Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation

Similar documents
InGaAs Double-Gate Fin-Sidewall MOSFET

Quantum-size effects in sub-10 nm fin width InGaAs finfets

High aspect-ratio InGaAs FinFETs with sub-20 nm fin width

Electric-Field Induced F - Migration in Self-Aligned InGaAs MOSFETs and Mitigation

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis

Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain

The Prospects for III-Vs

30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications

The Pennsylvania State University. Kurt J. Lesker Company. North Carolina State University. Taiwan Semiconductor Manufacturing Company 1

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC)

Ultra-Scaled InAs HEMTs

Negative-Bias Temperature Instability (NBTI) of GaN MOSFETs

EE410 vs. Advanced CMOS Structures

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Technology Development & Design for 22 nm InGaAs/InP-channel MOSFETs

EECS130 Integrated Circuit Devices

Performance Analysis of Ultra-Scaled InAs HEMTs

Electrical Degradation of InAlAs/InGaAs Metamorphic High-Electron Mobility Transistors

ECE-305: Spring 2016 MOSFET IV

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Recent Development of FinFET Technology for CMOS Logic and Memory

1464 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 4, APRIL 2016

Reliability and Instability of GaN MIS-HEMTs for Power Electronics

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Components Research, TMG Intel Corporation *QinetiQ. Contact:

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Enhanced Mobility CMOS

Technology Development for InGaAs/InP-channel MOSFETs

MOS Transistor Properties Review

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

Advanced and Emerging Devices: SEMATECH s Perspective

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

ECE 305: Fall MOSFET Energy Bands

ALD high-k and higher-k integration on GaAs

ECE-305: Fall 2017 MOS Capacitors and Transistors

Anomalous Source-side Degradation of InAlN/GaN HEMTs under ON-state Stress

A Multi-Gate CMOS Compact Model BSIMMG

Time Dependent Dielectric Breakdown in High Voltage GaN MIS HEMTs: The Role of Temperature

VLSI Design and Simulation

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Physics-based compact model for ultimate FinFETs

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Multiple Gate CMOS and Beyond

Graphene and new 2D materials: Opportunities for High Frequencies applications

Lecture 11: MOSFET Modeling

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Supporting information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

MOSFET: Introduction

Low Frequency Noise in MoS 2 Negative Capacitance Field-effect Transistor

Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout

Scaling Effects on Single-Event Transients in InGaAs FinFETs

Ultimately Scaled CMOS: DG FinFETs?

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

OFF-state TDDB in High-Voltage GaN MIS-HEMTs

Supporting Information for: Sustained sub-60 mv/decade switching via the negative capacitance effect in MoS 2 transistors

The PSP compact MOSFET model An update

Simple and accurate modeling of the 3D structural variations in FinFETs

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Comparative studies of Ge and Si p-channel metal oxide semiconductor field-effect-transistors with HfSiON dielectric and TaN metal gate

CMOS Technology for Computer Architects

Thin Film Transistors (TFT)

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild)

Device Models (PN Diode, MOSFET )

296 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 65, NO. 1, JANUARY 2018

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ]

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

The Devices. Jan M. Rabaey

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Prospects for Ge MOSFETs

Physics an performance of III-V nanowire heterojunction TFETs including phonon and impurity band tails:

Extending the Era of Moore s Law

Lecture 3: CMOS Transistor Theory

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

MOS Transistor I-V Characteristics and Parasitics

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions?

There s Plenty of Room at the Bottom and at the Top

FLCC Seminar. Spacer Lithography for Reduced Variability in MOSFET Performance

Decemb er 20, Final Exam

Lecture 9. Strained-Si Technology I: Device Physics

Microelectronics Part 1: Main CMOS circuits design rules

Planar View of Structural Degradation in GaN HEMT: Voltage, Time and Temperature Dependence

Modeling Random Variability of 16nm Bulk FinFETs

CMOS Inverter (static view)

S=0.7 [0.5x per 2 nodes] ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Scaling ITRS Roadmap

Nanometer Transistors and Their Models. Jan M. Rabaey

ECE 497 JS Lecture - 12 Device Technologies

Device Models (PN Diode, MOSFET )

Simple Theory of the Ballistic Nanotransistor

JFET/MESFET. JFET: small gate current (reverse leakage of the gate-to-channel junction) More gate leakage than MOSFET, less than bipolar.

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Recent Progress in Understanding the DC and RF Reliability of GaN High Electron Mobility Transistors

6.012 Electronic Devices and Circuits

Lecture 4: CMOS Transistor Theory

Transcription:

Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation Alon Vardi, Lisa Kong, Wenjie Lu, Xiaowei Cai, Xin Zhao, Jesús Grajal* and Jesús A. del Alamo Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, U.S.A *ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain Dec. 5, 2017 Sponsors: DTRA (HDTRA 1 14 1 0057) NSF E3S STC (grant #0939514) Lam Research Korea Institute of Science and Technology 1

FinFETs Intel Si Trigate MOSFETs Double gate Tri gate FinFETs used in state of the art Si CMOS improved short channel effects smaller footprint but higher parasitics 2

Si and InGaAs FinFETs normalized by gate periphery [ms/ m] 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Si FinFETs 14 nm 22 nm Planar Si 32 nm 0.0 0 10 20 30 // Planar Si planar FinFET: performance 3

Si and InGaAs FinFETs normalized by gate periphery normalized by fin footprint [ms/ m] 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Si FinFETs 14 nm 22 nm Planar Si 32 nm 0.0 // 0 // 0 10 20 30 Planar 0 10 20 30 Planar / [ms/ m] 20 15 10 5 5.3 AR=H c / Si FinFETs (V DD =0.8 V) 4.3 Si planar FinFET: performance, performance per footprint Key challenge for FinFETs efficient transport on sidewalls H c 4

Si and InGaAs FinFETs normalized by gate periphery normalized by fin footprint [ms/ m] 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Si FinFETs 14 nm 22 nm 0.0 // 0 // 0 10 20 30 Planar 0 10 20 30 Planar III V planar ~ Si planar Planar InGaAs (V DD =0.5 V) Lin, EDL2016 Planar Si 32 nm / [ms/ m] 20 15 10 5 5.3 AR=H c / Si FinFETs (V DD =0.8 V) 4.3 H c 5

Si and InGaAs FinFETs normalized by gate periphery normalized by fin footprint [ms/ m] 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Si FinFETs 14 nm 22 nm Planar InGaAs (V DD =0.5 V) Lin, EDL2016 Planar Si 32 nm 0.0 // 0 // 0 10 20 30 Planar 0 10 20 30 Planar / [ms/ m] (III V FinFETs) < (Si) Target of =5 nm yet to be demonstrated 20 15 10 5 Target: W F =5 nm 5.3 5.7 Si FinFETs (V DD =0.8 V) 4.3 InGaAs FinFETs H c 6

Si and InGaAs FinFETs normalized by gate periphery normalized by fin footprint [ms/ m] 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Si FinFETs 14 nm 22 nm Planar InGaAs (V DD =0.5 V) Lin, EDL2016 Planar Si 32 nm InGaAs FinFETs 0.0 // 0 // 0 10 20 30 Planar 0 10 20 30 Planar / [ms/ m] 20 15 10 5 Target: W F =5 nm 5.3 5.7 Si FinFETs (V DD =0.8 V) 4.3 III V FinFET: < 20 nm Challenge: Improve III V sidewall conductivity InGaAs FinFETs H c 7

SiO 2 Mo/W SiO 2 Mo/W cap Mo L f,g InGaAs channel Mo L g InGaAs channel InAlAs MIT InGaAs FinFET s Gen. #2 vs. #1 SiO 2 Mo/W InGaAs InAlAs Wet recess Gen. #1: Vardi et al., VLSI 2016, EDL 2016 60 nm Gen #2: L f HSQ SiO 2 HfO 2 Mo/W Cap Channel Dry+DE recess InP 40nm ~20 nm ~5 nm Gen #1: Wet cap recess 3 Digital etch cycles 40 nm channel height δ doping Dry cap recess 5 Digital etch cycles 50 nm channel Fin top passivation Remove δ doping (in 2 nd stage) Gen. #2: This work 8

Process Technology: contact-first W direction L g direction InP stopper Doping SiO 2 Mo/W InGaAs cap InGaAs channel InAlAs Contact deposition Yield R C < 10 Ω µm Lin, IEDM 2013 Lu, EDL 2014 Vardi, EDL 2014 9

W direction Dry+Digital Etch cap recess L g direction InP stopper Doping Mo/W InGaAs cap InGaAs channel InAlAs Contact etch Reactive ion etching No metal pullback III V cap pullback only during digital etch L f L g Digital etching SiO 2 Mo/W Cap Channel Dry+DE recess 40nm ~5 nm (Lin, IEDM 2013) 10

Dry+Digital Etch fin definition direction HSQ H c Fin H f L g direction SiO 2 Mo/W L g cap InGaAs channel HSQ Zhao, EDL 2014, Vardi, VLSI 2016 170 nm 8 nm InAlAs Cap recess Fin etch fin 100 nm BCl 3 /SiCl 4 /Ar RIE + 5 DE cycles : smooth, vertical sidewalls and high aspect ratio (>10) 11

Gate stack - Double gate FinFET W direction HSQ Top fin passivation HfO 2 H f H c InP stopper L g direction SiO 2 Mo/W InGaAs cap InGaAs channel L g HSQ Mo Doping InAlAs Contact deposition Cap recess Fin etch Gate stack HSQ stays on top of fins double gate FinFET Gate oxide 3 nm HfO 2 (vs. 2.3 nm in EDL2016) fin 12

Device cross section TEM of finished device in direction FIB cross section in L g direction 5 nm Fin pitch: 200 nm 10 200 fins/device : 5 25 nm L g : 30 nm 5 µm Contact to channel separation set by DE : ~5 nm 13

Electrical characteristics: =5 nm, L g =50 nm I d [ A/ m] 250 200 150 100 50 V GS =-0.2 to 0.5 V V GS =0.1 V 0 0.0 0.1 0.2 0.3 0.4 0.5 Normalized by gate periphery V GS [V] I d [A/ m] 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8 1E-9 L g =50 nm =5 nm V DS =500 mv S sat =100 mv/dec S lin =73 mv/dec -0.2 0.0 0.2 0.4 0.6 0.8 V GS [V] 50 mv [ S/ m] 700 600 500 400 300 200 100 Well behaved devices with =5 nm V DS =0.5 V L g =50 nm =5 nm,max =600 µs/µm 0-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0 V GS [V] 14

On/Off performance: fin width scaling S sat [mv/dec] V DS = 0.5 V 180 120 60 L g =40 60 nm 0 0 5 10 15 20 25 [ms/ m] 2.0 V DS = 0.5 V 1.5 1.0 0.5 L g =40 60 nm 0.0 0 5 10 15 20 25 : S sat : 15

To improve Off performance: remove δ-doping Gen. #1 Gen. #2 δ doped SiO 2 Mo cap InGaAs Mo HSQ Gen. #2 Undoped SiO 2 Mo cap InGaAs Mo HSQ InAlAs Doping fin Extrinsic area δ doping R sd Dry gate recess allows to remove δ doping Impact on the intrinsic fin transport 16

W F =5 nm FinFET: Electrical characteristics: δ-doped vs. undoped I d [ A/ m] 250 200 150 100 50 V GS =-0.2 to 0.5 V V GS =0.1 V 0 0.0 0.1 0.2 0.3 0.4 0.5 Normalized by gate periphery V GS [V] I d [A/ m] 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8 1E-9 Undoped fins: L g =50 nm =5 nm V DS =500 mv S sat =100 mv/dec S lin =73 mv/dec S sat =75 mv/dec S lin =65 mv/dec -0.2 0.0 0.2 0.4 0.6 0.8 V GS [V] 50 mv [ S/ m] 700 600 500 400 300 better OFF performance Undoped Similar ON performance V DS =0.5 V L g =50 nm =5 nm,max =600 µs/µm,max =500 µs/µm 200 100 doped undoped 0-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0 V GS [V] 17

Electrical characteristics: δ-doped vs. undoped S sat [mv/dec] 180 Undoped -doped 120 60 L g =40 60 nm 0 0 5 10 15 20 25 [ms/ m] 2.0 1.5 1.0 0.5 Undoped -doped V DS = 0.5 V L g =40 60 nm 0.0 0 5 10 15 20 25 Undoped fin: improved electrostatics For <20 nm undoped fin ON performance also better 18

Electrical characteristics: V T rolloff Undoped δ doped V T,lin [V] 0.5 0.4 0.3 0.2 0.1 0.0-0.1 W F -0.2 0 200 400 600 L g V T,lin [V] 0.5 0.4 0.3 0.2 0.1 0.0-0.1 =5 nm =9 =13 =17 =21 =25 W F -0.2 0 200 400 600 L g Undoped fins smaller variation of V T with W F Improved V T rolloff 19

normalized by gate periphery Benchmarking H c H c [ms/ m] 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Undoped -doped Si FinFETs InGaAs FinFETs 0.0 0 10 20 30 40 Systematic degradation for < 15 nm for both δ doped and undoped structures No improvement from increased #DE cycles Higher EOT lower w.r.t. to Gen. 1 20

H c H c [ms/ m] normalized by gate periphery 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Undoped -doped Si FinFETs Benchmarking InGaAs FinFETs 0.0 0 10 20 30 40 / [ms/ m] Record with good electrical performance Approaching Si FinFETs even at V DD =0.5 V Record AR=10 20 15 10 5 Target: W F =5 nm 5.3 10 Si FinFETs (V DD =0.8 V) 4.3 Undoped -doped InGaAs FinFETs 0 0 5 10 20 30 40 21

Long-channel Mobility vs. Capacitance measured @ 1GHz δ doped undoped =25 nm =9 nm Strong µ degradation as < 10 nm µ independent of n l 22

Simulations charge distribution =25 nm undoped ON state: n l =3x10 7 cm 1 δ doped y Undoped fin: better use of sidewalls δ doped fin: conduction close to lower facet of channel 23

Simulations charge distribution =25 nm ON state: n l =3x10 7 cm 1 undoped undoped =9 nm δ doped δ doped y Narrow fin: volume inversion in both δ doped and undoped fins 24

undoped Simulations capacitance =25 nm ON state: n l =3x10 7 cm 1 (V GT ~0.4V) undoped undoped =9 nm undoped δ doped Simulation δ doped δ doped δ doped Simulation E s (y) Simulation y Simulation Reasonable agreement between measurement and simulations extract n l E s relation 25

Simulations Mobility vs. Field δ doped undoped Body conductance δ doped undoped =25 nm =25 nm =9 nm =9 nm At similar n l : Wide fin: E S (δ doped) < E S (undoped) Narrow fin: E S (δ doped) ~ E S (undoped) 26

Long-channel Mobility vs. 1500 n l = 3x10 7 cm 1 V GT ~ 0.4 V 1500 n l = 3x10 7 cm 1 V GT ~ 0.4 V [cm 2 /Vsec] 1000 500 0 δ doped -doped 5 10 15 20 25 [cm 2 /Vsec] 1000 500 0 Undoped Undoped 5 10 15 20 25 Large over drive: µ(δ doped) ~ µ(undoped) Strong µ degradation as < 10 nm µ saturate 27

Conclusions Self-aligned gate-last InGaAs FinFET: Self-aligned gate and contact trough precision RIE and digital etch Record AR=10 Record =5 nm InGaAs FinFET with good electrical performance Performance enhancement in narrow fins via δ-doping removal Thank you! 28