Capacitive Sensor Interfaces

Similar documents
Transducers. Today: Electrostatic Capacitive. EEL5225: Principles of MEMS Transducers (Fall 2003) Instructor: Dr. Hui-Kai Xie

EE C245 ME C218 Introduction to MEMS Design

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture

EE C247B ME C218 Introduction to MEMS Design Spring 2016

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2011 C. Nguyen PROBLEM SET #7. Table 1: Gyroscope Modeling Parameters

Design of a MEMS Capacitive Comb-drive Accelerometer

Abstract. 1 Introduction

EE C245 ME C218 Introduction to MEMS Design

Design and Analysis of dual Axis MEMS Capacitive Accelerometer

EE C245 ME C218 Introduction to MEMS Design Fall 2010

EE C245 ME C218 Introduction to MEMS Design Fall 2011

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory.

Tunable MEMS Capacitor for RF Applications

Design of Electrostatic Actuators for MOEMS Applications

E05 Resonator Design

EE C245 ME C218 Introduction to MEMS Design Fall 2012

EE C245 ME C218 Introduction to MEMS Design

Comb Resonator Design (1)

Optimizing the Performance of MEMS Electrostatic Comb Drive Actuator with Different Flexure Springs

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design

Design and characterization of in-plane MEMS yaw rate sensor

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 13, NO. 5, OCTOBER Sudipto K. De and N. R. Aluru, Member, IEEE, Associate Member, ASME

Modeling and Design of MEMS Accelerometer to detect vibrations on chest wall

Capacitive MEMS Accelerometer Based on Silicon-on-Insulator Technology: Design, Simulation and Radiation Affect

An Accurate Model for Pull-in Voltage of Circular Diaphragm Capacitive Micromachined Ultrasonic Transducers (CMUT)

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture

Last Name _Piatoles_ Given Name Americo ID Number

Experimental analysis of spring hardening and softening nonlinearities in. microelectromechanical oscillators. Sarah Johnson

Sensors & Transducers 2015 by IFSA Publishing, S. L.

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.2, pp ,

Micro Capacitive Tilt Sensor for Human Body Movement Detection

MEMS TUNABLE CAPACITORS WITH FRAGMENTED ELECTRODES AND ROTATIONAL ELECTRO-THERMAL DRIVE

Platform Isolation Using Out-of-plane Compliant Mechanism

Last Name Minotti Given Name Paolo ID Number

The Pull-In of Symmetrically and Asymmetrically Driven Microstructures and the Use in DC Voltage References

EE C245 ME C218 Introduction to MEMS Design Fall 2007

1. Narrative Overview Questions

EE C245 ME C218 Introduction to MEMS Design

Electrostatic Microgenerators

Simulation of a Micro-Scale Out-of-plane Compliant Mechanism

EE C245 ME C218 Introduction to MEMS Design

NOISE ANALYSIS IN PARAMETRIC RESONANCE BASED MASS SENSING. Wenhua Zhang and Kimberly L. Turner

Temperature stabilization of CMOS capacitive accelerometers

EE C245 - ME C218. Fall 2003

Microstructure cantilever beam for current measurement

PHYSICAL DESIGN FOR SURFACE-MICROMACHINED MEMS

Design and Analysis of a CMOS Based MEMS Accelerometer

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor

Integrated Circuits & Systems

Sensors & Transducers 2016 by IFSA Publishing, S. L.

MEAM 550 Modeling and Design of MEMS Spring Solution to homework #4

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

ME 237: Mechanics of Microsystems : Lecture. Modeling Squeeze Film Effects in MEMS

EE115C Digital Electronic Circuits Homework #5

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

MECH 466. Micro Electromechanical Systems. Laboratory #1: Testing of Electrostatic Microactuators

A single-layer micromachined tunable capacitor with an electrically floating plate

Transduction Based on Changes in the Energy Stored in an Electrical Field

Midterm 2 PROBLEM POINTS MAX

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

ENERGY HARVESTING TRANSDUCERS - ELECTROSTATIC (ICT-ENERGY SUMMER SCHOOL 2016)

EECS C245 ME C218 Midterm Exam

Design and Simulation of Comb Drive Capacitive Accelerometer by Using MEMS Intellisuite Design Tool

E08 Gyroscope Drive Design

arxiv: v1 [physics.app-ph] 26 Sep 2017

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary

DESIGN AND ANALYSIS OF ROTATION RATE SENSOR. Modeling of vibratory MEMs Gyroscope

SUPPLEMENTARY INFORMATION

Simple piezoresistive accelerometer

GENERAL CONTACT AND HYSTERESIS ANALYSIS OF MULTI-DIELECTRIC MEMS DEVICES UNDER THERMAL AND ELECTROSTATIC ACTUATION

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier II Multi-Stage Designs

PY5020: Nanomechanics Nanoscience MEMS and NEMS

Natural vibration frequency of classic MEMS structures

Single- and dual-axis lateral capacitive accelerometers based on CMOS-MEMS technology

NONLINEAR ANALYSIS OF PULL IN VOLTAGE IN MICRO- CANTILEVER BEAM

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture

EE C245 ME C218 Introduction to MEMS Design

CMOS Cross Section. EECS240 Spring Today s Lecture. Dimensions. CMOS Process. Devices. Lecture 2: CMOS Technology and Passive Devices

Four Degrees-of-Freedom Micromachined Gyroscope

HSG-IMIT Application AG

Research Article A Pull-in Based Test Mechanism for Device Diagnostic and Process Characterization

A parametric amplification measurement scheme for MEMS in highly damped media. Cadee Hall. Department of Physics, University of Florida

Chapter 8. Model of the Accelerometer. 8.1 The static model 8.2 The dynamic model 8.3 Sensor System simulation

Y. C. Lee. Micro-Scale Engineering I Microelectromechanical Systems (MEMS)

19. Capacitive Accelerometers : A Case Study. 19. Capacitive Accelerometers : A Case Study. Introduction. Introduction (ctnd.)

Study of Capacitive Tilt Sensor with Metallic Ball

CMOS/BICMOS Self-assembling and Electrothermal Microactuators for Tunable Capacitors

Efficient Multi-Physics Transient Analysis Incorporating Feedback-Dependent Boundary Conditions

MEMS INERTIAL POWER GENERATORS FOR BIOMEDICAL APPLICATIONS

Design and simulation of a dual-axis sensing decoupled vibratory wheel gyroscope

Dynamic Capacitance Extraction of A Triaxial Capacitive Accelerometer

A Pendulous Oscillating Gyroscopic Accelerometer Fabricated Using Deep-Reactive Ion Etching

Design and fabrication of multi-dimensional RF MEMS variable capacitors


Transcription:

Capacitive Sensor Interfaces Bernhard E. Boser Berkeley Sensor & Actuator Center Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley Capacitive Sensor Interfaces 1996 B. Boser 1

Example: Vibratory Gyroscope Electrostatic Interfaces for: vibration (about z-axis) x/y-axis tilt x/y-axis force feedback x/y-axis frequency tuning quadrature error cancellation... Ref: T. Juneau et al., Micromachined Dual Input Axis Angular Rate Sensor, Solid-State Sensor and Actuator Workshop, Hilton Head, SC, June 1996. Capacitive Sensor Interfaces 1996 B. Boser

Outline Capacitor Basics MEMS Capacitor Configurations parallel plate transverse comb lateral comb Simulation Summary Capacitive Sensor Interfaces 1996 B. Boser 3

Capacitor Basics Definition: C = Q V Energy: E = 1 CV Force: F = E x = 1 C x V Spring Constant: k F = x Figure of Merit (for sensing): FM = C x C Capacitive Sensor Interfaces 1996 B. Boser 4

Capacitors in MEMS always present no special fabrication steps required must deal with in any case versatile sensor & actuator negligible temperature coefficient high accuracy: position measurements <.1Å demonstrated challenges small signals, parasitics undesired electrostatic actuation Capacitive Sensor Interfaces 1996 B. Boser 5

Outline Capacitor Basics MEMS Capacitor Configurations parallel plate transverse comb lateral comb Simulation Summary Capacitive Sensor Interfaces 1996 B. Boser 6

Parallel Plate Capacitor x V Area A x µm Ref: D. Young et al., A Micromachined Variable Capacitor for Monolithic Low-Noise VCOs, Solid-State Sensor and Actuator Workshop, Hilton Head, SC, June 1996. MEMS Applications accelerometers gyroscopes actuators varactor replacement Capacitive Sensor Interfaces 1996 B. Boser 7

Parallel Plate Capacitor (cont.) ε A Capacitance C = 14 ff x + x Sensitivity -14 ff/µm Force F= -18 µn Spring Constant k= 35 N/m Figure of Merit = -1µm -1 C C = x x + x 1 CV x + x CV ( x + x) 1 FM x + x Example (for x = 1 µm, A = (4 µm), V = 5 V (constant), ε = 8.85 af/µm) large capacitance & force (large area) nonlinear electrostatic spring Capacitive Sensor Interfaces 1996 B. Boser 8

Application: Position Sensing C s + V t sinω C s = ε A C C x + x x x x, C x = ( x << x ) V out C ref = C C ref V t sinω Buffer V out V C C ref FM x + signal C offset minimize offset: match C ref to C output proportional to x (x << x ) sense voltage V : parasitic force Capacitive Sensor Interfaces 1996 B. Boser 9

Matching C ref to C anchor parallel plate capacitor (top view) stiff suspension suspension sense capacitor C s reference capacitor C ref Ref.: W. Yun et al., Surface micromachined, digitally force-balanced accelerometer with integrated CMOS detection circuitry, Solid-State Sensor and Actuator Workshop, Hilton Head, 199, pp. 1-5. Capacitive Sensor Interfaces 1996 B. Boser 1

Pull-In Voltage x +x F el F mech = -k mech x V -k el /k mech 1 1/3 -x/x k xx + x F = F V = mech el mech ( ) C x k = k el mech x + x Capacitive Sensor Interfaces 1996 B. Boser 11

Pull-In Voltage (cont.) electrostatic force always positive, F el pull-in occurs when x x > 3 k el > k mech V > x km 3 15. C e.g. x = 1µm, C = 1pF, k m = 1N/m Æ V <.54 V to avoid pull-in Capacitive Sensor Interfaces 1996 B. Boser 1

Voltage versus Charge constant voltage constant charge V = const C C E = 1 CV E = 1 Q C F = 1 CV x + x F = 1 Q A ε k CV = ( x + x) force dependent on x (quadratic in V) k = force independent of x, no pull-in (quadratic in Q) Capacitive Sensor Interfaces 1996 B. Boser 13

Outline Capacitor Basics MEMS Capacitor Configurations parallel plate transverse comb lateral comb Simulation Summary Capacitive Sensor Interfaces 1996 B. Boser 14

Transverse Comb flexture anchor Fixed Plates N Unit Cells Ref: Analog Devices ADXL-5 Capacitive Sensor Interfaces 1996 B. Boser 15

Transverse Comb (cont.) N movable fingers x L C s1 C s A A t x +x A Anchor A x = C s1 = ε N x Lt + x + C fringe x > C s = ε N x Lt x + C fringe Capacitive Sensor Interfaces 1996 B. Boser 16

Transverse Comb (cont.) C C s1 x= C x x C = C + s x= C x x ε NLt x C C x Capacitance C x= = + C fringe 15 ff C x Sensitivity 15 ff/µm fringe Figure of Merit 1.8µm -1 1 C FM x C Example for x = 1 µm, L = 15 µm, t = µm, N = 4, V = 5 V (constant), C fringe /C =. Capacitive Sensor Interfaces 1996 B. Boser 17

Differential Force (x=) F 1 C s1 F C s x= +V V x -V F = F F 1 C 1 x V V x V + V x! CVV x x " $ # e.g. F/V x = 1.5µN/V for V = 5V, C = 15fF, x = 1µm linear voltage-force relationship Capacitive Sensor Interfaces 1996 B. Boser 18

Electrostatic Spring (V x = ) x k el = d dx F ( F ) 1 F 1 F C s1 C s = d dx ε AV 1 1 ( x + x) ( x x) +V V x = -V CV x << x x e.g. k el = -.1 N/m for V = 1V, C = 1fF, x = 1µm Capacitive Sensor Interfaces 1996 B. Boser 19

Resonant Frequency Shift linear second order mechanical system: ω r = = k m k mech + k m el e.g. ω = 5 krad/sec m =.1 µg k mech = m ω =.5 N/m k el = -.1 N/m = ω + 1 k k el mech ω r /ω =.78 substantially reduced resonance negative ω r possible Capacitive Sensor Interfaces 1996 B. Boser

Differential Position Sensing C s1 + V t sinω V out V out C V x x = V FM x C C s V t sinω Buffer V out /x = V o x FM = 4V/µm = 4µV/Å output proportional to x for x << x sense force almost canceled: F 1 F Capacitive Sensor Interfaces 1996 B. Boser 1

Outline Capacitor Basics MEMS Capacitor Configurations parallel plate transverse comb lateral comb Simulation Summary Capacitive Sensor Interfaces 1996 B. Boser

Lateral Comb lateral comb drive resonator Ref.: W. Tang, Electrostatic comb drive for resonant sensor and actuator applications, Ph.D. Thesis, UC Berkeley, EECS, 199. Capacitive Sensor Interfaces 1996 B. Boser 3

Lateral Comb Geometry rotor (movable) C p top view C x x stator (anchored) cross-section t d x Capacitive Sensor Interfaces 1996 B. Boser 4

Capacitance per Finger = x Mutual Capacitance: ( + ) ε C = N tx x d + NC, p parasitic Capacitive Sensor Interfaces 1996 B. Boser 5

Lateral Comb ε C N tx + = x ( ) d C ε N t x d N t = 1 ε d [ + C p ] Capacitance 9 ff Sensitivity 1.8 ff/µm Force F V fn Spring Constant k= 1 FM x + x Figure of Merit.µm -1 Example (for x = 5 µm, t = µm, d = 1 µm, N = 1, V = 5V, C p = ) Capacitive Sensor Interfaces 1996 B. Boser 6

Lateral Comb Characteristics linear: C proportional to x no electrostatic spring main application: linear forcer, e.g. in resonator (use differential setup to cancel nonlinearity in voltage) challenges: parasitics introduce nonlinearity poor sensitivity dc/dx small forces for standard supply voltages (5V) Capacitive Sensor Interfaces 1996 B. Boser 7

Exact Analysis of Lateral Force W.A. Johnson et al., Electrophysics of Micromechanical Comb Actuators, IEEE J. Electromech. Systems, pp. 49-59, March 1995. (includes fringing field effects) G. Fedder, Simulation of Microelectromechanical Systems, Ph.D. thesis, UC Berkeley, EECS, 1994. Capacitive Sensor Interfaces 1996 B. Boser 8

Levitation Effects F z Ref: W. Tang, Electrostatic Comb Drive for Resonant Sensor and Actuator Applications, Ph.D. thesis, UC Berkeley, EECS, 199. Capacitive Sensor Interfaces 1996 B. Boser 9

Levitation Force Capacitive Sensor Interfaces 1996 B. Boser 3

Levitation Suppression sliced ground-plane reduces levitation force by order-of-magnitude Capacitive Sensor Interfaces 1996 B. Boser 31

Lateral Comb Resonator Ref: C. Nguyen, Micromechanical Signal Processors, Ph.D. thesis, UC Berkeley, EECS, 1994. Capacitive Sensor Interfaces 1996 B. Boser 3

Electrostatic Solvers: Fastcap Simulation http://rle-vlsi.mit.edu/projects.html Maxwell Ansoft, Pittsburgh, Pennsylvania, 1991. General Text Systems, H. H. Woodsen and J. R. Melcher: Electromechanical Dynamics, Part I: Discrete R. E. Krieger Publishing, Malabar, Florida 395, 199. Reprinted from J. Wiley edition of 1968. Self-Consistent Electromechanical Simulation: Simultaneous solution of electrostatic and mechanical equations required for large displacements x: MEMCAD. http://www-mems.mit.edu/groups/senturiagroup.html Capacitive Sensor Interfaces 1996 B. Boser 34

Fastcap Example: Transverse Comb x V sense C s-sub C sense V pm C 1 C fb proof mass V pm C f-sub V fb substrate GND feedback tines V fb sense tines V sense Capacitive Sensor Interfaces 1996 B. Boser 35

Boundary Element (BEM) Generation cubegen -n1 -xo -yo -zo -xh4 -yh115 -zh -natine_pm > tine_pm.qui cubegen -n1 -xo -yo -zo -xh4 -yh144 -zh -natine_sense > tine_sense.qui cubegen -n1 -xo -yo -zo -xh4 -yh14 -zh -natine_drive > tine_drive.qui cubegen -n1 -xo -yo -zo -xh8 -yh1 -zh -naendtine > endtine.qui cubegen -n1 -xo -yo -zo -xh34 -yh -zh -naproofmass > proofmass.qui capgen -p1 -n -w45 -nasubstrate > subst.qui Capacitive Sensor Interfaces 1996 B. Boser 36

BEM Assembly * PROOF MASS C tine_pm.qui 1. + C tine_pm.qui 1 15. + C tine_pm.qui 1 3. + C proofmass.qui 1. -19.99 * * SENSE TINES C tine_sense.qui 1 1 5 + C tine_sense.qui 1 5 5 + C endtine.qui 1 1 148.99 + C endtine.qui 1 5 148.99 * * FEEDBACK TINES C tine_drive.qui 1 5 5 + C tine_drive.qui 1 5 + C endtine.qui 1 1 18.99 + C endtine.qui 1 16 18.99 * * SUBSTRATE C subst.qui 1-5.5 - -1.6 + C subst.qui 1-5.5 5-1.6 + C subst.qui 1-5.5 7-1.6 File lsensor_..bem x =. µm (one file for each x) Capacitive Sensor Interfaces 1996 B. Boser 37

Run Fastcap One simulation run for each x = -.5µm to +.5µm: fastcap -lsensor_-.5.bem > out-.5 fastcap -lsensor_-.4.bem > out-.4 fastcap -lsensor_-.3.bem > out-.3 fastcap -lsensor_-..bem > out-. fastcap -lsensor_-.1.bem > out-.1 fastcap -lsensor_..bem > out. fastcap -lsensor_.1.bem > out.1 fastcap -lsensor_..bem > out. fastcap -lsensor_.3.bem > out.3 fastcap -lsensor_.4.bem > out.4 fastcap -lsensor_.5.bem > out.5 Capacitive Sensor Interfaces 1996 B. Boser 38

Fastcap Output out. ( x =.µm) Running fastcap. (15Jul9) Input: sensor_-..lst Input surfaces: GROUP1 tine_pm.qui, conductor title: `4mX115mXm cube (n=1 e=.1)' outer permittivity: 1 number of panels: 174 number of extra evaluation points: translation: (. ) tine_pm.qui, conductor title: `4mX115mXm C s-sub 5.986fF C f-sub 6.63fF C sense 6.6fF V pm C fb 5.548fF V sense C 1 7.71fF V fb CAPACITANCE MATRIX, femtofarads V pm V sense V fb GND V pm 8.81-6.6-5.548-16.54 V sense -6.6 19.9-7.71-5.896 V fb -5.548-7.71 19.9-6.63 GND -16.54-5.896-6.63 3.58 Capacitive Sensor Interfaces 1996 B. Boser 39

BEM Analysis Summary (Matlab) C 1 Capacitnace [ff] C s-sub (levitation!) C sense C sense 41. ff / µ m x Proof Mass Displacement x [µm] Capacitive Sensor Interfaces 1996 B. Boser 4

Summary capacitive interfaces: position sensing electrostatic forcer interface types: parallel plate: large C, negative spring, asymmetric transverse comb: symmetric, good position sense, ω r tuning lateral comb: linear forcer, small dc/dx Capacitive Sensor Interfaces 1996 B. Boser 41