To Higgs or not to Higgs

Similar documents
Vacuum instabilities around the corner

Electroweak and Higgs Physics

The Higgs boson and the scale of new physics

Implications of the Higgs mass results

+ µ 2 ) H (m 2 H 2

Two-Higgs-Doublet Model

The SCTM Phase Transition

Hidden two-higgs doublet model

Unstable vacua in the MSSM

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

How high could SUSY go?

G.F. Giudice. Theoretical Implications of the Higgs Discovery. DaMeSyFla Meeting Padua, 11 April 2013

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki

Exploring Charge and Color Breaking vacuum in Non-Holomorphic MSSM

Constraints from the renormalisation of the minimal dark matter model

Triviality Bound on Lightest Higgs Mass in NMSSM. S.R. Choudhury, Mamta and Sukanta Dutta

SUSY models of neutrino masses and mixings: the left-right connection

U(1) Gauge Extensions of the Standard Model

Higgs Vacuum Stability and Physics Beyond the Standard Model Archil Kobakhidze

Higher dimensional operators. in supersymmetry

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Introduction to the SM (5)

Electroweak Baryogenesis in the LHC era

tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs

Higgs mass implications on the stability of the electroweak vacuum

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

D-term Dynamical SUSY Breaking. Nobuhito Maru (Keio University)

Pati-Salam GUT-Flavour Models with Three Higgs Generations

Lecture 18 - Beyond the Standard Model

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Introduction to Supersymmetry

Will Planck Observe Gravity Waves?

Little Higgs Models Theory & Phenomenology

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

Introduction to Supersymmetry

The Inert Doublet Matter

Higgs Boson Physics, Part II

CP violation in charged Higgs production and decays in the Complex 2HDM

Particle Physics Today, Tomorrow and Beyond. John Ellis

Research Article Metastability of an Extended Higgs Model

Where are we heading?

A model of the basic interactions between elementary particles is defined by the following three ingredients:

Symmetries of the Two-Higgs Doublet Model (2HDM) Eddie Santos Final Presentation, Physics 251 6/8/11

arxiv:hep-ph/ v1 6 Feb 2004

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

Exceptional Supersymmetry. at the Large Hadron Collider

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

The mass of the Higgs boson

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Higher-order scalar interactions and SM vacuum stability

BSM Higgs Searches at ATLAS

Radiative Generation of the Higgs Potential

Models of Neutrino Masses

125 GeV Higgs Boson and Gauge Higgs Unification

Higgs Signals and Implications for MSSM

Precision tools and models to narrow in on the 750 GeV diphoton resonance

The Higgs discovery - a portal to new physics

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Phenomenology of the flavour messenger sector

The Higgs Mechanism and the Higgs Particle

D-term Dynamical SUSY Breaking. Nobuhito Maru (Keio University)

The Super-little Higgs

Electroweak Baryogenesis after LHC8

Beyond the SM: SUSY. Marina Cobal University of Udine

Lecture III: Higgs Mechanism

The Standard Model and Beyond

The Matter-Antimatter Asymmetry and New Interactions

Lecture 6 The Super-Higgs Mechanism

A light singlet at the LHC and DM

Electroweak Baryogenesis and the triple Higgs boson coupling

Lectures on Supersymmetry I

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Grand Unified Theories and Beyond

Top Seesaw, Custodial Symmetry and the 126 GeV (Composite) Higgs

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures)

arxiv: v1 [hep-ph] 8 Oct 2013

The Higgs Boson and Electroweak Symmetry Breaking

Scale invariance and the electroweak symmetry breaking

arxiv: v2 [hep-ph] 26 Sep 2014

Steve King, DCPIHEP, Colima

Sreerup Raychaudhuri TIFR

Supersymmetry, Dark Matter, and Neutrinos

Full electroweak one loop corrections to

Higgs Physics and Cosmology

Phenomenology of a light singlet-like scalar in NMSSM

Higgs Boson: from Collider Test to SUSY GUT Inflation

Stability of Electroweak Vacuum in the Standard Model and Beyond

Metastability. Michael Dine. In collaboration with J. Feng, J. Mason, and E. Silverstein; current collaboration with N. Seiberg

Making baryons at the electroweak phase transition. Stephan Huber, University of Sussex

FeynHiggs. Henning Bahl. TOOLS, , Corfu. Max-Planck Institut für Physik, Munich

LHC Signals of (MSSM) Electroweak Baryogenesis

Naturalizing SUSY with the relaxion and the inflaton

Higgs boson(s) in the NMSSM

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

Mass degenerate Higgs Hunters explore the 2HDM. Howard E. Haber West Coast LHC Theory UC Riverside December 7, 2012

Hidden Higgs boson in extended supersymmetric scenarios at the LHC

Implications of a Heavy Z Gauge Boson

Beyond the MSSM (BMSSM)

Transcription:

To Higgs or not to Higgs vacuum stability and the origin of mass Wolfgang Gregor Hollik DESY Hamburg Theory Group Dec 12 2016 MU Programmtag Mainz

The Higgs mechanism and the origin of mass [CERN bulletin]

The Higgs mechanism and the origin of mass Massive Gauge Bosons The tale of the Higgs dale potential instable at the origin ground state (= vacuum) breaks symmetry spontaneously broken SU(2) L U(1) Y ( ) ( ) φ + 0 Φ(x) = v + 1 2 h(x) φ 0 (D µ φ) D µ φ quadratic terms for gauge fields: 1 4 v2 ( ga 3 µ g B µ ) ( ga 3 µ g B µ) + 1 2 g2 v 2 A + µ A µ, with A ± µ = 1 2 (A 1 µ ± ia 2 µ).

We can do more! Masses for W and Z weak mixing angle m 2 W = v2 g 2 Fundamental masses 2, m 2 Z = v2 2 ( g 2 + g 2 ), tan θ w = g g, m W = cos θ w m Z. all fundamental masses v = 246 GeV in the Standard Model Masses for fermions Yukawa interactions: L Yuk = Y Ψ L ΦΨ R + h. c. = Y ( ) ( ) 0 ψu L ψd L v/ ψr d + h. c. 2 (for up-type fields: Φ Φ = iσ 2 Φ and ψ d R ψu R ) m ψ = v 2 Y

Origin of mass = origin of v In the Standard Model, by construction, ( ) 2 V SM = µ 2 H H + λ H H leads to v 2 = µ 2 /λ (with µ 2 > 0, λ > 0). So what? measuring gauge boson masses + gauge couplings: v 2 measuring Higgs boson mass: λ only tree level no new physics? V SM put by hand... going beyond tree and SM: minimum may get unstable new minimum: different v = different mass may break additional good symmetries of the SM

Vacuum Stability: Constraining inconsistency The Standard Model (In)Stability V SM = µ 2 H H + λ large field values: V λ(h H) 2 RGE: λ λ(q), where Q H ( ) 2 H H λ 0 around Q 10 10 GeV, new minimum beyond M Planck Connection to Matter & Universe transplanckian vev: different physics particle masses beyond M Planck : link to gravitational physics Higgs inflation? [Bezrukov, Rubio, Shaposhnikov 14] main sources for uncertainty: m t and α S

Precise analysis: up to three loops! [Zoller 2014]

Precise analysis: up to three loops! [Zoller 2014]

Stability, instability or metastability? [Courtesy of Max Zoller]

Stability, instability or metastability? [Courtesy of Max Zoller]

The SM phase diagram 200 Instability Top mass Mt in GeV 150 100 50 0 Meta stability Stability Non perturbativity 0 50 100 150 200 [Degrassi et al. JHEP 1208 (2012) 098] h

Vacuum stability beyond the Standard Model Quantum effects: new particles in the loop tree level: multi-scalar potentials Two Higgs Doublet Models (2HDM): no charge breaking 2HDM + Singlet: more involved Minimal Supersymmetric Standard Model (MSSM): sfermions: additional electrically and color charged directions NMSSM: additional non-trivial neutral vacua severe constraints for any model, can be tested numerically generically difficult to get practical limits i.e. noanalytical bounds if so, with many simplifications (see next slides) [cf. Vevacious]

Vacuum stability beyond the Standard Model Quantum effects: new particles in the loop tree level: multi-scalar potentials Two Higgs Doublet Models (2HDM): no charge breaking 2HDM + Singlet: more involved Minimal Supersymmetric Standard Model (MSSM): sfermions: additional electrically and color charged directions NMSSM: additional non-trivial neutral vacua severe constraints for any model, can be tested numerically generically difficult to get practical limits i.e. noanalytical bounds if so, with many simplifications (see next slides) [cf. Vevacious]

The MSSM tree-level scalar potential, 3rd generation squarks V q,h = t L ( m 2 L + y t h 2 2) t L + t R ( m 2 t + y t h 2 2) t R + b L ( m 2 L + y b h 1 2) bl + b R ( m 2 b + y bh 1 2) br [ t L (µ y t h 1 A t h 2 ) t R + h.c. ] [ bl (µ y b h 2 A b h 1 ) b R + h.c. ] + y t 2 t L 2 t R 2 + y b 2 b L 2 b R 2 + y t 2 b L 2 t R 2 + y b 2 t L 2 b R 2 + g2 1 ( h 2 2 h 1 2 + 13 8 b L 2 + 23 b R 2 + 13 t L 2 43 ) 2 t R 2 + g2 2 8 + g2 3 ( h 2 2 h 1 2 + b L 2 t L 2) 2 + g 2 2 ( t L 2 t R 2 + b L 2 b R 2) 2 2 t L 2 b L 2 8 + (m 2 h 2 + µ 2 ) h 2 2 +(m 2 h 1 + µ 2 ) h 1 2 2 Re(B µ h 1 h 2 ).

The MSSM tree-level scalar potential, 3rd generation squarks V q,h = t L ( m 2 L + y t h 2 2) t L + t R ( m 2 t + y t h 2 2) t R + b L ( m 2 L + y b h 1 2) bl + b R ( m 2 b + y bh 1 2) br [ t L (µ y t h 1 A t h 2 ) t R + h.c. ] [ bl (µ y b h 2 A b h 1 ) b R + h.c. ] + y t 2 t L 2 t R 2 + y b 2 b L 2 b R 2 + y t 2 b L 2 t R 2 + y b 2 t L 2 b R 2 + g2 1 ( h 2 2 h 1 2 + 13 8 b L 2 + 23 b R 2 + 13 t L 2 43 ) 2 t R 2 + g2 2 8 + g2 3 ( h 2 2 h 1 2 + b L 2 t L 2) 2 + g 2 2 ( t L 2 t R 2 + b L 2 b R 2) 2 2 t L 2 b L 2 8 + (m 2 h 2 + µ 2 ) h 2 2 +(m 2 h 1 + µ 2 ) h 1 2 2 Re(B µ h 1 h 2 ). t L = t R = t, b L = b R = b

The MSSM tree-level scalar potential, 3rd generation squarks V q,h = t ( m 2 L + y t h 2 2) t + t ( m 2 t + y t h 2 2) t + b ( m 2 L + y b h 1 2) b + b ( m 2 b + y bh 1 2) b [ t (µ y t h 1 A t h 2 ) t + h.c. ] [ b (µ y b h 2 A b h 1 ) b + h.c. ] + y t 2 t 2 t 2 + y b 2 b 2 b 2 + y t 2 b 2 t 2 + y b 2 t 2 b 2 ) 2 + g2 1 ( h 2 2 h 1 2 + b 2 t 2 8 + g2 2 8 ( h 2 2 h 1 2 + b 2 t 2) 2 + g 2 2 2 t 2 b 2 + (m 2 h 2 + µ 2 ) h 2 2 +(m 2 h 1 + µ 2 ) h 1 2 2 Re(B µ h 1 h 2 ). t L = t R = t, b L = b R = b

The MSSM tree-level scalar potential, 3rd generation squarks V q,h = t ( m 2 L + y t h 2 2) t + t ( m 2 t + y t h 2 2) t + b ( m 2 L + y b h 1 2) b + b ( m 2 b + y bh 1 2) b [ t (µ y t h 1 A t h 2 ) t + h.c. ] [ b (µ y b h 2 A b h 1 ) b + h.c. ] + y t 2 t 2 t 2 + y b 2 b 2 b 2 + y t 2 b 2 t 2 + y b 2 t 2 b 2 ) 2 + g2 1 ( h 2 2 h 1 2 + b 2 t 2 8 + g2 2 8 ( h 2 2 h 1 2 + b 2 t 2) 2 + g 2 2 2 t 2 b 2 + (m 2 h 2 + µ 2 ) h 2 2 +(m 2 h 1 + µ 2 ) h 1 2 2 Re(B µ h 1 h 2 ). t L = t R = t, b L = b R = b ; b = h 1 = φ 1, t = h 2 = φ 2

The MSSM tree-level scalar potential, 3rd generation squarks V q,h = φ 2 ( m 2 L + y t φ 2 2) φ 2 + φ 2 ( m 2 t + y t φ 2 2) φ 2 +φ 1 ( m 2 L + y b φ 1 2) φ 1 + φ 1 ( m 2 b + y bφ 1 2) φ 1 [ φ 2 (µ y t φ 1 A t φ 2 ) φ 2 + h.c. ] [ φ 1 (µ y b φ 2 A b φ 1 ) φ 1 + h.c. ] + y t 2 φ 2 2 φ 2 2 + y b 2 φ 1 2 φ 1 2 + y t 2 b 2 t 2 + y b 2 t 2 b 2 + g2 2 2 t 2 b 2 + (m 2 h 2 + µ 2 ) φ 2 2 +(m 2 h 1 + µ 2 ) φ 1 2 2 Re(B µ φ 1 φ 2 ). t L = t R = t, b L = b R = b ; b = h 1 = φ 1, t = h 2 = φ 2

The MSSM tree-level scalar potential, 3rd generation squarks V q,h = φ 2 ( m 2 L + y t φ 2 2) φ 2 + φ 2 ( m 2 t + y t φ 2 2) φ 2 [ φ 2 ( A t φ 2 ) φ 2 + h.c. ] + y t 2 φ 2 2 φ 2 2 + y t 2 b 2 t 2 + y b 2 t 2 b 2 g2 2 + 2 t 2 b 2 + (m 2 h 2 + µ 2 ) φ 2 2. t L = t R = t, b L = b R = b ; b = h 1 = φ 1, t = h 2 = φ 2

Mathematics for the kindergarden Minimize the potential V (φ) = m 2 φ 2 Aφ 3 + λφ 4, with m 2 = m 2 h 2 + µ 2 + m 2 L + m2 t, A = A t and λ = 3y 2 t.

Mathematics for the kindergarden Minimize the potential V (φ) = m 2 φ 2 Aφ 3 + λφ 4, with m 2 = m 2 h 2 + µ 2 + m 2 L + m2 t, A = A t and λ = 3y 2 t. Answer: φ 0 = 0, φ ± = 3A ± 9A 2 32λ m 2. 8λ Condition to be safe from non-standard (i.e. non-trivial) minima: V (φ ± ) > 0 m 2 > A2 4λ

Mathematics for the kindergarden Minimize the potential V (φ) = m 2 φ 2 Aφ 3 + λφ 4, with m 2 = m 2 h 2 + µ 2 + m 2 L + m2 t, A = A t and λ = 3y 2 t. Answer: φ 0 = 0, φ ± = 3A ± 9A 2 32λ m 2. 8λ Condition to be safe from non-standard (i.e. non-trivial) minima: V (φ ± ) > 0 m 2 > A2 4λ Well-known constraints [Gunion, Haber, Sher 88] A t 2 < 3yt 2 ( m 2 h2 + µ 2 + m 2 L + m 2 ) t A b 2 < 3yb 2 ( m 2 h1 + µ 2 + m 2 L + m 2 b) for the limiting cases t L = t R = h 2 and b L = b R = h 1!

A 2 < 4λm 2

A 2 = 4λm 2

A 2 > 4λm 2

A simple view of a complicated object h 2 = φ, t = α φ, h 1 = ηφ, b = β φ V φ = ( m 2 h 2 + η 2 m 2 h 1 + (1 + η 2 )µ 2 2B µ η + (α 2 + β 2 ) m 2 L + α 2 m 2 t + β 2 m 2 ) b φ 2 2 ( α 2 (µy t η A t ) + β 2 (µy t ηa b ) ) φ 3 + (α 2 yt 2 + β 4 yb 2 ( )φ4 g 2 + 1 + g2 2 ) (1 η 2 + β 2 α 2 ) 2 + 2α 2 yt 2 + 2β 2 yb 2 φ 4 8 M 2 (η, α, β)φ 2 A(η, α, β)φ 3 + λ(η, α, β)φ 4,

A simple view of a complicated object h 2 = φ, t = α φ, h 1 = ηφ, b = β φ V φ = ( m 2 h 2 + η 2 m 2 h 1 + (1 + η 2 )µ 2 2B µ η + (α 2 + β 2 ) m 2 L + α 2 m 2 t + β 2 m 2 ) b φ 2 with 2 ( α 2 (µy t η A t ) + β 2 (µy t ηa b ) ) φ 3 + (α 2 yt 2 + β 4 yb 2 ( )φ4 g 2 + 1 + g2 2 ) (1 η 2 + β 2 α 2 ) 2 + 2α 2 yt 2 + 2β 2 yb 2 φ 4 8 M 2 (η, α, β)φ 2 A(η, α, β)φ 3 + λ(η, α, β)φ 4, M 2 = m 2 h 2 + η 2 m 2 h 1 + (1 + η 2 )µ 2 2B µ η + (α 2 + β 2 ) m 2 L + α 2 m 2 t + β 2 m 2 b, A = 2α 2 ηµy t 2α 2 A t + 2β 2 µy b 2ηβ 2 A b, λ = g2 1 + g2 2 (1 η 2 + β 2 α 2 ) 2 8 + (2 + α 2 )α 2 yt 2 + (2η 2 + β 2 )β 2 yb 2.

Optimized Charge and Color Breaking [Gunion, Haber, Sher 88; Casas, Lleyda, Muñoz 96] The same but different ( A-parameter bounds ) A 2 < 4λM 2 4λ(η, α, β)m 2 (η, α, β) > (A(η, α, β)) 2 h u = b, h 0 d = 0 m 2 H u + µ 2 + m 2 Q + m 2 b > (µy b ) 2 y 2 b + (g2 1 + g2 2 )/2 [WGH 15] h d 2 = h u 2 + b 2, b = αh u [WGH 15] m 2 11(1 + α 2 ) + m 2 22 ± 2m 2 12 1 + α 2 + α 2 ( m 2 Q + m 2 b ) > 4µ2 α 2 2 + 3α 2

Closing in on the parameter space A b = 0 GeV

Closing in on the parameter space A b = 500 GeV

Closing in on the parameter space A b = 1000 GeV

Closing in on the parameter space A b = 1500 GeV

The issue of including field directions t = 0, h d = 0, A b = 0

The issue of including field directions t = 0, A b = 0

The issue of including field directions A b = 0

The issue of including field directions A b = A t

Resort comes close (increasing MSUSY)

Resort comes close (increasing MSUSY) A b = 0

Parameter choice crucial µ = 350 GeV

Parameter choice crucial µ = M MSUSY

Parameter choice crucial µ = 500 GeV

Parameter choice crucial µ = 500 GeV

Short summary Vacuum stability and the origin of mass: v = 246 GeV vs. v > M Planck or ṽ M SUSY constraints on model parameters from theoretical consistency: global minimum has to be electroweak minimum heavy light Higgs @ 125 GeV: large SUSY corrections e.g. MSSM: large A t,b and µ induce squark vevs

Backup Slides

A comment on metastability and quantum tunneling Cosmological stability bounce action B 400 life-time longer than age of the universe Decay probability (per unit volume) Γ V = Ae B/ [Coleman 77] Death and doom value of B crucially depends on field space path very different conclusions for different η, α, β independent of SUSY parameter choice

Contours of the bounce µ = 500 GeV, A b = A t = 1500 GeV

Contours of the bounce µ = 500 GeV, A b = A t = 1500 GeV

Contours of the bounce µ = A b = A t = 500 GeV

Contours of the bounce µ = A b = A t = 500 GeV