EKV MOS Transistor Modelling & RF Application

Similar documents
Compact Modeling of Ultra Deep Submicron CMOS Devices

Analysis of Transconductances in Deep Submicron CMOS with EKV 3.0

The Devices. Devices

MIXDES 2001 Zakopane, POLAND June 2001

ECE 342 Electronic Circuits. 3. MOS Transistors

The HV-EKV MOSFET Model

MOSFET: Introduction

Lecture 3: CMOS Transistor Theory

MOS Transistor I-V Characteristics and Parasitics

MOSFET Capacitance Model

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

ECE 497 JS Lecture - 12 Device Technologies

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

MOS Transistor Properties Review

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

The Devices: MOS Transistors

ECE 546 Lecture 10 MOS Transistors

Practice 3: Semiconductors

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Integrated Circuits & Systems

Microelectronics Part 1: Main CMOS circuits design rules

Advanced Compact Models for MOSFETs

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Device Models (PN Diode, MOSFET )

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

The PSP compact MOSFET model An update

EKV based L-DMOS Model update including internal temperatures

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

MOS Transistor Theory

Device Models (PN Diode, MOSFET )

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

EE5311- Digital IC Design

Chapter 4 Field-Effect Transistors

ESE 570 MOS TRANSISTOR THEORY Part 2

EE105 - Fall 2006 Microelectronic Devices and Circuits

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Physics-based compact model for ultimate FinFETs

Investigation of the Thermal Noise of MOS Transistors under Analog and RF Operating Conditions

Introduction and Background

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

Lecture 12: MOSFET Devices

EE105 - Fall 2005 Microelectronic Devices and Circuits

EKV Modelling of MOS Varactors and LC Tank Oscillator Design

Chapter 13 Small-Signal Modeling and Linear Amplification

Sadayuki Yoshitomi. Semiconductor Company 2007/01/25

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Conduction in Semiconductors -Review

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

The Devices. Jan M. Rabaey

MOS Transistor Theory

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

LEVEL 61 RPI a-si TFT Model

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Lecture 4: CMOS Transistor Theory

SMALL-SIGNAL MODELING OF RF CMOS

Lecture 5: CMOS Transistor Theory

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

VLSI Design and Simulation

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

ECE 546 Lecture 11 MOS Amplifiers

VLSI Design The MOS Transistor

Section 12: Intro to Devices

MOSFET Physics: The Long Channel Approximation

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

N Channel MOSFET level 3

Chapter 5 MOSFET Theory for Submicron Technology

6.012 Electronic Devices and Circuits Spring 2005

Robert W. Brodersen EECS140 Analog Circuit Design

Topics to be Covered. capacitance inductance transmission lines

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

The Physical Structure (NMOS)

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

A Multi-Gate CMOS Compact Model BSIMMG

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

Lecture 11: MOS Transistor

EE382M-14 CMOS Analog Integrated Circuit Design

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Characteristics of Active Devices

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Section 12: Intro to Devices

Philips Research apple PHILIPS

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

Transcription:

HP-RF MOS Modelling Workshop, Munich, February 15-16, 1999 EKV MOS Transistor Modelling & RF Application Matthias Bucher, Wladek Grabinski Electronics Laboratory (LEG) Swiss Federal Institute of Technology, Lausanne (EPFL) Part I: Charge-based DC, AC and Noise Modelling Part II: RF Application matthias.bucher@epfl.ch wladyslaw.grabinski@epfl.ch PART I: Charge-based DC, AC and Noise Modelling Introduction: EKV v.6 Charge-based Static Model Quasi-static Charge & Transcapacitances Model NQS Model Noise Model Mobility Model & Short-Channel Effects MB-WG 1999 EKV MOS Transistor Modelling & RF Application

Introduction: EKV v.6 MOS Transistor (MOST) Model Motivation: RF circuit design requires complete MOST model from DC to RF, including noise. All current levels need to be well modelled, in particular also moderate inversion. EKV v.6 in summary: A physics-based compact MOST model in the public domain. Dedicated to analog circuit simulation for submicron CMOS. Includes weak-moderate-strong inversion modelling, doping & mobility effects, short-channel effects, geometry- and bias-dependent matching. Small number of intrinsic model parameters: EKV v.6: <, BSIM3v3: > 65, MM9: > 55 MB-WG 1999 EKV MOS Transistor Modelling & RF Application 3 Charge-based Static Model B p+ V S V G V D G S L n+ n+ L eff D t ox x V G G V S D S VD B y p substrate Bulk-reference, symmetric model structure. Drain current expression including drift and diffusion: dv ch = W µ ( Q I ) ---------- dx (1) MB-WG 1999 EKV MOS Transistor Modelling & RF Application 4

Charge-based Static Model Q I ---------- C ox Inversion Charge Density n V P g ms -------- β B A V S I ----- D β strong inversion E D V D C V P = I F I R g md --------- β weak inversion V ch W eff β = µ C ox --------- Channel Voltage L eff Integration of V D Q I Q I = β ---------- d V = ch V S C ox from source to drain: β V S Q ---------- I d V ch C ox I F ( V P V S ) β V D Q ---------- I d V ch C ox I R ( V P V D ) () MB-WG 1999 EKV MOS Transistor Modelling & RF Application 5 Drain Current Normalization and Pinch-off Voltage Current normalization using the Specific current : I S = I F I R = I S ( i f i r ) = nβu T ( ) i f i r (3) Pinch-off voltage V P accounts for... threshold voltage V TO and substrate effect γ qε s N sub = ( ) C ox γ V P V G V TO γ V G V + TO Ψ + -- γ = Ψ + -- (4) Slope factor n: n 1 V P = = V G γ 1+ --------------------------- Ψ + V P (5) MB-WG 1999 EKV MOS Transistor Modelling & RF Application 6

Charge-based Static Model g ms U T / 1 8 6 4.1 8 6 4 asymptotes analytical numerical (GAMMA=.7 V) 1 1.1 1 1 1 1 i f = / I S 1/ if g ms U T / 1..8.6.4. analytic interpolation measured characteristics for:.5 µm, GAMMA=.64 V.7 µm, GAMMA=.75 V 1 µm, GAMMA=.7 V 1 1.1 1 1 1 1 / I S Normalized transconductance-to-current ratio vs. normalized current I S from weak through moderate to strong inversion. Comparison with numerical solution of the Poisson equation. Comparison with three different CMOS processes (long-channel devices in saturation). Almost technology independent! g ms U T MB-WG 1999 EKV MOS Transistor Modelling & RF Application 7 Drain Current and Pinch-off Voltage [A] 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-1 1-11 1-1 n-channel W=1 µm L=1 µm V D =3V VS=V.5V 1V 1.5V.5 1. 1.5 V G [V]..5 3. I S V S [V] 4. 3.5 3..5. 1.5 1..5 -.5 simulated measured 1 W=µm L=.7µm W=µm L=µm 3 V G [V] n-channel VTO=.75 V GAMMA=.755 V PHI=.576 V LETA=.53 WETA=.56 4 W=.8µm L=µm 5 Valid from weak to strong inversion, and from linear to saturation. Accuracy of weak inversion slope and substrate effect. no additional parameters used for adapting weak inversion slope MB-WG 1999 EKV MOS Transistor Modelling & RF Application 8

Quasistatic Charge- & Transcapacitances Model Charges normalized to WLCox [V].6.5.4.3..1 -.1 -. QB QG (VD=V) QG (VD=V) QS, QD (VD=V) QS & QD (VD=V) C OX = C ox W L -.3-1 1 3 4 5 Node charges: integration of inversion charge density along channel: L Q I = W Q I ( x) dx Q D = W x L -- Q I ( x ) dx Q S = Q I Q D n 1 Q B = γ C OX V P + Ψ ----------- Q n I Q G = Q I Q B Q ox Drain and source charges are obtained using Ward s charge partitioning scheme. Single equation expressions are used from weak to strong inversion. VG [V] L (6) (7) MB-WG 1999 EKV MOS Transistor Modelling & RF Application 9 (Trans-)Capacitances Model Intrinsic Capacitances C/(C ox WL) 1..8.6.4. T OX =6.6nm V D =V S =V W=µm, L=5µm C GG C GD =C GS C GB 1 V G [V] Simulated: Measured: 3 Normalized intrinsic capacitances.8.7.6.5.4.3..1 CGD (VG=V) CBD (VG=V) CGD (VG=.8V) CBD (VG=.8V) CGS (VG=V) CGS (VG=.8V) CGB (VG=.8V) CGB (VG=V) -.1 1 VDB [V] Transcapacitances: derivation with respect to the terminal voltage: C MN = ± ( Q M ) MN, = G, D, S, B Accurate capacitances through all inversion levels. Symmetric C GS and C GD at V D =V S =. V N (8) MB-WG 1999 EKV MOS Transistor Modelling & RF Application 1

Intrinsic MOST - Small Signal Equivalent G Cgs Ymg Vg Cgd S Yms Vs Cgb D Transcapacitances are not shown Ymd Vd Cbs Cbd Distributed time constant accounting for transmission line effect B First-order model for the transadmittances using bias-dependent time constant : τ i d Y mgds (,, ) v ( gds,, ) g mgds (,, ) = -------------------- with τ = τ 1+ s τ fi ( f, i r ) L τ = --------------------- µ U T (9) (1) MB-WG 1999 EKV MOS Transistor Modelling & RF Application 11 Non-Quasistatic Model mag(y1) phase(y1) C (QS) Q (QS) C (QS) Q: charge C: capacitance Model: W/L=36x9/ C (NQS) Q (NQS) Q (NQS) C (NQS) Q (QS) Intrinsic MOST: effect of QS/NQS models on charges-transcapacitances- and capacitances-only models. Y1 Phase prediction is similar for all models except C-only QS model. Y1 Magnitude prediction is incorrect for Q (QS) and C (QS) models. MB-WG 1999 EKV MOS Transistor Modelling & RF Application 1

Noise Model 3-Feb-99 13:54:9 File : noise.cou ELDO v4.6_1.1 (production) : * M.BUCHER - LEG/DE/EPFL DB(INOISE)_1:3 DB(INOISE)_:3 DB(INOISE)_3:3 DB(INOISE)_4:3 db -1-15 -13-135 -14-145 -15-155 -16-165 db -19 - -1 DB(INOISE)_5:3 input noise PSD 5e-1 1e+1 1e+ 1e+3 1e+4 1e+5 1e+6 Hz DB(ONOISE)_1:3 DB(ONOISE)_:3 DB(ONOISE)_3:3 DB(ONOISE)_4:3 DB(ONOISE)_5:3 output noise PSD Noise PSD [dbv/ Hz] -1 - -3-4 -5 f = 1kHz KF = (no 1/f noise) LEVEL 3 EKV model - -3-6..4.6 V DS [V].8 1. 1. -4-5 5e-1 1e+1 1e+ 1e+3 1e+4 1e+5 1e+6 Hz Thermal noise is proportional to total inversion charge. Valid for all inversion levels, and from linear to saturation. 1/f noise modelling included. Q I MB-WG 1999 EKV MOS Transistor Modelling & RF Application 13 Mobility Model 14x1-6 4x1-6 1 1 8 6 n-channel W=L=1µm V DS =5 V 3 p-channel W=L=1µm V DS =5 V EKV v.6 for.5um CMOS (NMOS, PMOS) 4 V B = V B =-1.5V Measured Simulated 1 V B = V B =1.5V Measured Simulated.5 1. 1.5..5 3. -.5-1. -1.5 -. -.5-3. V GS V GS Field- and position-dependent mobility: µ ( x) µ ' = ------------------------- where: E E eff ( x) eff ( x) 1+ ---------------- E = Q' B ( x) + η Q' inv ( x) ------------------------------------------------- ε ε si (11) One parameter: E vertical critical field in the oxide η = 1 η = 1 3 for n-channel, for p-channel) No back-bias dependence needed due to inclusion of bulk charge. MB-WG 1999 EKV MOS Transistor Modelling & RF Application 14

Short-channel Effects 3.5x1-3 [A] 3..5. 1.5 1..5 n-channel W=1 µm L=.5 µm V S = V VG=3V.5V V 1.5V 1V V T [mv] 5 4 3 1-1 Measure Simulation -.1 1 1 L drawn [µm] g ds [A/V] 1-1 -3 1-4 1-5 1-6.5 1. 1.5 V D [V]..5 3. [A] 1 - n-channel 1-3 W=1 µm L=.5 µm 1-4 V D =3V 1-5 1-6 1-7 1-8 1-9 1-1 VS=V.5V 1V 1.5V 1-11.5 1. 1.5..5 V G [V] 3. I S Includes short-channel effects (here:.5um CMOS) Velocity saturation, Channel length modulation (CLM), D-charge sharing, RSCE MB-WG 1999 EKV MOS Transistor Modelling & RF Application 15 Summary EKV v.6 MOST model is a charge-based compact model Continuous, physics-based and valid for all bias conditions. Includes charge-based static and dynamic models, and noise. Non-quasistatic (NQS) model for small-signal. Availability early 99: Eldo, SmartSpice, Saber, Spectre, HSpice, PSpice, Aplac, Smash (check model versions). EKV v.6 on the web: <http://legwww.epfl.ch/ekv/> MB-WG 1999 EKV MOS Transistor Modelling & RF Application 16

PART II: RF Application of the EKV v.6 MOST Model Intrinsic MOST and Extrinsic Parasitic Elements RF Test Structure Simulation and Measurement Environment DC Measurements and Simulations RF Measurements and Simulations MB-WG 1999 EKV MOS Transistor Modelling & RF Application 17 Intrinsic MOST and Extrinsic Parasitic Elements Structure of the MOST Corresponding small-signal EKV model G Lov S intrinsic part G Lov D Cgso Rg intrinsic part Cgs Cgd Ymg Vg Cgbo Cgdo As L W Ad S Rs gs Cjs Yms Vs Ymd Vd Cbs Cgb Cbd Cjd gd Rd D B C js(d) = A s(d) * C j + P s(d) * C jsw C ov = W * L ov * C ox P s, P d - perimeter A s, A d - area Rb MB-WG 1999 EKV MOS Transistor Modelling & RF Application 18

Simulation and Measurement Environment Measurements: HP851 and HP 8719 Network Analyzers HP4145 and HP4156 DC Parameter Analyzers Cascade HF Probe Station Ground-Signal-Ground (GSG) probes Test Devices: RF MOS transistor matrix with 36 parallel devices in GSG pad frame Geometry of single circular MOST: L =.5 um, W = 9.um OPEN pad frame for de-embedding thru Y parameters Parameter Extraction and Simulation: IC-CAP 5 ELDO v4.6 with EKV v.6 (LEVEL=44) MB-WG 1999 EKV MOS Transistor Modelling & RF Application 19 RF Test Structure courtesy A.-S. Porret The GSG pad frame and matrix of the RF MOSTs Minimized extrinsic drain capacitance using circular layout MB-WG 1999 EKV MOS Transistor Modelling & RF Application

DC Measurements and Simulations vs. V G g m vs. V G Transfer current and conductance characteristics VD = 5mV MB-WG 1999 EKV MOS Transistor Modelling & RF Application 1 DC Measurements and Simulations vs. V D g ds vs. V D Output current and conductance characteristics MB-WG 1999 EKV MOS Transistor Modelling & RF Application

RF Measurements and Simulations S11, S S1, S1 S1 S S1 S11 Measured de-embedded and simulated S-parameters Frequency sweep 45MHz - GHz DC bias ID=18mA @ VG = 1.5 V VD = 3.V MB-WG 1999 EKV MOS Transistor Modelling & RF Application 3 RF Measurements and Simulations Re(Y1) Im(Y1) Real and Imaginary parts of the forward admittance Y 1 MB-WG 1999 EKV MOS Transistor Modelling & RF Application 4

RF Measurements and Simulations Re(Y 11 ) Re(Y ) Real parts of the input and output admittances Y 11, Y MB-WG 1999 EKV MOS Transistor Modelling & RF Application 5 RF Measurements and Simulations G max Maximum power gain G max MB-WG 1999 EKV MOS Transistor Modelling & RF Application 6

Summary Application of the physics-based EKV v.6 MOST model for RF simulation has been presented DC parameter set was verified on the RF MOST test structure measurements The small-signal characteristics were corrected for interconnections and bond pads parasitics Effective gate and bulk (substrate) resistances were introduced to allow proper small signal simulation Simulated small-signal S- and Y- parameters match on-the-wafers measurements over wide range of frequencies (45MHz - GHz) MB-WG 1999 EKV MOS Transistor Modelling & RF Application 7