VAN / SURNAME: VOORNAME / FIRST NAMES: STUDENTENOMMER / STUDENT NUMBER: HANDTEKENING / SIGNATURE: SEL NR / CELL NO:

Similar documents
VAN / SURNAME: VOORNAME / FIRST NAMES: STUDENTENOMMER / STUDENT NUMBER: FOONNO. GEDURENDE EKSAMENPERIODE / PHONE NO. DURING EXAM PERIOD:

Eksterne eksaminator / External examiner: Dr. P Ntumba Interne eksaminatore / Internal examiners: Prof. I Broere, Prof. JE vd Berg, Dr.

SEMESTERTOETS 1 / SEMESTER TEST 1

EKSAMEN / EXAMINATION Q1 Q2 Q3 Q4 Q5 TOTAL. 2. No pencil work or any work in red ink will be marked.

EXAMINATION / EKSAMEN 19 JUNE/JUNIE 2013 AT / OM 08:00

JUNE 2005 TYD/TIME: 90 min PUNTE / MARKS: 50 VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER:

November 2005 TYD/TIME: 90 min PUNTE / MARKS: 35 VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER: HANDTEKENING/SIGNATURE:

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

EXAMINATION / EKSAMEN 17 JUNE/JUNIE 2011 AT / OM 12:00 Q1 Q2 Q3 Q4 Q5 Q6 TOTAL

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA WTW263 NUMERIESE METODES WTW263 NUMERICAL METHODS EKSAMEN / EXAMINATION

VAN / SURNAME: VOORNAME / FIRST NAMES: STUDENTENOMMER / STUDENT NUMBER: HANDTEKENING / SIGNATURE: TELEFOON / TELEPHONE:

WTW 158 : CALCULUS EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Me/Ms R Möller

WTW 158 : CALCULUS EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Prof NFJ van Rensburg

[1a] 1, 3 [1b] 1, 0 [1c] 1, 3 en / and 1, 5 [1d] 1, 0 en / and 1, 0 [1e] Geen van hierdie / None of these

WTW 263 NUMERIESE METODES / NUMERICAL METHODS

Punte: Intern Marks: Internal WTW 168 : CALCULUS. EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Me / Ms R Möller

VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER: Totaal / Total:

3. (d) None of these / Geen van hierdie

Oplos van kwadratiese vergelykings: die vind van die vergelyking *

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

WTW 161 : ALGEBRA. EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Dr F Theron

UNIVERSITY OF PRETORIA / UNIVERSITEIT VAN PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

CAMI EDUCATION. Graad 12 Vraestel I : Rekord eksamen Punte. Lees die volgende instruksies noukeurig deur voordat die vrae beantwoord word:

MATHEMATICS GRADE 10 TASK 1 INVESTIGATION Marks: 55

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

Examination Copyright reserved. Eksamen Kopiereg voorbehou. Module EBN122 Elektrisiteit en Elektronika 13 November 2009

HOëRSKOOL STRAND WISKUNDE NOVEMBER 2016 GRAAD 11 VRAESTEL 2

Graad 12: Rye en Reekse

LIMPOPO DEPARTEMENT VAN ONDERWYS LIMPOPO DEPARTMENT OF EDUCATION- LAERSKOOL WARMBAD

Kwadratiese rye - Graad 11

GRADE 9 - FINAL ROUND QUESTIONS GRAAD 9 - FINALE RONDTE VRAE

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING. Volpunte: Full marks: Instruksies / Instructions

CMY 117 SEMESTERTOETS 2 / SEMESTER TEST 2

TW 214 TOETS 2 - VOORBEREIDING 2018 TEST 2 - PREPARATION

a b

CMY 127 EKSAMEN / EXAMINATION

GRAAD 11 NOVEMBER 2012 WISKUNDIGE GELETTERDHEID V1 MEMORANDUM

Semester Test 1. Semestertoets 1. Module EIR221 Elektriese Ingenieurswese 20 Augustus Module EIR221 Electrical Engineering 20 August 2010

Question 1. The van der Waals equation of state is given by the equation: a

CHM 215 Eksamen / Examination

GRADE 11 - FINAL ROUND QUESTIONS GRAAD 11 - FINALE RONDTE VRAE

Eksamen Invulvraestel Kopiereg voorbehou. Exam Fill in paper Copyright reserved. Linear Systems ELI November 2010

UNIVERSITY OF PRETORIA DEPT SlVlELE INGENIEURSWESE / DEPT OF CIVIL ENGINEERING

Studentenommer: Student number: Volpunte: Full marks: 160 Open / closed book: Oopboek / toeboek: 21 Punt: Mark: BELANGRIK- IMPORTANT

Winter Examination Copyright reserved. Wintereksamen Kopiereg voorbehou. Analoogelektronika ENE Junie 2004

MARKS / PUNTE: 80 Fakulteit Natuur- en Landbouwetenskappe CHM 171 EXAMINATION / EKSAMEN. Student number Studentenommer.

Hoofstuk 29 Magnetiese Velde a.g.v Elektriese Strome

CHM 171 EKSAMEN / EXAMINATION

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12 SEPTEMBER 2015 MATHEMATICS P1/WISKUNDE V1 MEMORANDUM

DEPARTEMENT SIVIELE EN BIOSISTEEM-INGENIEURSWESE DEPARTMENT OF CIVIL AND BIOSYSTEMS ENGINEERING MEGANIKA SWK 122 EKSAMEN MECHANICS SWK 122 EXAMINATION

Question / Vraag 1: [12]

Huiswerk Hoofstuk 22 Elektriese velde Homework Chapter 22 Electric fields

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12 JUNE/JUNIE 2018 MATHEMATICS P1/WISKUNDE V1 MARKING GUIDELINE/NASIENRIGLYN

KLASTOETS GRAAD 11. FISIESE WETENSKAPPE: CHEMIE Toets 6: Chemiese verandering

KOPIEREG VOORBEHOU / COPYRIGHT RESERVED

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING

Universiteit Stellenbosch / Stellenbosch University Toegepaste Wiskunde / Applied Mathematics B252 Assessering 1 / Assessment 1:

Funksies en Verwantskappe

Semester Test 1 Semestertoets 1 FSK March 2011 / 16 Maart Time 2½ hours Max. Total 85 Marks Max Tyd 2½ ure Maks. Totaal 85 punte Maks

NATIONAL SENIOR CERTIFICATE GRADE 10 GRAAD 10

GRAAD 12 SEPTEMBER 2012 WISKUNDE V3 MEMORANDUM

CMY 127 FINALE EKSAMEN / FINAL EXAMINATION AFDELING A / SECTION A

Eksperiment ROT: Rotation Kinematics. Experiment ROT: Rotation Kinematics

GRADE 9 - FIRST ROUND QUESTIONS GRAAD 9 - EERSTE RONDTE VRAE

Initials & Surname / Voorletters & Van :...

GRADE 11 - FINAL ROUND QUESTIONS GRAAD 11 - FINALE RONDTE VRAE

3. How many gadgets must he make and sell to make a profit of R1000?

! 1. Gegee / Given! 1. f#x$dx! 12 en / and!4. f#x$dx is. Die waarde van. f#x$dx is / The value of!1. 1 a " 9 1 b 9 1 c 3 1 d 15.

UNIVERSITY OF PRETORIA

NATIONAL SENIOR CERTIFICATE EXAMINATION MATHEMATICS JUNE EXAMINATION GRADE 10 PAPER

Generalised density function estimation using moments and the characteristic function

MATHEMATICS PAPER 1. GRADE 12 PRELIMINARY EXAMINATION 04 September :00 WISKUNDE VRAESTEL 1. GRAAD 12-REKORDEKSAMEN 04 September :00

OEFENVRAESTEL VRAESTEL 1

NATIONAL SENIOR CERTIFICATE GRADE 10 MATHEMATICS P3 PREPARATORY EXAMINATION 2008 NOVEMBER 2008

Hierdie vraestel is deel van InternetLearning se ExamKit pakket.

GRAAD 12 SEPTEMBER 2015 WISKUNDE V2

BEngTuks.blogspot.com

IDEMPOTENTE VOORTBRINGERS VAN MATRIKSALGEBRAS. Magdaleen Marais

+ + SEPTEMBER 2016 MATHEMATICS PAPER 1 / WISKUNDE VRAESTEL 1 MEMORANDUM

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT NOVEMBER 2018 TECHNICAL MATHEMATICS P1/TEGNIESE WISKUNDE V1 MARKING GUIDELINE/NASIENRIGLYN

GRAAD 12 SEPTEMBER 2018 WISKUNDE V1

NASIONALE SENIOR SERTIFIKAAT GRAAD 10

Universiteit van Pretoria

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12 SEPTEMBER 2018 MATHEMATICS P1/WISKUNDE V1 MARKING GUIDELINE/NASIENRIGLYN

Die effek van veelvuldige lynverwydering op die onafhanklikheidsgetal van n asikliese grafiek

Graad 4 NWT-afbakening 15 November Afrika, Noord-Amerika, Suid-Amerika, Asië, Europa, Australië, Antarktika

y =3x2 y 2 x 5 siny x y =6xy2 5x 4 siny

Funksies en grafieke - Graad 10 *

Eksamen Invulvraestel Kopiereg voorbehou. Examination Fill in paper Copyright reserved. Vakkursus ERS November 2008

NATIONAL SENIOR CERTIFICATE GRADE 11

Cody Patterson en Kirby C. Smith Departement Wiskunde, Texas A&M Universiteit, College Station, Texas 77843, VSA

Module ELX May 2009

GRAAD 11 NOVEMBER 2015 WISKUNDE V1

Semestertoets 2: 26 Oktober Semester Test 2: 26 October b x c. Internal examiners: Ms. T Cronjé Ms. F Reyneke Dr. M Graham Mr.

NATIONAL SENIOR CERTIFICATE GRADE /GRAAD10

OpenStax-CNX module: m Meetkunde: Meting * basis loodregte hoogte. Figure 1. Figure 2

Voorletters en Van Initials and Surname Studente nommer Student number Datum / Date

Transcription:

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA FAKULTEIT NATUUR- EN LANDBOUWETENSKAPPE / FACULTY OF NATURAL AND AGRICULTURAL SCIENCES DEPARTEMENT WISKUNDE EN TOEGEPASTE WISKUNDE / DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS WTW 220 - ANALISE / ANALYSIS EXAM / EKSAMEN 11 NOVEMBER 2013 OM / AT 16:00 TYD / TIME: 120 min PUNTE / MARKS: 42 VAN / SURNAME: VOORNAME / FIRST NAMES: STUDENTENOMMER / STUDENT NUMBER: HANDTEKENING / SIGNATURE: SEL NR / CELL NO: Eksterne eksaminator / External examiner: Prof NF J van Rensburg Interne eksaminatore / Internal examiners: Prof. I Broere, Prof. M Sango, Mr. WS Lee, Dr. AJ van Zyl PUNTE / MARKS V1/Q1 V2/Q2 V3/Q3 V4/Q4 V5/Q5 TOTAAL / Afdeling A / Afdeling B TOTAL Punt behaal / Section A Section B Mark obtained MAKS / MAX 11 MAKS / MAX 7 7 7 7 3 31 INSTRUKSIES 1. Hierdie vraestel bestaan uit hierdie voorblad en nog 7 bladsye wat vrae in TWEE AFDEL- INGS bevat. Kontroleer of jou vraestel volledig is. 2. Geen elektroniese toerusting (bv. sakrekenaar, ipad, ens.) mag gebruik word nie. 3. Doen alle rofwerk op die teenblad. Dit word nie nagesien nie. 4. As jy meer as die beskikbare ruimte vir n antwoord nodig het, gebruik dan ook die teenblad en dui dit asseblief duidelik aan. 5. Geen potloodwerk of enige iets wat in rooi ink gedoen is, word nagesien nie. 6. As jy korrigeerink (Tipp-Ex of soortgelyk) gebruik, verbeur jy die reg om werk wat nagesien is te bevraagteken of te beweer dat werk nie nagesien is nie. Outeursreg voorbehou INSTRUCTIONS 1. This paper consists of this cover page and 7 more pages containing questions in TWO SEC- TIONS. Check whether your paper is complete. 2. No electronic equipment (e.g. calculator, ipad, etc.) may be used. 3. Do all scribbling on the facing page. It will not be marked. 4. If you need more than the available space for an answer, use the facing page and please indicate it clearly. 5. No pencil work or any work in red ink will be marked. 6. If you use correcting fluid (Tipp-Ex or similar), you lose the right to question the marking or claim that work has not been marked. Copyright reserved

1 SECTION A / AFDELING A: Use a soft pencil for filling in the optic reader form. Fill in your personal information in pencil on the optic reader form on Side 1. Fill in your student number from top to bottom and then code it. If you make a mistake when coding your student number, we will not be able to take your mark into account. Hint: First circle your answers on this question paper, then transfer your answers to the optic reader form when you are certain of your choices. You may not erase wrong answers on the optical reader form. For each question there is only one correct answer. Gebruik n sagte potlood om die optiese leservorm in te vul. Vul jou persoonlike inligting in potlood in op die optiese leservorm op Kant 1. Vul jou studentenommer van bo tot onder in en kodeer dit dan. As jy n fout maak met die kodering van jou studentenommer, sal ons nie jou punt in berekening kan bring nie. Wenk: Omkring eers jou antwoorde op hierdie vraestel en dra dan die antwoorde oor na die optiese leservorm as jy seker is van jou keuses. Jy mag nie verkeerde antwoorde uitvee op die optiese leservorm nie. Vir elke vraag is daar net een korrekte keuse. 1. [1 mark] Read the following statements carefully to determine which one is not a property that holds for all real numbers a, b and c. (a) a + (b + c) = (a + b) + c. (b) There exists a unique real number 0 such that a+0 = a. (c) a (b + c) = a b + a c (d) a b or b a (e) If a b then a c b c. 1. [1 punt] Lees die volgende bewerings versigtig en bepaal watter een nie n eienskap is wat geld vir alle reële getalle a, b en c nie. (a) a + (b + c) = (a + b) + c. (b) Daar n unieke reële getal 0 só dat a + 0 = a. (c) a (b + c) = a b + a c (d) a b of b a (e) As a b dan is a c b c. 2. [2 marks] Consider the set A = { m n : m, n N} of positive rational numbers. Which of the following statements are true? 1. The set A has an upper bound. 2. The set A has a least upper bound. 3. For every ɛ R, ɛ > 0 there is a number a A such that a < ɛ. 2. [2 punte] Beskou die versameling A = { m n : m, n N} van positiewe rasionale getalle. Watter van die volgende uitsprake is waar? 1. Die versameling A het n bogrens. 2. Die versameling A het n kleinste bogrens. 3. Vir elke ɛ R, ɛ > 0 is daar n getal a A só dat a < ɛ. (a) Only 1. / Slegs 1. (b) Each of 1. and 2. / Elk van 1. en 2. (c) Only 3. / Slegs 3. (d) Each of 1., 2. and 3. / Elk van 1. 2. en 3. (e) None of 1., 2. and 3. / Nie een van 1., 2. en 3. nie. 3. [2 marks] Which one of the following is the definition of the sequence (a n ) tends to infinity as n tends to infinity? (a) for every positive real number K and integer N we have n > N = a n > K. (b) for every positive real number K there exists an integer N such that n > N = a n > K. (c) for every integer N there exists a positive real number K such that n > N = a n > K. (d) for every positive real number K there exists an integer N such that a n > K = n > N. (e) for every positive real number K there exists a δ > 0 such that 0 < n < δ = a n > K. 3. [2 punte] Watter een van die volgende is die definisie van die ry (a n ) neig na oneindig as n neig na oneindig? (a) vir elke positiewe reële getal K en heelgetal N geld dat n > N = a n > K. (b) vir elke positiewe reële getal K bestaan daar n heelgetal N só dat n > N = a n > K. (c) vir elke heelgetal N bestaan daar n positiewe reële getal K só dat n > N = a n > K. (d) vir elke positiewe reële getal K bestaan daar n heelgetal N só dat a n > K = n > N. (e) vir elke positiewe reële getal K bestaan daar n δ > 0 só dat 0 < n < δ = a n > K.

2 4. [1 mark] Which one of the following sequences is not a null sequence? 4. [1 punt] Watter een van die volgende rye is nie n nulry nie? (a) ( 1 n 0.123 ) (b) ((n 3 2 n ) (c) ( 17n n! ) (d) ( 2n n 2 ) (e) (( 0.19) n ) 5. [2 marks] Consider the following statements about a continuous function f : A B, where A is a bounded interval. I. The inverse f 1 of f is continuous. II. If f is strictly increasing, then the inverse f 1 of f is also strictly increasing. III. B is necessarily a bounded interval. Which of these statements are true? 5. [2 punte] Beskou die volgende bewerings oor n kontinue funksie f : A B, waar A n begrensde interval is. I. Die inverse van f 1 van f is kontinu. II. As f streng stygend is, dan is die inverse f 1 van f ook streng stygend. III. B is noodwendig n begrensde interval. Watter van hierdie bewerings is waar? (a) None of (I), (II) or (III). / Nie een van (I), (II) of (III) nie. (b) Only (I). / Slegs (I). (c) Only (I) and (II). / Slegs (I) en (II). (d) Only (I) and (III). / Slegs (I) en (III). (e) (I), (II) and (III). / (I), (II) en (III). 6. [2 marks] Let L and U have their usual meaning in integration theory, so that L is the supremum of the set of lower sums, and U the infimum of the set of upper sums. Consider the following functions mapping the interval { [0, 1] to R: 1 if x is rational f(x) = 0 if x is irrational g(x) = sin( x { 2 ) 0 if 0 x 1 h(x) = 2 x + 1 if 1 2 < x 1 For which of these functions is it true that L = U? (a) Only f. (b) Only g. (c) Only h. (d) f and g. (e) g and h. 6. [2 punte] Veronderstel L en U het hul gewone betekenisse in integrasieteorie: naamlik L is die supremum van die versameling laersomme, en U is die infimum van die versameling bosomme. Beskou die volgende funksies { van die interval [0, 1] na R: 1 as x rasionaal is f(x) = 0 as x irrasionaal is g(x) = sin( x { 2 ) 0 as 0 x 1 h(x) = 2 x + 1 as 1 2 < x 1 Vir watter van hierdie funksies is dit waar dat L = U? (a) Slegs f. (b) Slegs g. (c) Slegs h. (d) f en g. (e) g en h. 7. [2 marks] Consider the following three series: 7. [2 punte] Beskou die volgende drie reekse: Which of these three series is (or are) convergent? I. r=1 1 2 r II. r=1 1 r III. r=1 1 r 2 Watter van hierdie reekse is konvergent? (a) Only (I). / Slegs (I). (b) Only (II). / Slegs (II). (c) Only (III). / Slegs (III). (d) (I) and (II). / (I) en (II). (e) (I), (II) and (III). / (I), (II) en (III).

3 SECTION B / AFDELING B: QUESTION 1 / VRAAG 1 (a) Define what it means to say that the number l is the infimum of the non-empty bounded set E. / Definieer die betekenis van die uitspraak die getal l is die infimum van die nie-leë begrensde versameling E. [1] (b) Find the infimum of the set / Vind die infimum van die versameling E = { 2 n2 n 2 : n N}, and motivate briefly why your value for the infimum satisfies the properties stated in your answer to part (a). / en motiveer kortliks hoekom jou waarde vir die infimum die eienskappe, gelys in jou antwoord tot deel (a), bevredig. [2] The goal of parts (c) and (d) of this question is to prove the density property of the set of rational numbers. / Die doel van dele (c) en (d) van hierdie vraag is om die digtheidseienskap van die versameling rasionale getalle te bewys. (c) Let x and y be any two real numbers with x < y. Use the fact that N is not bounded above, to show that there is a natural number n such that 1 n < y x. / Laat x en y enige twee reële getalle wees met x < y. Gebruik die feit, dat N nie van bo begrens is nie, om te bewys daar n natuurlike getal n is só dat 1 n < y x. [2] (d) Let m be the smallest integer which has the property that x < m n. Show the steps that are needed to deduce that x < m n < y. (Hint: m = m 1 + 1.) / Laat m die kleinste heelgetal wees met die eienskap dat x < m n. Toon die stappe wat nodig is om af te lei dat x < m n < y. (Wenk: m = m 1 + 1.) [2]

4 QUESTION 2 / VRAAG 2 (a) Define what is means to say that a sequence (a n ) is convergent. / Definieer die betekenis van die frase die ry (a n ) is konvergent. [1] (b) Remember the Bolzano-Weierstrass Theorem (BWT) which says that every bounded sequence has a convergent subsequence (and the fact that its proof is given by constructing a monotone subsequence). For (ii) and (iii) below, let a n = 3+( 1) n and b n = ( 1) n 5. / Onthou die Bolzano-Weierstrass Stelling (BWS) wat sê dat elke begrensde ry n konvergente deelry het (en die feit dat die bewys daarvan gegee is deur n monotone deelry te konstrueer). Vir (ii) en (iii) hieronder, laat a n = 3 + ( 1) n en b n = ( 1) n 5. (i) Define what it means to say that a sequence (c n ) is bounded. / Definieer die betekenis van die frase die ry (c n ) is begrens. [1] (ii) Show that (a n + b n ) (with a n and b n as given above) is a bounded sequence. / Bewys dat (a n + b n ) (met a n en b n soos hierbo gegee) n begrensde ry is. [2] (iii) Since (a n +b n ) is bounded, it has a convergent subsequence (by the BWT). Find a convergent subsequence of (a n +b n ). / Die ry (a n +b n ) het, omdat dit begrens is, n konvergente deelry (uit die BWS). Vind n konvergente deelry van (a n + b n ). [2] (iv) Is the sequence (a n + b n ) also convergent? Motivate your answer. / Is die ry (a n + b n ) ook konvergent? Motiveer jou antwoord. [1]

5 QUESTION 3 / VRAAG 3 (a) Define what it means to say that a function f is right-continuous at the point a. / Definieer die betekenis van die frase n funksie f is regskontinu by die punt a. [1] (b) Let f : [a, b] R be right-continuous at a. Let B = {x : x [a, b] and f is bounded on [a, x].} Let c = sup B. Explain carefully how one can use the right-continuity to deduce, firstly, that f is bounded on some interval [a, a + δ), and secondly, that c > a. / Laat f : [a, b] R regskontinu in a wees. Laat B = {x : x [a, b] en f is begrens op [a, x]}. Laat c = sup B. Verduidelik in detail hoe mens die regskontinuïteit kan gebruik om te bewys dat, eerstens f begerens is op n interval [a, a + δ), en, tweedens, dat c > a. [3] (c) Let f be continuous on J = [a, b]. The boundedness property states that (1) f is bounded on [a, b], and (2) f attains both a maximum value and a minimum value somewhere on [a, b]. Use the boundedness property and the intermediate value property to show that f(j) is a closed bounded interval. / Laat f kontinu op J = [a, b] wees. Die begrensdheidseienskap sê dat (1) f begrens is op [a, b], en (2) dat f sowel n maksimumwaarde as n minimumwaarde iewers op [a, b] bereik. Gebruik die begrensdheidseienskap en die tussenwaardestelling om te bewys dat f(j) n geslote en begrensde interval is. [3]

6 QUESTION 4 / VRAAG 4 (a) Let f be a bounded function, defined on [a, b]. Given a partition P = {x 0, x 1,..., x n } of the interval [a, b], and the notations m i = inf{f(x) : x i 1 x x i }, M i = sup{f(x) : x i 1 x x i }, define the lower and upper sums: / Laat f n begrensde funfsie wees wat begrens op [a, b] is. Vir n gegewe partisie P = {x 0, x 1,..., x n } van die interval [a, b], en gegee dat m i = inf{f(x) : x i 1 x x i }, M i = sup{f(x) : x i 1 x x i }, definieer die laersom en bosom: L(P ) = U(P ) = [1] (b) Define the symbols L and U and define what it means to say that f is integrable over [a, b]. / Definieer die simbole L en U en definieer die betekenis van die frase f is integreerbaar oor [a, b]. [2] (c) The Riemann criterion says that a bounded function is integrable on [a, b] if and only if for each ɛ > 0 there exists a partition P such that U(P ) L(P ) < ɛ. Using the usual notation, the small span property of continuous functions states that for each ɛ > 0 there is a partition P of [a, b] such that M i m i < ɛ for each i = 1,..., n. Use this to prove that every continuous function f : [a, b] R is integrable on [a, b]. / Die Riemann kriterium sê dat n begrensde funksie integreerbaar op [a, b] is as en slegs as vir elke ɛ > 0 daar n partisie P van [a, b] bestaan só dat U(P ) L(P ) < ɛ. In die gewone notasie sê die kleinspanstelling vir kontinue funksies dat daar vir elke ɛ > 0 n partisie P van [a, b] bestaan só dat M i m i < ɛ vir elke i = 1,..., n. Gebruik hierdie gegewens om te bewys dat elke kontinue funksie f : [a, b] R integreerbaar op [a, b] is. [4]

7 QUESTION 5 / VRAAG 5 Use one of the convergence tests to determine whether the following series is convergent or divergent. Name the test that you use. / Gebruik een van die konvergensietoetse om te bepaal of die volgende reeks konvergent of divergent is. Noem die toets wat jy gebruik. [3] r=1 1 r 2 r