quantities of the active and hydrolyzed form of the dye in the rinsing baths were determined with HPLC as well. 2.2.4. Calculation of Quantities of the Active and Hydrolyzed Dye In this research, the proportion of the active and hydrolyzed dye was determined on the basis of previously formed calibration curves with HPLC (Y = 39279 + 8.2 10 10 X for the active dye and Y = 11517 + 7.8 10 10 X for the hydrolyzed dye). The quantity of the active form of the dye adsorbed on the fabric was calculated by using Equation (1): C = C C (1) a _ ads a _ b a _ e where C a_ b : is quantity of active form of dye in dyebath at the beginning of dyeing, C a_ e: is quantity of active form of dye in dyebath at the end of dyeing, C a _ ads : is quantity of active form of dye adsorbed on fabric. The quantity of the active form of the dye bonded on the fabric was calculated by using Equation (2): C = C ( C + C ) (2) where a _ fix a _ b a _ e a _ rin. bath 217

Table 1. Dyebath procedure (A cotton fabric, B 3% dye, C 50 g/l Na 2 SO 4, D 5 g/l Na 2 CO 3, E 1.9 ml/l NaOH 32.5%). Procedure A, B added at the beginning C added after 10 minutes D added after 45 minutes E added after 55 minutes T ( C) a 80 80 60 60 b 70 70 60 60 c 60 60 60 60 d 50 50 60 60 e 80 80 50 50 (a) (b) (c) (d) Figure 1. Dyeing procedures from (a) to (e). (e) C is quantity of active form of dye bonded on fabric, a _ fix C a _ rin. bath is sum of quantities of active form of dye in rinsing baths. The quantity of the hydrolyzed form of the dye adsorbed on the fabric was calculated by using Equation (3): C = C C (3) h _ ads h _ b h _ e where C is quantity of hydrolyzed form of dye in dyebath at the beginning of dyeing, h_ b C is quantity of hydrolyzed form of dye in dyebath at the end of dyeing, h_ e C is quantity of hydrolyzed form of dye adsorbed on fabric. h _ ads 218

The quantity of the hydrolyzed form of the dye bonded on the fabric was calculated using Equation (4): ( ) C = C C + C (4) h _ fix h _ b h _ e h _ rin. bath where C h _ fix is quantity of hydrolyzed form of dye that is fixated on fabric, C h _ rin. bath is sum of quantities of hydrolyzed form of dye in rinsing baths. 2.2.5. The Dye Bath Exhaustion Percentage and the Total Dye Utilization Percentage The reflectance responses at all wavelengths were measured by using Spectrophotometer Datacolor Spectraflash, SF600. The reflectance value (R) of dyed fabric at the maximum wavelength was taken and the K/S values were calculated. The calculation of Kubelka Munk values are given in Equation (5): ( ) 2 K S = 1 R 2R (5) With HPLC analysis and remission spectrophotometer (Varian Cary 1E), the dye bath exhaustion percentage (%E) was calculated using Equation (6) and the total dye utilization percentage (%T) was calculated using Equation (7). Cb Ce E% = 100% (6) C Values C b and C e represented quantity of dye in dyebath at the beginning of dyeing and at the end of dyeing. K S 1 and K S 2 is the color yield with the values before and after rinsing and soaping procedure. KS2 T% = E% (7) KS 3. Results 3.1. Analysis of Dye Forms in Dyebath Dyeing procedure was performed at different adsorption temperatures (50 C, 60 C, 70 C and 80 C) and fixation temperatures (50 C and 60 C). The state of the dye in dyebath was determined at the beginning, after 30 minutes (before the addition of alkali), after 55 minutes (after the addition of NaOH), after 65 minutes (10 minutes after the addition of NaOH) and after 90 minutes (at the and of dyeing process). For defining the exact amount of an active and hydrolyzed form of the dye an extremely important method with execution of calibration curves was used. Figures 2-6 show the results of dye analysis during the dyeing procedure (Figure 1). C h is quantity of hydrolyzed form of dye in dyebath [mol/l], C a is quantity of active form of dye in dyebath [mol/l] and C f is quantity of dye adsorbed on fabric [g/g]. From the research results, it could be concluded that after the addition of both alkalis (after 55 minutes), in dyebath remained 4% - 7% of active dye form at fixation temperature 60 C and 15.2% of active dye form at fixation temperature 50 C. At both temperatures an active dye form completely disappeared from dyebath after 65 minutes in a case when both alkalis (Na 2 CO 3 and NaOH, ph 12.1) were used. At procedures when only one alkali (Na 2 CO 3 ) was used, ph of dyebath achieved values 11.1, which means that dye hydrolysed slower than in case when both alkalis were used. In that case in dyebath remained 10% - 14% of active dye form after 55 minutes and approximately 3% of active dye form after 65 minutes. After 90 minutes at fixation temperature 60 C in dyebath remained approximately 15% - 18% of hydrolyzed dye form when both alkalis were used and 12% - 16% of hydrolyzed dye form when only Na 2 CO 3 was used. Results of C f value show that after 90 minutes quantity of dye adsorbed on fabric is slightly smaller in case when both alkalis were used than in case when only Na 2 CO 3 was used. 3.2. Analysis of Dye on Fabric With HPLC analysis and remission spectroscopy, the dye bath exhaustion percentage (%E) and the total dye uti- b 1 219

lization percentage (%T), was determined. Results are represented in Figure 7. From Figure 7 it is evident that adsorption temperature had no influence on reaction between dye and fibres, however up to 83.0% of dye adsorbed on fibres. In a case of dyeing procedures when both alkalis were used, the dye bath exhaustion percentage (%E) was slightly lower than in case when only Na 2 CO 3 was used. The dyeing procedures when adsorption temperatures 80 C, 70 C and 60 C in combination with fixation temperature 60 C and addition of both alkalis, were performed, the total dye utilization percentage (%T) was up to 66%. The same procedures without addition of NaOH showed better results, which mean that higher value of %T was achieved, approximately 80%. The difference in %T value between procedure d (Figure 1(d)) (adsorption temperature 50 C and fixation temperature 60 C) with addition of NaOH and the same procedure without addition of NaOH, was small, 5%. Procedure e (Figure 1(e)) (adsorption temperature 80 C and fixation temperature 50 C) with and without NaOH also gives good results of %T, approximately 78%, which is only 5% lower than %T value at procedure d (Figure 1(d)). However, from the results it could be concluded that addition of NaOH caused extra hydrolysis and that the use of only Na 2 CO 3 was more appropriate for dye used in our research. According to standard ISO 105 C03 test for colourfastness at 60 C was performed. The change in colour of the specimen and the staining of the adjacent fabric were assessed with the grey scales and all samples got value 4 whether only Na 2 CO 3 or both alkalis were used. Figure 2. The quantity of hydrolyzed and active dye forms in dyebath and quantity of dye adsorbed on fabric during procedure a, left with Na 2 CO 3 and NaOH, right with Na 2 CO 3. Figure 3. The quantity of hydrolyzed and active dye forms in dyebath and quantity of dye adsorbed on fabric during procedure b, left with Na 2 CO 3 and NaOH, right with Na 2 CO 3. 220

Figure 4. The quantity of hydrolyzed and active dye forms in dyebath and quantity of dye adsorbed on fabric during procedure c, left with Na 2 CO 3 and NaOH, right with Na 2 CO 3. Figure 5. The quantity of hydrolyzed and active dye forms in dyebath and quantity of dye adsorbed on fabric during procedure d, left with Na 2 CO 3 and NaOH, right with Na 2 CO 3. Figure 6. The quantity of hydrolyzed and active dye forms in dyebath and quantity of dye adsorbed on fabric during procedure e, left with Na 2 CO 3 and NaOH, right with Na 2 CO 3. 221

Figure 7. The dye bath exhaustion percentage (%E) and the total dye utilization percentage (%T) of dyed samples. (a) (b) (c) (d) Figure 8. HPLC chromatograms of active and hydrolyzed form of dye in dyebath at procedure d: (a) At the beginning; (b) After 30 minutes; (c) After 55 minutes; (d) After 65 minutes. 222

Figure 8 shows HPLC chromatograms at procedure d (Figure 1(d)). Active dye form decreased in dyebath, adsorbed on the fibres and it is partly hydrolyzed what is evident from peak of hydrolyzed dye. 4. Conclusions Although the complete process of dye purification and execution of calibration curves is pretty pretentious, it enables complete control under dyeing procedure, since we were able to define the exact amount of the hydrolyzed and active form of the dye that was adsorbed and bonded with fibres according to calibration curves made for active and hydrolyzed form of the dye and Equations (1)-(4). Results showed that in a case of dyeing procedures when both alkalis were used, the dye bath exhaustion percentage (%E) was slightly lower than that in case when only Na 2 CO 3 was used. However, addition of NaOH also caused an extra hydrolysis of dye in dyebath so from our results it could be concluded that the use of only Na 2 CO 3 is more appropriate for dye used in our research. It was also established that adsorption temperature had no influence on reaction between dye and fibres, however, up to 83.0% of dye reacted with fibres. Acknowledgements The Ministry of Higher Education, Science and Technology financially supported the research under the research program P2-0213, Textiles and Ecology. References [1] Cibacron, L.S. Technical Documentation. Ciba. [2] Drimaren, H.F. Technical Documentation. Clariant. [3] Bezactiv. Technical Documentation. Bezema. [4] Procion Fast H-EXL and Remazol Ultra, R.G.B. Technical Documentation. DyStar. [5] Cibacron, S. Technical Documentation. Ciba. [6] Pavkov, N., Vrhunc, V. and Gorenšek, M. (2005) Zamenjava Monofunkcionalnih z Bifunkcionalnimi Reaktivnimi Barvili = Substitution of Monofunctional Reactive Dyes with New Bifunctional Reactive Dyes. Tekstilec, 48, 245-251. [7] Technical Documentation, Ciba Coagulant, Flocculants, Ciba. [8] Motomura, H. and Morita, S. (1979) Diffusion with Simultaneous Reaction of Reactive Dyes in Cellulose: II. Effect of Hydrolysis. Journal of Applied Polymer Science, 24, 1747-1757. http://dx.doi.org/10.1002/app.1979.070240714 [9] Taylor, J.A., Renfrew A.H.M. and Lovis, J.N. (1991) Reactive Dye for Cellulose. The Reaction of Alkoxychlorotriazinyl Dyes with Hydroxide Ion. Journal of Society of Dyers and Colorists, 107, 455-456. http://dx.doi.org/10.1111/j.1478-4408.1991.tb01299.x [10] Smith, C.B. and Thakore, K.A. (1991) The Effects of Ultrasound on Fibre Reactive Dye Hydrolysis. Textile Chemist and Colorist, 23, 23-25. [11] Wallace, M.L., Beck, K.R. and Smith, C.B. (2000) On-Line Monitoring of Reactive Batch Dyeing Exhaustion and Hydrolysis by FIA-HPLC. Textile Chemists and Colorist and American Dyestuff Reporter, 32, 39-40. [12] Zotou, A., Eleftheriadis, I., Heli, M. and Pegiadou, S. (2002) Ion-Pair High Performance Liquid Chromatographic Study of the Hydrolysis Behaviour of Reactive Fluorotriazinic Dyes. Dyes and Pigments, 53, 267-275. http://dx.doi.org/10.1016/s0143-7208(02)00019-0 [13] Aspland, J.R. and Johnson, A. (1965) Alkaline Hydrolysis of Chloro-N-Heterocyclic Reactive Dyes Containing Ionisable Amino Groups-I. Journal of Society of Dyers and Colorists, 81, 425-429. http://dx.doi.org/10.1111/j.1478-4408.1965.tb02614.x [14] Johnston, J.E. and Rattee, I.D. (1973) Further Studies of the Acid-Catalysed Hydrolysis of Type 3 Dye-Fibre Bonds between Cellulose and Triazinyl Reactive Dyes. Journal of Society of Dyers and Colorists, 89, 77-94. [15] Grancarić, A.M., Tarbuk, A. and Pusić, T. (2005) Electrokinetic Properties of Textile Fabrics. Coloration Technology, 121, 221-226. http://dx.doi.org/10.1111/j.1478-4408.2005.tb00277.x [16] Zollinger, H. (1987) Color Chemistry: Syntheses, Properties and Applications of Organic Dyes and Pigments. 1st Edition, Weinheim, New York. [17] Clayden, J., Greeves, N., Warren, S. and Wothers, P. (2001) Organic Chemistry. 1st Edition, Oxford University Press, Oxford. 223

[18] Tišler, M. (1999) Organska Kemija. DZS, Ljubljana. [19] Gorenšek, M., Recelj, P. and Bukošek, V. (2001) Effect of Zinc Chloride on the Dyeability of Cotton with Bis(Monofluoro-s-Triazine) Dye. Textile Research Journal, 71, 351-356. http://dx.doi.org/10.1177/004051750107100412 [20] Shamey, R. and Hussein, T. (2005) Critical Solutions in the Dyeing of Cotton Textile Materials. Textile Progress, 37, 1-84. http://dx.doi.org/10.1533/tepr.2005.0001 [21] (1989) The Theory of Coloration of Textiles. In: Johnson, A., Ed., 2nd Edition, Society of Dyers and Colourists, Bradford. [22] Đorđević, D., Cerkovnik, J. and Gorenšek, M. (2006) The Comparison of the Kinetics of Hydrolysis of Some Reactive Dyes Before and After Purification. Fibres & Textiles in Eastern Europe, 14, 85-88. [23] Đorđević, D., Kovač, F. and Gorenšek, M. (2004) The Comparison of Two Methods of Liquid Chromatography for the Determination of Reactive Dyes. 2nd International Textile, Clothing & Design Conference, Magic World of Textiles: Book of Proceedings, Zagreb, 681-685. [24] Chavan, R.B. (1976) The Use of Solvent-Nonsolvent Mixtures for the Purification of Anionic Dyes. Textile Research Journal, 6, 435-437. 224