Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke

Similar documents
The Yb lattice clock (and others!) at NIST for space-based applications

Quantum Metrology Optical Atomic Clocks & Many-Body Physics

SR OPTICAL CLOCK WITH HIGH STABILITY AND ACCURACY *

Invited Paper. Frequency shifts of colliding fermions in optical lattice clocks

optical evaluation with a Ca clock

Quantum Logic Spectroscopy and Precision Measurements

Precisely Engineered Interactions between Light and Ultracold Matter

F.G. Major. The Quantum Beat. The Physical Principles of Atomic Clocks. With 230 Illustrations. Springer

Single atom laser-based clocks D. J. Wineland, NIST, Boulder. Hg + ion

Optical clock measurements beyond the geodetic limit

Stationary 87 Sr optical lattice clock at PTB ( Accuracy, Instability, and Applications)

Titelmasterformat durch About atomic (optical) clocks Klicken bearbeiten

Transportable optical clocks: Towards gravimetry based on the gravitational redshift

Primary Frequency Standards at NIST. S.R. Jefferts NIST Time and Frequency Division

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks

Atom-based Frequency Metrology: Real World Applications

arxiv:physics/ v1 [physics.atom-ph] 7 Nov 2006

National Physical Laboratory, UK

Optical Lattice Clock with Neutral Mercury

Atomic clocks. Clocks

PARCS Team. Jet Propulsion Laboratory NIST. Harvard-Smithsonian. University of Colorado. Politecnico di Torino. Steve Jefferts

Titelmasterformat durch Klicken bearbeiten

RACE: Rubidium Atomic Clock Experiment

Atomic Clocks and the Search for Variation of Fundamental Constants

High Accuracy Strontium Ion Optical Clock

Searching for variations of fundamental constants using the atomic clocks ensemble at LNE-SYRTE

Ytterbium quantum gases in Florence

Prospects for a superradiant laser

BLACKBODY RADIATION SHIFTS AND MAGIC WAVELENGTHS FOR ATOMIC CLOCK RESEARCH

Recent advances in precision spectroscopy of ultracold atoms and ions

Optical Clocks at PTB

1. Introduction. 2. New approaches

Optical Clocks. Tanja E. Mehlstäubler. Physikalisch-Technische Bundesanstalt & Center for Quantum Engineering and Space Time Research

Ion trap quantum processor

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

Stability Transfer between Two Clock Lasers Operating at Different Wavelengths for Absolute Frequency Measurement of Clock Transition in

Optical Clocks and Tests of Fundamental Principles

Optical clocks and fibre links. Je ro me Lodewyck

The Strontium Optical Lattice Clock: Optical Spectroscopy with Sub-Hertz Accuracy

An Optical Lattice Clock with Accuracy and Stability at the Level

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices

Development of a compact Yb optical lattice clock

Cavity decay rate in presence of a Slow-Light medium

Systematic Effects in Atomic Fountain Clocks

INT International Conference, Frontiers in Quantum Simulation with Cold Atoms, March 30 April 2, 2015

Comparison with an uncertainty of between two primary frequency standards

Determining α from Helium Fine Structure

An optical frequency comb is generated by use. Internal State Cooling With a Femtosecond Optical Frequency Comb S. MALINOVSKAYA, V. PATEL, T.

LETTER. An optical lattice clock with accuracy and stability at the level

Journées Systèmes de Référence Spatio-Temporels 2011 September 19 th 2011 Vienna, Austria

Prospects for application of ultracold Sr 2 molecules in precision measurements

Lecture 4. Feshbach resonances Ultracold molecules

Lecture 11, May 11, 2017

INTERACTION PLUS ALL-ORDER METHOD FOR ATOMIC CALCULATIONS

Generation of squeezed vacuum with hot and ultra-cold Rb atoms

The absolute frequency of the 87 Sr optical clock transition

Atomic Clocks. Ekkehard Peik. Physikalisch Technische Bundesanstalt Time and Frequency Department Braunschweig, Germany

Doppler-free spectroscopy of the 'ANTPOT. 1 S IND.0-''ANTPOT.3 P IND.0' optical clock transition in laser-cooled fermionic isotopes of neutral mercury

An accurate optical lattice clock with 87Sr atoms

arxiv: v2 [physics.atom-ph] 26 Aug 2011

EDM. Spin. ν e. β - Li + Supported by DOE, Office of Nuclear Physics

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Physics and Chemistry with Diatomic Molecules Near Absolute Zero. Tanya Zelevinsky & ZLab Columbia University, New York

Demonstration of a Dual Alkali Rb/Cs Atomic Fountain Clock

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

T&F Activities in NMIJ, AIST

Nuclear spin effects in optical lattice clocks

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Cold Magnesium Atoms for an Optical Clock

INTRODUCTION: PRECISION FREQUENCY MEASUREMENT

Kevin J. Weatherill. Joint Quantum Centre (Durham-Newcastle) Department of Physics Durham University

Why ultracold molecules?

Optical Atomic Clock & Absolute-Zero Chemistry Probing Quantum Matter with Precision Light

Laser Cooling of Thulium Atoms

International Conference on Space Optics ICSO 2006 Noordwijk, Netherlands June 2006

spectroscopy of cold molecular ions

Zero-point cooling and low heating of trapped 111 Cd + ions

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

Tunneling in optical lattice clocks

Status Report on Time and Frequency Activities at NMIJ, AIST

Laser-based precision spectroscopy and the optical frequency comb technique 1

Quantum enhanced magnetometer and squeezed state of light tunable filter

arxiv: v2 [physics.atom-ph] 2 Mar 2016

SUB-NATURAL-WIDTH N-RESONANCES OBSERVED IN LARGE FREQUENCY INTERVAL

3-3 A Strontium Optical Lattice Clock

Ion traps for clocks and other metrological applications

Coherent manipulation of atomic wavefunctions in an optical lattice. V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M.

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Overview of Frequency Metrology at NMIJ

Overview of Frequency Metrology at NMIJ

Positronium: Old Dog, New Tricks

YbRb A Candidate for an Ultracold Paramagnetic Molecule

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015

COPYRIGHTED MATERIAL. Index

A New Precise Measurement of the Stark Shift in the 6P 1/2 ->7S 1/2 378 nm Transition in Thallium

PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

Survey on Laser Spectroscopic Techniques for Condensed Matter

Distinguishable Fermions? Ultracold Fermions

ATOMIC AND LASER SPECTROSCOPY

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS

Transcription:

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms Nathan D. Lemke

number of seconds to gain/lose one second Clocks, past & present 10 18 10 15 one second per billion years one second per million years Single ion (Al + ) Optical lattice Cesium fountain 10 12 10 9 10 6 one second per thousand years one second per year one second per day Cesium beam Quartz crystal Shortt clock 10 3 Water clock Huygen s pendulum Harrison s chronometer 1100 1250 1500 1750 2010 AD roughly reproduced from ScienceNews 180(9) 2011

Optical Atomic Clocks Slow feedback Fast feedback 578 nm laser atomic system reference cavity fs-laser comb Ca, Sr, Hg..., Sr +, +, Ca +, Al +, Hg +... Why atoms? Identical Ageless High Q Easily isolated from environment

Optical Atomic Clocks 578 nm laser Very high stability reference cavity Rosenband et al., Science 319, 1808 (2008) (graph reproduced) Heavner et al., Metrologia 42, 411 (2005), current projected stability Potential for high accuracy Sr lattice ~ 1.5e-16 Al + ion ~ 9e-18 Will enable Tests of relativity Searches for variation of constants Other science: Synchrotron, radio telescopes, ultralow-noise microwaves Technology: communications, navigation

Key features of lattice clocks Long interaction times Large numbers (~10 4 ) narrow lines high S/N Doppler- & recoil-free Stark-free λ magic 1 S 0 3 P 0

Choosing the atom

Choosing the isotope I 0 (e.g. 87 Sr, 171, 199 Hg) I = 0 (e.g. 88 Sr, 174, 202 Hg) Boyd, et al, PRA 76, 022510 (2007) Benefits of I = 1/2 Simple sub-structure (m F = ± 1/2) Straightforward optical pumping No tensor shift Fermion no collisions? Barber, et al, PRL 96, 083002 (2006)

Ytterbium Energy Levels λ magic = 759 nm λ = 399 nm Δν = 28 MHz 1 P 1 λ = 556 nm Δν = 180 khz 3 P 1 3 P 0 λ = 578 nm Δν =10 mhz 1 S 0

Spectroscopy and Detection 1 P 1 3 P 1 3 D 1 λ = 1388 nm λ magic = 759 nm 3 P 0 Clock pulse Ground state Background Excited state 1 S 0 repump 5 ms time

Excitation fraction 171 Spectra Temperature ~15 μk Sideband fit Blatt, et al, PRA 80, 052703 (2009)

171 Spectra 3 P 0 m F = 1/2 m F =1/2 π π 1 S 0 m F =1/2 m F = 1/2 Lemke, et al, PRL 103, 063001 (2009)

Optical cavity design L L f f Thermal noise, vibration isolation, high vacuum, stable temperature L~30 cm Legero, et al, JOSA B 27, 914 (2010)

Coherence measurement Noise levels for 1 cavity Jiang, et al, Nature Photon. 5, 158 (2011)

Narrow lines Δν = 1 Hz Q = 5 10 14 In-loop Open loop Interleave Dick limit 900 ms probe time 400 ms trap lifetime (1/e) Jiang, et al, Nature Photon. 5, 158 (2011)

Systematic uncertainty Effect Shift (10-16 ) unc. (10-16 ) Blackbody -25.0 2.5 Density-dependent -16.1 0.8 Lattice scalar 0.4 1.0 Lattice hyper-polarizability 3.3 0.7 Lattice multi-polar (M1/E2) 0 1.0 Linear Zeeman 0.4 0.4 Quadratic Zeeman -1.7 0.1 Probe light 0.05 0.2 AOM phase chirp 0 0.1 Others 0 0.1 Total -38.7 3.4 Lemke, et al, PRL 103, 063001 (2009)

Absolute Frequency ν -171 = 518,295,836,590,865.0 ± 0.5 Hz

Absolute Frequency Park, et al, arxiv:1112.5939 ν -171 = 518,295,836,590,865.0 ± 0.5 Hz

Outline for the rest 1. Cold collisions of fermions 2. High-accuracy polarizability measurement Taking stock of a locked clock s tick-tock shocks from knocks and a mock hot-box - J. Sherman

Fermionic collisions Identical & Ultracold No s-wave scattering amplitude (quantum statistics) Small p-wave scattering amplitude (threshold at 30 45 µk) Campbell et al, Science 324, 360 (2009) DeMarco et al, PRL 96, 4280 (1999)

Excitation Inhomogeneity Rabi frequency depends on atom temperature n, n, x y n z

Singlet triplet basis Swallows, et al, Science 25, 1043 (2011) Gibble, PRL 103, 113202 (2009) Lemke, et al, PRL 107, 103902 (2011)

Identifying p-wave collisions 1-D lattice 2-D lattice 1-D lattice b gg = 0 b eg = 74 a 0 b ee 3 = 0.1 b eg 3 s-wave only p-wave only p-wave + smaller s-wave Lemke, et al, PRL 107, 103902 (2011)

Canceling the collision shift Weighted mean: 2.5 2.4 mhz Ludlow, et al, PRA 84, 052724 (2011)

Outline for the rest 1. Cold collisions of fermions 2. High-accuracy polarizability measurement Taking stock of a locked clock s tick-tock shocks from knocks and a mock hot-box - J. Sherman

Blackbody radiation shift 400 K 300 K 200 K

Electrodes Fused silica substrate Conductive & transparent ITO 2 nm Cr / 33 nm Au ~90% R @ 760 nm

Electrodes Fused silica substrate Conductive & transparent ITO Set of precision ground fused silica spacers Length matched ~ 200 nm, < 1 arcsecond wedging 2 nm Cr / 33 nm Au ~90% R @ 760 nm

Electrodes

Electrodes

Transmission Plate separation ECDL 760 nm Fringe center uncertainty: 50 MHz 0 10 Laser frequency (GHz)

Transmission Plate separation ECDL 760 nm Laser frequency (GHz)

Transmission Plate separation ECDL 760 nm Tuning ~17 THz (1700 fringes) Laser frequency (GHz) 1-2 ppm statistical error

Field Reversal

Measurement Results Sherman, et al, PRL 108, 153002 (2012)

Measurement Results Sherman, et al, PRL 108, 153002 (2012)

Measurement Uncertainty a b c a b c Dzuba, et al, J. Phys B 43, 074011 (2010) Porsev, et al, PRA 74, 020502 (2006) Porsev, et al, PRA 60, 2981 (1999) Sherman, et al, PRL 108, 153002 (2012)

Dynamic correction

Extracting the BBR shift Inside an ideal blackbody at 300 K Δν = 2.465(1) 10-15 ΔT = 1 K causes clock uncertainty of 3.3 10-17 Is this a blackbody?

Systematic table: update Effect Shift (10-16 ) unc. (10-16 ) Blackbody -25.0-24.65 2.5 0.3 Density-dependent -16.1 0.05 0.8 0.05 Lattice scalar 0.4 1.0 Lattice hyper-polarizability 3.3 0.7 Lattice multi-polar (M1/E2) 0 1.0 Linear Zeeman 0.4 0.4 Quadratic Zeeman -1.7 0.1 Probe light 0.05 0.2 AOM phase chirp 0 0.1 Others 0 0.1 Total -38.7 3.4 0.4?

What s next for lattice clocks? 10-17 level uncertainty (collisions, lattice light shifts ) Cryogenic apparatus Frequency ratios Transportable systems

Acknowledgements Clock Chris Oates, Andrew Ludlow, Jeff Sherman, Rich Fox, Nathan Hinkley, Kyle Beloy, Nate Phillips Frequency Comb Tara Fortier, Scott Diddams, et al Collisions (Theory) Ana Maria Rey, Javier Von Stecher Al +, Hg + Clocks Jim Bergquist, Till Rosenband, et al Sr Lattice Clock Jun Ye and his group Cs Fountain & Timescale Steve Jefferts, Tom Heavner, Tom Parker