Mapping Hot Gas in the Universe using the Sunyaev-Zeldovich Effect

Similar documents
(Toward) A Solution to the Hydrostatic Mass Bias Problem in Galaxy Clusters. Eiichiro Komatsu (MPA) UTAP Seminar, December 22, 2014

Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing

Let me introduce myself...

Cosmology and Astrophysics with Galaxy Clusters Recent Advances and Future Challenges

Observational Cosmology

The Sunyaev-Zeldovich Effect with ALMA Band 1

Embedded Spiral Patterns in the massive galaxy cluster Abell 1835

Summer School on Cosmology July Clusters of Galaxies - Lecture 2. J. Mohr LMU, Munich

Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT

Power spectrum exercise

The South Pole Telescope. Bradford Benson (University of Chicago)

Results from the 2500d SPT-SZ Survey

tsz cluster counts and power spectrum combined with CMB

Title Sunyaev Zel dovich Signal & Cross Correlations

Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle. Centre for Astrophysics Research University of Hertfordshire, UK

Clusters and Groups of Galaxies

Multi-wavelength studies of substructures and inhomogeneities in galaxy clusters

STUDY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE USING GALAXY CLUSTERS

SZ Effect with ALMA. Kaustuv moni Basu (MPIfR / Universität Bonn)

Simulating non-linear structure formation in dark energy cosmologies

Detection of hot gas in multi-wavelength datasets. Loïc Verdier DDAYS 2015

Dark Matter. Homework 3 due. ASTR 433 Projects 4/17: distribute abstracts 4/19: 20 minute talks. 4/24: Homework 4 due 4/26: Exam ASTR 333/433.

Cosmology with Planck clusters. Nabila Aghanim IAS, Orsay (France)

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure

Really, really, what universe do we live in?

The State of Tension Between the CMB and LSS

Correlations between the Cosmic Microwave Background and Infrared Galaxies

Modelling the Sunyaev Zeldovich Scaling Relations

New techniques to measure the velocity field in Universe.

Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher accuracy

Cosmic Microwave Background

DES Galaxy Clusters x Planck SZ Map. ASTR 448 Kuang Wei Nov 27

The Formation and Evolution of Galaxy Clusters

THE SUNYAEV-ZELDOVICH EFFECT

Public Release of NIKA Sunyaev-Zel'dovich Data

Literature on which the following results are based:

Precision Cosmology with X-ray and SZE Galaxy Cluster Surveys?

Sources of scatter in cluster mass-observable relations

The Sunyaev-Zeldovich Effect as a Probe of Black Hole Feedback

Cosmic ray feedback in hydrodynamical simulations. simulations of galaxy and structure formation

AST 541 Notes: Clusters of Galaxies Fall 2010

X-ray and Sunyaev-Zel dovich Effect cluster scaling relations: numerical simulations vs. observations

PLANCK SZ CLUSTERS. M. Douspis 1, 2

Mass and Hot Baryons from Cluster Lensing and SZE Observations

The international scenario Balloons, LiteBIRD, PIXIE, Millimetron

Understanding the State of the Intracluster Medium in Galaxy Clusters

Observational Cosmology

Galaxies 626. Lecture 3: From the CMBR to the first star

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics

Clusters: Observations

The Sunyaev-Zeldovich effect in galaxy clusters

n=0 l (cos θ) (3) C l a lm 2 (4)

Primordial gravitational waves detected? Atsushi Taruya

Cosmological Studies with SZE-determined Peculiar Velocities. Sarah Church Stanford University

Frontiers: Sunyaev-Zeldovich effect

DA(z) from Strong Lenses. Eiichiro Komatsu, Max-Planck-Institut für Astrophysik Inaugural MIAPP Workshop on Extragalactic Distance Scale May 26, 2014

Some issues in cluster cosmology

Exploring Dark Energy

Multi-wavelength scaling relations (scaling relations 101)

Formation and growth of galaxies in the young Universe: progress & challenges

Baryon Census in Hydrodynamical Simulations of Galaxy Clusters

The cosmic background radiation II: The WMAP results. Alexander Schmah

Bullet Cluster: A Challenge to ΛCDM Cosmology

Calibrating Galaxy Clusters as a Tool for Cosmology via Studies of the Intracluster Medium

Cosmology The Road Map

Lecture 9. Basics Measuring distances Parallax Cepheid variables Type Ia Super Novae. Gravitational lensing Sunyaev-Zeldovich effect

Synergistic cosmology across the spectrum

Sunyaev-Zel dovich effect observations with the SVT

Kinetic Sunyaev-Zel dovich effect: Dark Energy, Modified gravity, Massive Neutrinos

Cosmological Constraints from the XMM Cluster Survey (XCS) Martin Sahlén, for the XMM Cluster Survey Collaboration The Oskar Klein Centre for

Cosmic Microwave Background

Cosmology after Planck

Astronomy 422. Lecture 15: Expansion and Large Scale Structure of the Universe

Imprint of Scalar Dark Energy on CMB polarization

Weighing the Giants:

Structure Formation and Evolution"

Probing the Dark Ages with 21 cm Absorption

Clusters, lensing and CFHT reprocessing

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background

Astro-H/HSC/SZE. Nicole Czakon (ASIAA) Hiroshima, 08/27/2014

Highlights from Planck 2013 cosmological results Paolo Natoli Università di Ferrara and ASI/ASDC DSU2013, Sissa, 17 October 2013

arxiv:astro-ph/ v1 2 Sep 2004

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

Cosmology with galaxy clusters?

SZ with ALMA & ACA: a user s perspective. Tetsu Kitayama Toho University, Japan

A Measurement of the Kinetic SZ Signal Towards MACS J0717.5

What I heard about Planck Eiichiro Komatsu (MPA) December 9, 2014 December 22, 2014

The effect of large scale environment on galaxy properties

Testing cosmological models using relative mass-redshift abundance of SZ clusters

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures

The role of Planck in understanding galaxy cluster radio halos

The SZ structure of high-z galaxy clusters with NIKA

arxiv:astro-ph/ v1 27 Sep 2004

Signal Model vs. Observed γ-ray Sky

WMAP 5-Year Results: Measurement of fnl

Clusters: Observations

Analysis of differential observations of the cosmological radio background: studying the SZE-21cm

Cosmic Rays in Galaxy Clusters: Simulations and Perspectives

Joint X ray/sze analysis of the intra cluster medium

The Radio/X-ray Interaction in Abell 2029

Transcription:

Mapping Hot Gas in the Universe using the Sunyaev-Zeldovich Effect Eiichiro Komatsu (Max-Planck-Institut für Astrophysik) Probing Fundamental Physics with CMB Spectral Distortions, CERN March 12, 2018

Happy (belated; March 1) 75th birthday, Rashid!

Where is a galaxy cluster? Subaru image of RXJ1347-1145 (Medezinski et al. 2010) http://wise-obs.tau.ac.il/~elinor/clusters 3

Where is a galaxy cluster? Subaru image of RXJ1347-1145 (Medezinski et al. 2010) http://wise-obs.tau.ac.il/~elinor/clusters 4

Subaru Subaru image of RXJ1347-1145 (Medezinski et al. 2010) http://wise-obs.tau.ac.il/~elinor/clusters 5

Hubble Hubble image of RXJ1347-1145 (Bradac et al. 2008) 6

Chandra Chandra X-ray image of RXJ1347-1145 (Johnson et al. 2012) 7

1σ=17 μjy/beam =120 μkcmb ALMA! 5 resolution T. Kitayama Chandra X-ray image of RXJ1347-1145 (Johnson 2012) ALMA Band-3 Imageetofal. the Sunyaev-Zel dovich effect at 92 GHz (Kitayama et al. 2016) 8

A clear displacement between the X-ray and SZ images. What is going on? 9

10

Multi-wavelength Data IX = Z dl n2e (TX ) ISZ = T kb g me c2 Z dl ne Te Optical: X-ray: SZ [microwave]: 102 3 galaxies hot gas (107 8 K) hot gas (107-8 K) velocity dispersion spectroscopic TX electron pressure gravitational lensing Intensity ~ ne2l Intensity ~ netel

A Story about RXJ1347 1145 Let me tell you a little story about this particular cluster, which highlights the unique power of the SZ data to study cluster astrophysics A massive cluster with 10 15 Msun at z=0.45 The most X-ray luminous galaxy cluster found in the ROSAT All Sky Survey Very compact, cool core cluster 12

1997 ROSAT/HRI image [Schindler et al.] 5 resolution 0.1 2.4 kev Looked pretty spherical Thought to be a typical, relaxed, cooling-flow cluster 13

2001 SZ w/ Nobeyama [Komatsu et al.] 12 resolution The highest angular resolution SZ mapping at that time (The record holder for a decade) Chandra X-ray image of RXJ1347-1145 (Johnson et al. 2012) A surprise!

2001 SZ w/ Nobeyama [Komatsu et al.] 12 resolution The highest angular resolution SZ mapping at that time (The record holder for a decade) Chandra X-ray image of RXJ1347-1145 (Johnson et al. 2012) A surprise!

2002 X-ray w/ Chandra [Allen et al.] 0.5 7 kev An excess X-ray emission found at the location of the SZ excess A hot gas, missed by ROSAT due to the lack of sensitivity at high energies!

A lesson learned X-ray observations are band-limited They are not usually not sensitive to very hot gas with temperature >10(1+z) kev SZ observations are not band-limited They are in principle sensitive to arbitrarily high temperatures (more precisely, pressure) SZ data probe electron pressure: a good probe of shock-heated gas due to mergers RXJ1347 1145 was thought to be a relaxed cluster. Our Nobeyama data challenged it, and now it is accepted that this cluster is a merging system! 17

We have ALMA. Now what? What is a new science we can do with such high resolution, high sensitivity measurements? Finding shocks and hot clumps is fun, but can we do something new and more quantitative? One example: Pressure fluctuations 18

Let s subtract a smooth component X-ray SZ 19

Let s subtract a smooth component Ueda et al., in prep X-ray SZ 20

Let s subtract a smooth component Ueda et al., in prep X-ray SZ Gas density is stirred ( sloshed ), but no change in pressure! Not sound waves => Unique measurements of the effective equation of state of density fluctuations 21

Full-sky Thermal Pressure Map North Galactic Pole South Galactic Pole 22 Planck Collaboration

We can simulate this arxiv:1509.05134 [MNRAS, 463, 1797 (2016)] Klaus Dolag (MPA/LMU) Volume: (896 Mpc/h) 3 Cosmological hydro (P-GADGET3) with star formation and AGN feed back 2 x 1526 3 particles (mdm=7.5x10 8 Msun/h) 23

Dolag, EK, Sunyaev (2016) 24

The local universe simulation reproduces the observed structures pretty well 25

Dolag, EK, Sunyaev (2016) 1-point PDF fits!! 26

Dolag, EK, Sunyaev (2016) Power spectrum fits!! provided that we use: m =0.308 8 =0.8149 27

Simple Interpretation Cl [not l 2 Cl ] multipole Randomly-distributed point sources = Poisson spectrum = i(fluxi) 2 / 4π 28

Simple Interpretation Cl [not l 2 Cl ] multipole Extended sources = the power spectrum reflects intensity profiles 29

l(l+1)cl/2π [μk 2 ] >10 15 Msun >2x10 15 Msun >5x10 13 Msun >5x10 14 Msun Adding smaller clusters Multipole 30

Simple Formula C` = Z dz dv dz Z dm dn dm y`(m,z) 2 2d Fourier transform of pressure yl with small l just gives the total thermal pressure, MT ~ M 5/3 Heavily weighted by massive clusters The mass function, dn/dm, is sensitive to the amplitude of fluctuations, σ8 31

999 Degree-scale SZ power spectrum is less sensitive to astrophysics in cluster cores Komatsu & Kitayama (1999) 32

2014 confirmed by simulations with varying AGN feedback McCarthy et al. (2014) 33

999 It is very sensitive to the amplitude of fluctuations Komatsu & Kitayama (1999) Komatsu & Seljak (2002) 34

2014 tension? Planck13 parameters McCarthy et al. (2014) 35

2014 similar Planck13 to parameters planck15 McCarthy et al. (2014) 36

Dolag, EK, Sunyaev (2016) C` / 3 m 8 8 m =0.315 8 =0.829 vs m =0.308 8 =0.8149 37

Dolag, EK, Sunyaev (2016) C` / 3 m 8 8 m =0.315 ~20% too large 8 =0.829 vs m =0.308 8 =0.8149 38

Bolliet, Comis, EK, Macias-Perez (2017) Closer look at the B. Bolliet measurements The compton-y power spectrum of Planck contains various foreground sources What you saw as the data points were the raw data minus the bestfitting foreground components When fitting, the Planck team used Gaussian covariance ignoring the trispectrum term with trispecturm without How does this affect the results? 39

Bolliet, Comis, EK, Macias-Perez (2017) tsz power slightly lower without with trispecturm 40

Bolliet, Comis, EK, Macias-Perez (2017) Closer look at the parameter dependence Mass Bias Hubble σ8 Ωm w ns 41

Bolliet, Comis, EK, Macias-Perez (2017) model-independent 42 Closer look at the parameter dependence 2.6% measurement! Essentially cosmological

Bolliet, Comis, EK, Macias-Perez (2017) model-independent 43 Closer look at the parameter dependence 2.6% measurement! Essentially cosmological

<latexit sha1_base64="jg4q3clubbodwxz2vytq2xgjvfo=">aaacd3icbzc7sgnbfizn4y3g26qlzwaqlstuiqiwqoinjrdbmeaswuzkjbkye2hmrbcwfqqbx8xgqsxw1s63cxirnprdwmd/zuhm+b1ico2o82llzmbn5heyi7ml5zxvnxt941ahsejq4aemvc1jgqqioiicjdqibcz3jfs9/swwxr0dpuuy3oaggqbpuohocm7qwc17t4fctofetzjjx+eppf/g/ashfioqhjq9klxsvfnwrqj/wz1ankxubtkfjxbiyx8c5jjpxxedcjsjuyi4hdtxidvejpdzf+oga+adbiajg1k6y5w27ytkvadpyp05ktbf64hvmu6fyu9p14bmf7v6jj3tzikckeyi+hhrj5yuqzpmh7afao5yyibxjcxfke8xxtiadhmmbhf65l9qosycfdzro3yxnekjs7bintkjljkhrxjjyqrcolknj+szvfgp1pp1ar2nwzpwzgat/jl1/gugtpr4</latexit> <latexit sha1_base64="jg4q3clubbodwxz2vytq2xgjvfo=">aaacd3icbzc7sgnbfizn4y3g26qlzwaqlstuiqiwqoinjrdbmeaswuzkjbkye2hmrbcwfqqbx8xgqsxw1s63cxirnprdwmd/zuhm+b1ico2o82llzmbn5heyi7ml5zxvnxt941ahsejq4aemvc1jgqqioiicjdqibcz3jfs9/swwxr0dpuuy3oaggqbpuohocm7qwc17t4fctofetzjjx+eppf/g/ashfioqhjq9klxsvfnwrqj/wz1ankxubtkfjxbiyx8c5jjpxxedcjsjuyi4hdtxidvejpdzf+oga+adbiajg1k6y5w27ytkvadpyp05ktbf64hvmu6fyu9p14bmf7v6jj3tzikckeyi+hhrj5yuqzpmh7afao5yyibxjcxfke8xxtiadhmmbhf65l9qosycfdzro3yxnekjs7bintkjljkhrxjjyqrcolknj+szvfgp1pp1ar2nwzpwzgat/jl1/gugtpr4</latexit> <latexit sha1_base64="jg4q3clubbodwxz2vytq2xgjvfo=">aaacd3icbzc7sgnbfizn4y3g26qlzwaqlstuiqiwqoinjrdbmeaswuzkjbkye2hmrbcwfqqbx8xgqsxw1s63cxirnprdwmd/zuhm+b1ico2o82llzmbn5heyi7ml5zxvnxt941ahsejq4aemvc1jgqqioiicjdqibcz3jfs9/swwxr0dpuuy3oaggqbpuohocm7qwc17t4fctofetzjjx+eppf/g/ashfioqhjq9klxsvfnwrqj/wz1ankxubtkfjxbiyx8c5jjpxxedcjsjuyi4hdtxidvejpdzf+oga+adbiajg1k6y5w27ytkvadpyp05ktbf64hvmu6fyu9p14bmf7v6jj3tzikckeyi+hhrj5yuqzpmh7afao5yyibxjcxfke8xxtiadhmmbhf65l9qosycfdzro3yxnekjs7bintkjljkhrxjjyqrcolknj+szvfgp1pp1ar2nwzpwzgat/jl1/gugtpr4</latexit> <latexit sha1_base64="jg4q3clubbodwxz2vytq2xgjvfo=">aaacd3icbzc7sgnbfizn4y3g26qlzwaqlstuiqiwqoinjrdbmeaswuzkjbkye2hmrbcwfqqbx8xgqsxw1s63cxirnprdwmd/zuhm+b1ico2o82llzmbn5heyi7ml5zxvnxt941ahsejq4aemvc1jgqqioiicjdqibcz3jfs9/swwxr0dpuuy3oaggqbpuohocm7qwc17t4fctofetzjjx+eppf/g/ashfioqhjq9klxsvfnwrqj/wz1ankxubtkfjxbiyx8c5jjpxxedcjsjuyi4hdtxidvejpdzf+oga+adbiajg1k6y5w27ytkvadpyp05ktbf64hvmu6fyu9p14bmf7v6jj3tzikckeyi+hhrj5yuqzpmh7afao5yyibxjcxfke8xxtiadhmmbhf65l9qosycfdzro3yxnekjs7bintkjljkhrxjjyqrcolknj+szvfgp1pp1ar2nwzpwzgat/jl1/gugtpr4</latexit> C` = Planck Mass Bias Z dz dv dz Z dm dn dm y`(m,z) 2 The key ingredient of the power spectrum is a profile of thermal pressure of electrons M 500c = M 500c,true /B 44

Mass Bias in ΛCDM Constraining the ΛCDM parameters by the Planck (TT+lowP) chain, we find B = 1.71 ± 0.17 (68%CL; Bolliet et al.) or, 1-b = 1/B = 0.58 ± 0.06 Adding the CMB lensing, we find B = 1.59 ± 0.13 (68%CL; Makiya, Ando & EK, in prep) Cf: Simulation by Dolag, EK & Sunyaev: B ~ 1.2. 45 Manifestation that the new Compton-Y power spectrum is lower

Towards Tomography Cross-correlating the Compton-Y map with galaxies with known redshifts! 46

Huchra et al. (2012) 2MASS Redshift Survey ~40K galaxies with the median redshift of 0.02 47

Huchra et al. (2012) 2MASS Redshift Survey ~40K galaxies with the median redshift of 0.02 48

Ando, Benoit-Levy & EK (2018) 2MRS Auto Power Dominated by 1-halo term in most of the angular scales => Good for cross-correlation with Compton-Y 49

Ando, Benoit-Levy & EK (2018) 2MRS Auto Power 50

Makiya, Ando & EK, in prep Cross-power! R. Makiya 51

Makiya, Ando & EK, in prep Mass-bias Consistency [for Planck TT+lowP+lensing] We get consistent mass bias from Compton-Y and 2MRS cross. Neat. 52

Makiya, Ando & EK, in prep Mass Dependence 53

Makiya, Ando & EK, in prep Mass Dependence Cross is sensitive to less massive halos: We can use this to explore the mass bias as a function of mass! 54

<latexit sha1_base64="jg4q3clubbodwxz2vytq2xgjvfo=">aaacd3icbzc7sgnbfizn4y3g26qlzwaqlstuiqiwqoinjrdbmeaswuzkjbkye2hmrbcwfqqbx8xgqsxw1s63cxirnprdwmd/zuhm+b1ico2o82llzmbn5heyi7ml5zxvnxt941ahsejq4aemvc1jgqqioiicjdqibcz3jfs9/swwxr0dpuuy3oaggqbpuohocm7qwc17t4fctofetzjjx+eppf/g/ashfioqhjq9klxsvfnwrqj/wz1ankxubtkfjxbiyx8c5jjpxxedcjsjuyi4hdtxidvejpdzf+oga+adbiajg1k6y5w27ytkvadpyp05ktbf64hvmu6fyu9p14bmf7v6jj3tzikckeyi+hhrj5yuqzpmh7afao5yyibxjcxfke8xxtiadhmmbhf65l9qosycfdzro3yxnekjs7bintkjljkhrxjjyqrcolknj+szvfgp1pp1ar2nwzpwzgat/jl1/gugtpr4</latexit> <latexit sha1_base64="jg4q3clubbodwxz2vytq2xgjvfo=">aaacd3icbzc7sgnbfizn4y3g26qlzwaqlstuiqiwqoinjrdbmeaswuzkjbkye2hmrbcwfqqbx8xgqsxw1s63cxirnprdwmd/zuhm+b1ico2o82llzmbn5heyi7ml5zxvnxt941ahsejq4aemvc1jgqqioiicjdqibcz3jfs9/swwxr0dpuuy3oaggqbpuohocm7qwc17t4fctofetzjjx+eppf/g/ashfioqhjq9klxsvfnwrqj/wz1ankxubtkfjxbiyx8c5jjpxxedcjsjuyi4hdtxidvejpdzf+oga+adbiajg1k6y5w27ytkvadpyp05ktbf64hvmu6fyu9p14bmf7v6jj3tzikckeyi+hhrj5yuqzpmh7afao5yyibxjcxfke8xxtiadhmmbhf65l9qosycfdzro3yxnekjs7bintkjljkhrxjjyqrcolknj+szvfgp1pp1ar2nwzpwzgat/jl1/gugtpr4</latexit> <latexit sha1_base64="jg4q3clubbodwxz2vytq2xgjvfo=">aaacd3icbzc7sgnbfizn4y3g26qlzwaqlstuiqiwqoinjrdbmeaswuzkjbkye2hmrbcwfqqbx8xgqsxw1s63cxirnprdwmd/zuhm+b1ico2o82llzmbn5heyi7ml5zxvnxt941ahsejq4aemvc1jgqqioiicjdqibcz3jfs9/swwxr0dpuuy3oaggqbpuohocm7qwc17t4fctofetzjjx+eppf/g/ashfioqhjq9klxsvfnwrqj/wz1ankxubtkfjxbiyx8c5jjpxxedcjsjuyi4hdtxidvejpdzf+oga+adbiajg1k6y5w27ytkvadpyp05ktbf64hvmu6fyu9p14bmf7v6jj3tzikckeyi+hhrj5yuqzpmh7afao5yyibxjcxfke8xxtiadhmmbhf65l9qosycfdzro3yxnekjs7bintkjljkhrxjjyqrcolknj+szvfgp1pp1ar2nwzpwzgat/jl1/gugtpr4</latexit> <latexit sha1_base64="jg4q3clubbodwxz2vytq2xgjvfo=">aaacd3icbzc7sgnbfizn4y3g26qlzwaqlstuiqiwqoinjrdbmeaswuzkjbkye2hmrbcwfqqbx8xgqsxw1s63cxirnprdwmd/zuhm+b1ico2o82llzmbn5heyi7ml5zxvnxt941ahsejq4aemvc1jgqqioiicjdqibcz3jfs9/swwxr0dpuuy3oaggqbpuohocm7qwc17t4fctofetzjjx+eppf/g/ashfioqhjq9klxsvfnwrqj/wz1ankxubtkfjxbiyx8c5jjpxxedcjsjuyi4hdtxidvejpdzf+oga+adbiajg1k6y5w27ytkvadpyp05ktbf64hvmu6fyu9p14bmf7v6jj3tzikckeyi+hhrj5yuqzpmh7afao5yyibxjcxfke8xxtiadhmmbhf65l9qosycfdzro3yxnekjs7bintkjljkhrxjjyqrcolknj+szvfgp1pp1ar2nwzpwzgat/jl1/gugtpr4</latexit> C` = Planck Mass Bias Z dz dv dz Z dm dn dm y`(m,z) 2 The key ingredient of the power spectrum is a profile of thermal pressure of electrons αp M 500c = M 500c,true /B 55

Makiya, Ando & EK, in prep Mass Dependence Nailed 56

Makiya, Ando & EK, in prep Redshift Dependence 57

Makiya, Ando & EK, in prep Redshift Dependence High-ell data of Compton-Y auto is the key. But foreground contamination 58

Makiya, Ando & EK, in prep Z-dependence Poorly Constrained 59

Summary New results on the SZ effect, from small to large: T. Kitayama 1. The first SZ image by ALMA - opening up a new study of cluster astrophysics via pressure fluctuations 2. The SZ power spectrum at l<1000 has been determined finally! And we can simulate it K. Dolag B. Bolliet R. Makiya 3. Detailed look at mass bias from the SZ power spectrum and cross-correlation tomography B = 1.5 ± 0.1 (68%CL) for Planck TT+lowP+lensing. Expect B ~ 1.2 for hydrostatic mass bias in the simulation. Origin? 60

Compton Y Map of RXJ1347 1145 ALMA on-source integration times 5.6 hours with 7-m array 2.6 hours with 12-m array Thank you TAC!