Solid state physics. Lecture 2: X-ray diffraction. Prof. Dr. U. Pietsch

Similar documents
Crystal Structure SOLID STATE PHYSICS. Lecture 5. A.H. Harker. thelecture thenextlecture. Physics and Astronomy UCL

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2)

X-ray Diffraction. Interaction of Waves Reciprocal Lattice and Diffraction X-ray Scattering by Atoms The Integrated Intensity

Fundamentals of X-ray diffraction

3.012 Fund of Mat Sci: Structure Lecture 18

General theory of diffraction

Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2)

SOLID STATE 18. Reciprocal Space

Handout 7 Reciprocal Space

Basic Crystallography Part 1. Theory and Practice of X-ray Crystal Structure Determination

Chap 3 Scattering and structures

3.17 Strukturanalyse mit Röntgenstrahlen nach Debye- Scherrer

X-ray diffraction geometry

Chapter 2. X-ray X. Diffraction and Reciprocal Lattice. Scattering from Lattices

Neutron and x-ray spectroscopy

X-ray diffraction is a non-invasive method for determining many types of

Fourier Syntheses, Analyses, and Transforms

Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering

Quantum Condensed Matter Physics Lecture 5

Data processing and reduction

Crystal planes. Neutrons: magnetic moment - interacts with magnetic materials or nuclei of non-magnetic materials. (in Å)

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

Roger Johnson Structure and Dynamics: X-ray Diffraction Lecture 6

Scattering by two Electrons

Protein crystallography. Garry Taylor

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ).

Analytical Methods for Materials

PSD '18 -- Xray lecture 4. Laue conditions Fourier Transform The reciprocal lattice data collection

Chemical Crystallography

Materials Science and Engineering 102 Structure and Bonding. Prof. Stephen L. Sass. Midterm Examination Duration: 1 hour 20 minutes

17 Finite crystal lattice and its Fourier transform. Lattice amplitude and shape amplitude

Structure of Surfaces

Accelerator Physics NMI and Synchrotron Radiation. G. A. Krafft Old Dominion University Jefferson Lab Lecture 16

Neutron Diffraction: a general overview

2. Diffraction as a means to determine crystal structure

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

Research with Synchrotron Radiation. Part I

Wave diffraction and the reciprocal lattice

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

Part 1: What is XAFS? What does it tell us? The EXAFS equation. Part 2: Basic steps in the analysis Quick overview of typical analysis

2. Diffraction as a means to determine crystal structure

X-ray analysis. 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods

V 11: Electron Diffraction

EXAFS data analysis. Extraction of EXAFS signal

Solid State Spectroscopy Problem Set 7

Diffraction Experiments, Data processing and reduction

Low Emittance Machines

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

Methoden moderner Röntgenphysik I + II: Struktur und Dynamik kondensierter Materie

Materials 286C/UCSB: Class VI Structure factors (continued), the phase problem, Patterson techniques and direct methods

Basics of Synchrotron Radiation Beamlines and Detectors. Basics of synchrotron radiation X-ray optics as they apply to EXAFS experiments Detectors

Draft of solution Exam TFY4220, Solid State Physics, 29. May 2015.

Basics of XRD part III

3.012 Structure An Introduction to X-ray Diffraction

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube

Methoden moderner Röntgenphysik II: Streuung und Abbildung


Experimental Determination of Crystal Structure

4. Other diffraction techniques

The Reciprocal Lattice

X-Ray Scattering Studies of Thin Polymer Films

X-ray Absorption Spectroscopy Eric Peterson 9/2/2010

SOLID STATE 9. Determination of Crystal Structures

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

FROM DIFFRACTION TO STRUCTURE

Name :. Roll No. :... Invigilator s Signature :.. CS/B. Tech (New)/SEM-1/PH-101/ PHYSICS-I

Introduction to crystallography The unitcell The resiprocal space and unitcell Braggs law Structure factor F hkl and atomic scattering factor f zθ

Chapter 1. From Classical to Quantum Mechanics

Polarization is out of the plane

Chapter 1 X-ray Absorption Fine Structure (EXAFS)

Methoden moderner Röntgenphysik I + II: Struktur und Dynamik kondensierter Materie

David Martin High Precision Beamline Alignment at the ESRF IWAA, Grenoble 3-7 October 2016

Introduction to XAFS. Grant Bunker Associate Professor, Physics Illinois Institute of Technology. Revised 4/11/97

Laboratory Manual 1.0.6

Rajesh Prasad Department of Applied Mechanics Indian Institute of Technology New Delhi

X-ray Crystallography. Kalyan Das

(Re-write, January 2011, from notes of S. C. Fain Jr., L. Sorensen, O. E. Vilches, J. Stoltenberg and D. B. Pengra, Version 1, preliminary)

Quantum Condensed Matter Physics Lecture 9

Solid-state physics. Laue diagrams: investigating the lattice structure of monocrystals. LEYBOLD Physics Leaflets P

X-ray, Neutron and e-beam scattering

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid

Resolution: maximum limit of diffraction (asymmetric)

How Does It All Work? A Summary of the IDEAS Beamline at the Canadian Light Source

General Physics (PHY 2140) Lecture 14

Transmission Electron Microscopy and Diffractometry of Materials

EXAFS. Extended X-ray Absorption Fine Structure

de Broglie Waves h p de Broglie argued Light exhibits both wave and particle properties

PHYS 219 General Physics: Electricity, Light and Modern Physics

Lecture 10. Transition probabilities and photoelectric cross sections

Scattering and Diffraction

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s

MP464: Solid State Physics Problem Sheet

X-ray Data Collection. Bio5325 Spring 2006

X-rays. X-ray Radiography - absorption is a function of Z and density. X-ray crystallography. X-ray spectrometry

CHEM-E5225 :Electron Microscopy. Diffraction 1

Röntgenpraktikum. M. Oehzelt. (based on the diploma thesis of T. Haber [1])

Introduction to Materials Science Graduate students (Applied Physics)

USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB. ERL as a X-ray Light Source

Methoden moderner Röntgenphysik II: Streuung und Abbildung

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

Transcription:

Solid state physics Lecture : X-ray diffraction Prof. Dr. U. Pietsch

Die Idee von Max von Laue (9) X-Strahlen sind elektromagnetische Wellen mit einer Wellenlänge viele kürzer als die des sichtbaren Lichtes. X-Strahlen werden an periodisch angeordneten Atomen/Molekülen im Kristall gebeugt 94 Nobelpreis für Physik

Originalexperiment von Laue, Friedrich und Knipping Photographic film 0.April 93 X-ray tube Collimator Crystal Ausgestellt im Deutschen Museum in München

Erstes Laue Experiment Photographic film Erster Kristall Cu SO 4 5 H O

9: Begin der moderen Kristallographie X-Strahlen sind elektromagnetische Wellen mit sehr kurzer Wellenlänge ( ~ Å = 0-0 m). Kristalle sind periodische Strukturen: die innerkristallinen Abstände sind von gleicher Größenordnung wie die Wellenlänge der Röntgenstrahlen. Röntgenbeugung ist eine Methode zur Untersuchung der Struktur von Festkörpern!

Erklärung durch Interferenz am 3D Gitter

Explanation of Laue pattern

recip. lattice vector

a = b = c h² k² l² a a h² k² l² d sin 4 sin sin

Alternative description of Laue-pattern by W.H.Bragg und W.L.Bragg Bragg equation N=dsinQ Interference at dense backed lattice planes

Reciprocal space, Ewald construction 0,... * 0, * * * * c b b a c c b b a a ) ( * ) ( * ) ( * c b a b a c c b a a c b c b a c b a *) * * ( lc kb ha G K ) ( hkl d G k k f i

Setup of modern diffraction experiment Storage ring Monochromator Slits Analysator Q f Detec tor pre-mirror Slits Q i Absorberbox Sample

X-ray tube and tube spectrum E = h v = e U min = h c / e U a min =.4/U a Bremsstrahlung Characteristic radiation

ESRF

Generation of Synchrotron radiation Electron circulates with relatvististic energy in orbit of storage ring with orbit frequency w= 0 6 Hz E e = 5 GeV m0c² m0c² E e v² ß² c² E e is much larger compared to rest mass energy mc², g = 5GeV/ 0.5 GeV 0 4 g Ee m c² ß² o value /g is the vertical open angle Using g one can estimate the electron velocity ß [ ] g ² / g ² 6*0 9 v 6*0 9 c

Generation of Synchrotron radiation Supposing the circulating electron emits a photon at point A of orbit. M Elektron proceeds to point C via B on orbit. At point C it emits a second photon. For the electron the length For the photon emitted in A reaches this distance is AC (electron) = v* dt. AC(photon = c *dt The spatial distance between both waves : (c-v) dt An observer at point C the light pulse has a length t ( c v) dt c ( ²) dt

Generation of Synchrotron radiation Considering the opening angle a = /g due to electron orbit t a² ( ag)² ( cosa) dt [ ( )( )] dt dt g ² g ² For a =0 t dt 0 8 dt g ² Dilatation of time a consequences for spectral distribution of photon emission Orbit time of electron along AC differs from time of photon t ( electron) t( photon) T 0 g gw T g ² gw 0 s 0 g ³ w 8 s

Generation of Synchrotron radiation Inverse pulse length determines the spectral with of light emission w c 3 g ³ w 8 0 Hz The emission spectrum has a critical wave length given by 8 c c 0 0 8 0 This is x-ray range. In energy : 0 m 3 0.655 * E e w c wg ³ ( GeV ) B( T )

Generation of Synchrotron radiation Bending radius R of electron orbit is gmv Re B R mc g eb Ee mc Ee( GeV) 3.3* mc² eb B( T) Emission power is P( kw).66* Ee ( GeV) B²( T) Ra( m) I( ma) For ESRF, E=6GeV, B=0.8T R= 4.8m P( kw).66*6e ( GeV)0.8²( T)4.8m 0.05mrad *00mA 7. 3W

w c Bend magnet spectrum Well predictable ESRF

Kinematic X-ray scattering Dipole scattering of x-ray wave by an electron: Electron excites dipole radiation I E² E e² mc² R² cos ² o Superposition of dipole radiation generated by two electrons at positions X and X e² E E0 exp( i[ wt ( X X )]) mc² X For n electrons e² R E E exp( i[ t ] exp( [ S ]) mc² R k 0 S 0 n f k i ( S S 0 ) Stotal scattering amplitude of one atom : atomic form factor

Kinematic X-ray scattering Scattering by all electrons of one atom : atomic formfactor e² R E E0 exp( i[ t ] exp( [ S S 0 ]) mc² R n s s0 e * exp( i[ r( S S0 )]) exp(i[ r ] dv n Form factor f[(s-s 0 )/] result from quantun mechanical calculations f(0) = Z ; f[(s-s 0 )/] decays continuosly as function of (s-s 0 )/

Kinematic X-ray scattering Scattering by two atoms : E f R R ( S S0 ) R R R exp( i[ t ] f exp( i[ t ]) exp( i[ t ]( f f exp( i[ ( S 0 )]) S Scattering by many disordered atoms : * I E * E f f f f cos[ ( S S0 )] i sin( krnm) exp [ S S0 ] rnm] k kr nm I n, m Debye sche Streugleichung Debye equation f m f n sin( kr kr nm nm )

Kinematic X-ray scattering Scattering by small crystal: r nm = R nm +r n distances between unit cells shape factor, distances betwen atoms within one unit cell structure factor R nm m a m a m 3a3 R i E fn exp( iwt)exp( i )exp( ( S S0)[ ma ma m3a3] E I Summation over all unit cells N a, N a, N 3 a 3 K k f k i K sin( NKa) sin( NKa) sin( F² sin( Ka ) sin( Ka ) sin( EE* F² S² N 3 Ka Ka 3 3 ) ) FWHM

Kinematic X-ray scattering I <> 0 only in near vicinity of the peak maxima Ka Ka Ka 3 h k l h,k,l integer FWHM of a Bragg peak can be approximated sin ²( Nx) I( x) N² exp( ( xn)² / ) sin ²( x) x ka k B cos Q N ² a² B N ² exp( ( ( )² cos ² Q) ² FWHM B(Q) is inversely proportional to crystal size L B(Q) (ln s) / NacosQ 0.94 NacosQ 0.94 LcosQ

Structure factor F F n i f i exp( i( kr i )) k ( ha* kb* lc*) r i x a i y b i z c i F n i f i exp( i( ha * kb* lc*)( x a i y b i z c)) i F n i f i exp( i( hx i ky i lz i )) Examples

bcc- structure: xyz = 000, ½ ½ ½ F f ( exp( i( h k l)) F= f if h+k+l = even; F= 0 if h+k+l odd fcc- structure: xyz = 000, ½ ½ 0, ½ 0 ½, 0 ½ ½ F f ( exp( i( h k) exp( i( h l) exp( i( k l)) F= 4f if h,k,l all are even or odd; F= 0 if h,k,l are mixed hcp- structure: xyz = 000, /3 /3 ½ F f ( exp( i(( h k) / 3 l / )) F= f if h+k =3n, l even; F=.73 if h+k= 3n+, l odd F= 0 if h+k= 3n+ l even

Extinktion rules Not all combinations of h,k,l are allowed, Bragg peak intensity can be vanishing due to crystal (point group ) symmetry In fcc system, only reflections appear with h²+k²+l² =,4,8,,. =, 00, 0, 3,,.. In NaCl In ZnSe, 3.. Are weak reflectons 0, 400.. Are strong reflections 0, 400.strong, 3.middle 00,.weka Structure (point group) identification considering extinktion rules and Bragg peak intensities

Powder diffraction pattern from CdSe Nanowires

Debye-Waller Factor Due to thermal atom oscillations exp( ik( r r)) exp( ikr) exp( ikr) exp( ix) i x x²... exp( x² ) exp( ikr) exp( k² r² ) exp( M ) M 6 ² u² sin ² ² F( T) F exp( M ) X-ray intensity becomes damped, Bragg peaks exit

Data evaluation

Electron charge density distribution from x-ray diffraction data ( r ) F( k)exp( ikr) dk h k l i ( r ) Fi ( H ) exp( Hr); H ( hkl ) V a h k l Electronic charge density of silicon Valence charge density difference charge density (bonding charges) U.Pietsch phys.stat.sol.(b) 37, 44,(986)

Electron density distribution of GaAs from x-ray diffraction data Ga As As Ga Valence charge density difference charge density (bonding charges)