Lecture 2 Solar Cell theory: pn junctions under Illumination Homojunctions Open-circuit voltage, short-circuit current, fill factor, IV curve,

Similar documents
Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

EE495/695 Introduction to Semiconductors I. Y. Baghzouz ECE Department UNLV

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV

PV Tutorial Allen Hermann, Ph. D. Professor of Physics Emeritus, and Professor of Music Adjunct, University of Colorado, Boulder, Colorado, USA and

PN Junction

The photovoltaic effect occurs in semiconductors where there are distinct valence and

Maria Carmela Di Piazza. Gianpaolo Vitale. Photovoltaic Sources. Modeling and Emulation. ^ Springer

Basic Semiconductor Physics

EE 446/646 Photovoltaic Devices I. Y. Baghzouz

PHOTOVOLTAICS Fundamentals

Electronics The basics of semiconductor physics

ET3034TUx Utilization of band gap energy

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1)

Photovoltaic cell and module physics and technology

LEC E T C U T R U E R E 17 -Photodetectors

Lecture (02) Introduction to Electronics II, PN Junction and Diodes I

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Qualitative Picture of the Ideal Diode. G.R. Tynan UC San Diego MAE 119 Lecture Notes

Photovoltaic cell and module physics and technology. Vitezslav Benda, Prof Czech Technical University in Prague

electronics fundamentals

Chapter 7. Solar Cell

A SEMICONDUCTOR DIODE. P-N Junction

ITT Technical Institute ET215 Devices I Unit 1

Charge Carriers in Semiconductor

Introduction to Transistors. Semiconductors Diodes Transistors

KATIHAL FİZİĞİ MNT-510

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

smal band gap Saturday, April 9, 2011

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 23, 2014 Lecture 07

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID.

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Chapter 1. Solar energy conversion: from amorphous silicon to Dye-Sensitized Solar Cells. 1.1 Photovoltaic history.

Lecture (02) PN Junctions and Diodes

Electro - Principles I

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1

Basic Physics of Semiconductors

Determination of properties in semiconductor materials by applying Matlab

February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC

Lecture 12. Semiconductor Detectors - Photodetectors

Ch/ChE 140a Problem Set #3 2007/2008 SHOW ALL OF YOUR WORK! (190 Points Total) Due Thursday, February 28 th, 2008

Session 6: Solid State Physics. Diode

Section 2: The Science of Solar Energy

Schottky Rectifiers Zheng Yang (ERF 3017,

Semiconductor Physics. Lecture 3

Semiconductor Physics fall 2012 problems

High efficiency silicon and perovskite-silicon solar cells for electricity generation

Diodes. EE223 Digital & Analogue Electronics Derek Molloy 2012/2013.

Charge Extraction. Lecture 9 10/06/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi

FYS 3028/8028 Solar Energy and Energy Storage. Calculator with empty memory Language dictionaries

Solar Cells Technology: An Engine for National Development

Novel High-Efficiency Crystalline-Si-Based Compound. Heterojunction Solar Cells: HCT (Heterojunction with Compound. Thin-layer)

Lecture 18. New gas detectors Solid state trackers

Materiales y tecnologías fotovoltaicas

n N D n p = n i p N A

Temperature Dependent Current-voltage Characteristics of P- type Crystalline Silicon Solar Cells Fabricated Using Screenprinting

Atoms? All matters on earth made of atoms (made up of elements or combination of elements).

5. Semiconductors and P-N junction

! Previously: simple models (0 and 1 st order) " Comfortable with basic functions and circuits. ! This week and next (4 lectures)

Lecture 3b. Bonding Model and Dopants. Reading: (Cont d) Notes and Anderson 2 sections

Semiconductor Physics and Devices

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

3.1 Absorption and Transparency

CLASS 12th. Semiconductors

Semiconductor Physics and Devices

Mesoporous titanium dioxide electrolyte bulk heterojunction

Ga and P Atoms to Covalent Solid GaP

Solar Photovoltaics under Partially Shaded Conditions. Vivek Agarwal Dept of Electrical Engineering

Semiconductor Junctions

Review of Semiconductor Fundamentals

LECTURE 23. MOS transistor. 1 We need a smart switch, i.e., an electronically controlled switch. Lecture Digital Circuits, Logic

A COMPARATIVE CHEMICAL STUDY OF THE TOP LAYERS OF TWO DIFFERENT QUALITY SILICON SOLAR CELLS

Chapter 2 The Well 9/5/2017. E E 480 Introduction to Analog and Digital VLSI Paul M. Furth New Mexico State University

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Photovoltaic Energy Conversion. Frank Zimmermann

Quiz #1 Practice Problem Set

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

Avalanche breakdown. Impact ionization causes an avalanche of current. Occurs at low doping

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS

Basic cell design. Si cell

Semiconductor physics I. The Crystal Structure of Solids

Semiconductor Detectors

Technology Options for Photo voltaic Solar Cells. Claudio Fiegna

Photosynthesis & Solar Power Harvesting

Silicon Detectors in High Energy Physics

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS

First-Hand Investigation: Modeling of Semiconductors

Misan University College of Engineering Electrical Engineering Department. Exam: Final semester Date: 17/6/2017

Research Article Modeling and Optimization of Advanced Single- and Multijunction Solar Cells Based on Thin-Film a-si:h/sige Heterostructure

Energy sources. 4. Solar Energy I

Junction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006

Solar Photovoltaics & Energy Systems

ECE 442. Spring, Lecture -2

3. PHOTOVOLTAIC CONVERSION

ECE 335: Electronic Engineering Lecture 2: Semiconductors

Electronics EC /2/2012. * In-class exams: 40% 7 th week exam 25% 12 th week exam 15%

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

an introduction to Semiconductor Devices

Transcription:

Lecture 2 Solar Cell theory: pn junctions under Illumination Homojunctions Open-circuit voltage, short-circuit current, fill factor, IV curve, Solar-toelectric Conversion Efficiency Carrier Generation and recombination Defects and Minority carrier diffusion Solutions to the diffusion equation under spatially-homgeneous and Inhomogeneous generation Heterojunctions

Celdas Solares

LA TECNOLOGIA FOTOVOLTAICA ESTA CONTEMPLADA PARA APLICACIÓN AUTONAMA. ELECTRIFICACION RURAL, BOMBEO DE AGUA, ILUMINACION DE CARRATERAS, MONITOREO DE NIVELS DE AGUA EN RIOS ETC. SON ALGUNOS EJEMPLOS ESTA TECNOLOGIA CONVIERTE LA ENERGIA SOLAR DIRECTO A ENERGIA ELECTRICA DC UTILIZABDO MODULOS FOTOVOLTAICOS (CELDAS SOLARES) EL MATERIAL DE CONSTRUCCION DE CELDA SOLAR SE LLAMA SEMICONDUCTOR

Example: PV-Roof and Front, 6.6.06-8.6.06 Clemson Summer School Dr. Karl Molter / FH Trier / molter@fhtrier.de 14

Alwitra Solar-foil 6.6.06-8.6.06 Clemson Summer School Dr. Karl Molter / FH Trier / molter@fhtrier.de 15

Example: Sports-Center Tübingen 6.6.06-8.6.06 Clemson Summer School Dr. Karl Molter / FH Trier / molter@fhtrier.de 16

Example: Fire-brigade 6.6.06-8.6.06 Clemson Summer School Dr. Karl Molter / FH Trier / molter@fhtrier.de 17

Example: BP Showcase 6.6.06-8.6.06 Clemson Summer School Dr. Karl Molter / FH Trier / molter@fhtrier.de 18

Crystalline Silicon Polycrystalline Si Made from melting Si into ingots, slicing off wafers Cell efficiencies of 14% - 15% Widest use Monocrystalline Si Grown crystals, more uniform structure Higher cell efficiencies (17% - 22%) Higher cost and better space utilization Most often manufactured in framed modules

Amorphous Thin-Film Si Si solution layered onto various substrates Conversion efficiencies of 9% to 12% Some framed module products, others bonded to flexible roofing materials Very uniform appearance, but less effective space utilization Less costly to produce than crystalline modules

Building Integrated PV Roof tile replacements Solar glass Thin film bonded to single-ply membrane roofing material

Solar-roof shingle 6.6.06-8.6.06 Clemson Summer School Dr. Karl Molter / FH Trier / molter@fhtrier.de 22

25 m2

300 m2

Concentrating Solar Panels Fresnel lenses in tracking panels concentrate light 500:1 on smaller amount of Si (Xerox PARC Research) Tracking mirrors focus sunlight on stationary Si (Energy Innovations Sunflower )

History 1839: Discovery of the photoelectric effect by Bequerel 1873: Discovery of the photoelectric effect of Selen (change of electrical resistance) 1954: First Silicon Solar Cell as a result of the upcoming semiconductor technology ( = 5 %) 6.6.06-8.6.06 Clemson Summer School Dr. Karl Molter / FH Trier / molter@fhtrier.de 30

Energía Fotovoltaica Efecto Fotovoltaico LUZ SOLAR El Efecto Fotovoltaico (FV): es la generación de un voltaje en las terminales de un captador solar cuando éste es iluminado. Si a las terminales del captador se le conecta un aparato eléctrico, por ejemplo, un foco, entonces el foco se enciende debido a la corriente eléctrica que circula por él. Esta es la evidencia física del fenómeno fotovoltaico. CELDA SOLAR Voltaje fotogenerado Corriente eléctrica fotogenerada

pn junction physics

electron-energy energy-states in solids: energy absorption and emission conduction-band - x - E F h + x + h Generation Recombination valence-band 6.6.06-8.6.06 Clemson Summer School Dr. Karl Molter / FH Trier / molter@fhtrier.de 34

doping of semiconductors In order to avoid recombination of photo-induced charges and to extract their energy to an electric-device we need a kind of internal barrier. This can be achieved by doping of semiconductors: Doping means in this case the replacement of original atoms of the semiconductor by different ones (with slightly different electron configuration). Semiconductors like Silicon have four covalent electrons, doping is done e.g. with Boron or Phosphorus: 5 IIIB IVB VB B 14 15 Si P 6.6.06-8.6.06 Clemson Summer School Dr. Karl Molter / FH Trier / molter@fhtrier.de 35

N - Doping crystal view energy-band view conduction-band Si Si - Si Si P + - Si Si E F - - - - - P + P + P + P + P + majority carriers Donator level Si Si Si n-conducting Silicon valence-band 6.6.06-8.6.06 Clemson Summer School Dr. Karl Molter / FH Trier / molter@fhtrier.de 36

P - Doping crystal energy-band view conduction band Si Si + Si Si Si B - + Si Si Si Si E F Acceptor level B - B - B - B - B - + + + + + majority carriers p-conducting Silicon valence-band 6.6.06-8.6.06 Clemson Summer School Dr. Karl Molter / FH Trier / molter@fhtrier.de 37

p/n-junction without light Band pattern view depletion-zone U d - - - - P + P + P + P + P + - Diffusion - B - B - B - B - B - E F + + + + + + Diffusion n type region E d + - internal electrical field p type region 6.6.06-8.6.06 Clemson Summer School Dr. Karl Molter / FH Trier / molter@fhtrier.de 38

irradiated p/n-junction band pattern view (absorption p-zone) E = h depletion-zone U d - - - - P + P + P + P + P + - photocurrent - B - B - B - B - B - E F + + + + + + n type region E d + - Internal electrical field p type region 6.6.06-8.6.06 Clemson Summer School Dr. Karl Molter / FH Trier / molter@fhtrier.de 39

p/n junction with irradiation crystal view + + + + + + + + + + + + + + h - + + + + + + + + + + + + p-silizium - + + + + + + + + + + + + - diffusion - - + -+ -+ + - + - + - + - + - + - + - + - + - + - -+ + - + - + - + - + - + - + - + - + - + - + - - - - - - - - - - - - - n-silizium - - - - - - - - - - - - - - - - - - - - - - - - - + - E electrical field depletion zone 6.6.06-8.6.06 Clemson Summer School Dr. Karl Molter / FH Trier / molter@fhtrier.de 40

The real Silicon Solar-cell Front-contact Antireflectioncoating h - n-region p-region ~0,2µm ~300µm + + + + + + + + + + - - - - - - - - - - + depletion zone Backside contact 6.6.06-8.6.06 Clemson Summer School Dr. Karl Molter / FH Trier / molter@fhtrier.de 41

6.6.06-8.6.06 Clemson Summer School Dr. Karl Molter / FH Trier / molter@fhtrier.de 45

We now calculate the lightgenerated minority (diffusion) current

We now solve this differential equation under various boundary conditions: 1)uniform generation, semi-infinite geometry 2) generation decaying exponentially with position, semi-infinite geometry 3)uniform generation, finite thickness 4)generation decaying exponentially with position, finite thickness

n=0 x=0 x N P

Heterojunctions

Efficiency Losses in Solar Cell 1 = Thermalization loss 2 and 3 = Junction and contact voltage loss 4 = Recombination loss