Solitons optiques à quelques cycles dans des guides

Similar documents
13.1 Ion Acoustic Soliton and Shock Wave

Relation between Periodic Soliton Resonance and Instability

Step index planar waveguide

Solitons. Nonlinear pulses and beams

Linear pulse propagation

Soliton trains in photonic lattices

LINEAR DISPERSIVE WAVES

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1

Superposition of electromagnetic waves

37. 3rd order nonlinearities

37. 3rd order nonlinearities

A short tutorial on optical rogue waves

Circular dispersive shock waves in colloidal media

SOLITON SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRÖDINGER EQUATION WITH VARIABLE COEFFICIENTS

Programming of the Generalized Nonlinear Paraxial Equation for the Formation of Solitons with Mathematica

Optical Solitons. Lisa Larrimore Physics 116

A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (1+2)-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION

Long-time solutions of the Ostrovsky equation

SUPPLEMENTARY INFORMATION

The Nonlinear Schrodinger Equation

A Low-Dimensional Model for the Maximal Amplification Factor of Bichromatic Wave Groups

Simulation of Pulse propagation in optical fibers P. C. T. Munaweera, K.A.I.L. Wijewardena Gamalath

Diagonalization of the Coupled-Mode System.

Nonlinear electrostatic structures in unmagnetized pair-ion (fullerene) plasmas

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

Rare events in dispersion-managed nonlinear lightwave systems

36. Nonlinear optics: χ(2) processes

Superposition of waves (review) PHYS 258 Fourier optics SJSU Spring 2010 Eradat

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

SPECIAL TYPES OF ELASTIC RESONANT SOLITON SOLUTIONS OF THE KADOMTSEV PETVIASHVILI II EQUATION

NONLINEAR OPTICS. Ch. 1 INTRODUCTION TO NONLINEAR OPTICS

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes

Lecture #8 Non-linear phononics

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS

Dust acoustic solitary and shock waves in strongly coupled dusty plasmas with nonthermal ions

What Is a Soliton? by Peter S. Lomdahl. Solitons in Biology

FAMILIES OF DIPOLE SOLITONS IN SELF-DEFOCUSING KERR MEDIA AND PARTIAL PARITY-TIME-SYMMETRIC OPTICAL POTENTIALS

Optics and Optical Design. Chapter 5: Electromagnetic Optics. Lectures 9 & 10

Ultra-short pulse propagation in dispersion-managed birefringent optical fiber

Dispersive Equations and Nonlinear Waves

Nonlinear Wave Dynamics in Nonlocal Media

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD

Four-wave mixing in PCF s and tapered fibers

1 Mathematical description of ultrashort laser pulses

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves

Chapter 16 - Waves. I m surfing the giant life wave. -William Shatner. David J. Starling Penn State Hazleton PHYS 213. Chapter 16 - Waves

The Generation of Ultrashort Laser Pulses II

Theory of optical pulse propagation, dispersive and nonlinear effects, pulse compression, solitons in optical fibers

Bifurcations of solitons and their stability

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT

Michail D. Todorov. Faculty of Applied Mathematics and Informatics Technical University of Sofia, Bulgaria

Derivation of the General Propagation Equation

Waves on deep water, II Lecture 14

Nonlinear Optics (NLO)

LECTURE 4 WAVE PACKETS

Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems

Laser wakefield electron acceleration to multi-gev energies

Quasi-Particle Dynamics of Linearly Coupled Systems of Nonlinear Schrödinger Equations

The structure of laser pulses

Lecture 10: Whitham Modulation Theory

A Three Dimensional Simulation of Solitary Waves in the Laser Wake

Modulational instability of few cycle pulses in optical fibers

Models for Time-Dependent Phenomena

Optical Beam Instability and Coherent Spatial Soliton Experiments

Using controlling chaos technique to suppress self-modulation in a delayed feedback traveling wave tube oscillator

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli?

Stability and instability of solitons in inhomogeneous media

The superposition of algebraic solitons for the modified Korteweg-de Vries equation

OPTICAL SOLITONS IN THE FEW-CYCLE REGIME: RECENT THEORETICAL RESULTS

Instabilities of dispersion-managed solitons in the normal dispersion regime

Propagation losses in optical fibers

Electromagnetic fields and waves

Pulse propagation in random waveguides with turning points and application to imaging

Chapter 3. Head-on collision of ion acoustic solitary waves in electron-positron-ion plasma with superthermal electrons and positrons.

Numerical Study of Oscillatory Regimes in the KP equation

Stable One-Dimensional Dissipative Solitons in Complex Cubic-Quintic Ginzburg Landau Equation

Integration of Bi-Hamiltonian Systems by Using the Dressing Method

Modèles stochastiques pour la propagation dans les fibres optiques

OPTICAL SOLITONS IN THE FEW-CYCLE REGIME: RECENT THEORETICAL RESULTS

Wave Properties of Particles Louis debroglie:

Ultrafast Laser Physics

EP225 Note No. 4 Wave Motion

Routes to spatiotemporal chaos in Kerr optical frequency combs 1, a)

12. Nonlinear optics I

Lecture17: Generalized Solitary Waves

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson

Quantum Mechanics for Scientists and Engineers. David Miller

4 Classical Coherence Theory

LINEAR AND NONLINEAR LIGHT BULLETS: RECENT THEORETICAL AND EXPERIMENTAL STUDIES

Solitons : An Introduction

A Propagating Wave Packet The Group Velocity

ASYMMETRIC SOLITONS IN PARITY-TIME-SYMMETRIC DOUBLE-HUMP SCARFF-II POTENTIALS

Head-on collisions of electrostatic solitons in nonthermal plasmas

Advanced Vitreous State The Physical Properties of Glass

Nonlinear Gamow Vectors in nonlocal optical propagation

Collisionless Shocks and the Earth s Bow Shock

Nonlinear Waves, Solitons and Chaos

Group analysis, nonlinear self-adjointness, conservation laws, and soliton solutions for the mkdv systems

UNIVERSITY OF SOUTHAMPTON

Transcription:

Solitons optiques à quelques cycles dans des guides couplés Hervé Leblond 1, Dumitru Mihalache 2, David Kremer 3, Said Terniche 1,4 1 Laboratoire de Photonique d Angers LϕA EA 4464, Université d Angers. 2 Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest. 3 Laboratoire MOLTECH-Anjou, CNRS UMR 6200, Université d Angers. 4 Laboratoire Electronique Quantique, USTHB, Alger. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés1 Hulubei Nation / 29

1 Waveguiding of a few-cycle pulse How to model it Nonlinear widening of the linear guided modes 2 Waveguide coupling in the few-cycle regime Derivation of the coupling terms Few-cycle optical solitons in linearly coupled waveguides 3 Few cycle spatiotemporal solitons in waveguide arrays Formation of a solitons from a Gaussian pulse Two kind of solitons Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés2 Hulubei Nation / 29

Solitary wave vs envelope solitons Envelope soliton: the usual optical soliton in the ps range Pulse duration L λ wavelength Typical model: NonLinear Schrödinger equation (NLS) It is a soliton if it propagates without deformation on D L, due to nonlinearity. In linear regime: spread out by dispersion. Solitary wave soliton: the hydrodynamical soliton A single oscillation Typical model: Korteweg-de Vries equation (KdV) Few-cycle optical solitons: L λ The slowly varying envelope approximation is not valid Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés3 Hulubei Nation / 29

Solitary wave vs envelope solitons Envelope soliton: the usual optical soliton in the ps range Pulse duration L λ wavelength Typical model: NonLinear Schrödinger equation (NLS) It is a soliton if it propagates without deformation on D L, due to nonlinearity. In linear regime: spread out by dispersion. Solitary wave soliton: the hydrodynamical soliton A single oscillation Typical model: Korteweg-de Vries equation (KdV) Few-cycle optical solitons: L λ The slowly varying envelope approximation is not valid Generalized NLS equation We seek a different approach based on KdV-type models Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés3 Hulubei Nation / 29

Solitary wave vs envelope solitons Envelope soliton: the usual optical soliton in the ps range Pulse duration L λ wavelength Typical model: NonLinear Schrödinger equation (NLS) Solitary wave soliton: the hydrodynamical soliton Few-cycle optical solitons: L λ A single oscillation Typical model: Korteweg-de Vries equation (KdV) The slowly varying envelope approximation is not valid Generalized NLS equation We seek a different approach based on KdV-type models Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés3 Hulubei Nation / 29

The mkdv model A two-level model with resonance frequency ω UV transition only, with (1/τ p ) ω 1/ τ p ω = Long-wave approximation modified Korteweg-de Vries (mkdv) equation E ζ = 1 d 3 k 3 E 6 dω 3 ω=0 τ 3 6π nc χ(3) (ω; ω,ω, ω) E 3 ω=0 τ H. Leblond and F. Sanchez, Phys. Rev. A 67, 013804 (2003) Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés4 Hulubei Nation / 29

Waveguide description The evolution of the electric field E: In (1+1) dimensions: The modified Korteweg-de Vries (mkdv) equation ζ E + β 3 τ E + γ τ E 3 = 0 Nonlinear coefficient γ = 1 2nc χ(3), Dispersion parameter β = ( n ), 2c Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés5 Hulubei Nation / 29

Waveguide description The evolution of the electric field E: We generalize to (2+1) dimensions: The cubic generalized Kadomtsev-Petviashvili (CGKP) equation ζ E + β 3 τ E + γ τ E 3 V 2 τ 2 ξ Edτ = 0 Nonlinear coefficient γ = 1 2nc χ(3), Dispersion parameter β = ( n ), 2c Linear velocity: V = c n. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés5 Hulubei Nation / 29

Waveguide description The evolution of the electric field E: A waveguide: c g c x cladding core cladding The cubic generalized Kadomtsev-Petviashvili (CGKP) equation ζ E + β α 3 τ E + γ α τ E 3 V α 2 τ 2 ξ Edτ = 0 with α = g in the core and α = c in the cladding. Nonlinear coefficient γ α = 1 2n α c χ(3) α, Dispersion parameter β α = ( n α), 2c Linear velocity: V α = c. n α Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés5 Hulubei Nation / 29

Waveguide description The evolution of the electric field E: A waveguide: c g c cladding core cladding The cubic generalized Kadomtsev-Petviashvili (CGKP) equation ζ E + β α τ 3 E + γ α τ E 3 + 1 τ E V τ α ξ 2 V α 2 Edτ = 0 with α = g in the core and α = c in the cladding. Velocities : V g < V c Nonlinear coefficient γ α = 1 2n α c χ(3) α, Dispersion parameter β α = ( n α), 2c Linear velocity: V α = c. n α x Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés5 Hulubei Nation / 29

Waveguide description The evolution of the electric field E: A waveguide: c g c cladding core cladding The cubic generalized Kadomtsev-Petviashvili (CGKP) equation In dimensionless form: z u = A α t 3 u + B α t u 3 + v α t u + W t α x 2 udt 2 with α = g in the core and α = c in the cladding. Relative inverse velocities : v g > v c Nonlinear coefficient γ α = 1 2n α c χ(3) α, Dispersion parameter β α = ( n α), 2c Linear velocity: V α = c. n α Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés5 Hulubei Nation / 29 x

Nonlinear propagation in linear guide We solve the CGKP equation starting from u(x,t,z = 0) = A cos(ωt)f (x)e t2 /w 2, { cos(kx x), for x a, f (x) = Ce κ x is a linear mode profile, for x > a, Normalized coefficients A 1 = A 2 = B 1 = B 2 = W 1 = W 2 = 1, we assume that - Temporal compression occurs - Spatial defocusing occurs, (else it collapses!) - Dispersion and nonlinearity are identical in core and cladding. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés6 Hulubei Nation / 29

Guided wave profiles (Normalized so that the total power is 1. v 2 = 3, w = 2.) The pulse is less confined in nonlinear (blue, and red) than in linear (pink and cyan) regime. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés7 Hulubei Nation / 29

Nonlinear waveguide Wave guided and confined by using nonlinear velocity: a higher nonlinear coefficient in the cladding than that in the core. Guided profiles of the nonlinear waveguide. Normalized so that the total power is 1. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés8 Hulubei Nation / 29

Two-cycle soliton of the nonlinear waveguide -2-1 x 0 1 2-150 -100-50 0 50 100 150 t B 2 B 1 = 1. H. Leblond and D. Mihalache, Phys. Rev. A 88, 023840 (2013) Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés9 Hulubei Nation / 29

1 Waveguiding of a few-cycle pulse How to model it Nonlinear widening of the linear guided modes 2 Waveguide coupling in the few-cycle regime Derivation of the coupling terms Few-cycle optical solitons in linearly coupled waveguides 3 Few cycle spatiotemporal solitons in waveguide arrays Formation of a solitons from a Gaussian pulse Two kind of solitons Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 10 Nation / 29

2D waveguiding structure: two cores 1 and 2 and dielectric cladding The generalized Kadomtsev-Petviashvili (GKP) equation (dimensionless) z u = A α 3 t u + B α t u 3 + V α t u + w α 2 α = g in the cores 1 and 2, α = c in the cladding. t 2 x udt, Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 11 Nation / 29

We seek for a solution as u = R(t,z)f 1 (x)e iϕ + S(t,z)f 2 (x)e iϕ, i.e., two interacting modes. f j, (j = 1, 2): linear mode profiles of individual guides, R(t,z), S(t,z): longitudinal wave profiles, ϕ = ωt βz. We report it into the GKP equation and get after averaging on x: z R = z S = iw g (K c K g ) I 2 (R + S), 2ω 1 + I 1 Involve overlap integrals I 1 = f 1f 2 dx, I 2 = g 1 f 1 f 2 dx = g 2 f 1 f 2 dx ( g j dx is the integral over the core j = 1 or 2.) Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 12 Nation / 29

We seek for a solution as u = R(t,z)f 1 (x)e iϕ + S(t,z)f 2 (x)e iϕ, i.e., two interacting modes. f j, (j = 1, 2): linear mode profiles of individual guides, R(t,z), S(t,z): longitudinal wave profiles, ϕ = ωt βz. We report it into the GKP equation and get after averaging on x: z R = z S = iw g (K c K g ) I 2 (R + S), 2ω 1 + I 1 Involve overlap integrals I 1 = f 1f 2 dx, I 2 = g 1 f 1 f 2 dx = g 2 f 1 f 2 dx ( g j dx is the integral over the core j = 1 or 2.) Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 12 Nation / 29

We seek for a solution as u = R(t,z)f 1 (x)e iϕ + S(t,z)f 2 (x)e iϕ, i.e., two interacting modes. f j, (j = 1, 2): linear mode profiles of individual guides, R(t,z), S(t,z): longitudinal wave profiles, ϕ = ωt βz. We report it into the GKP equation and get after averaging on x: z R = z S = iw g (K c K g ) I 2 (R + S), 2ω 1 + I 1 Involve overlap integrals I 1 = f 1f 2 dx, I 2 = g 1 f 1 f 2 dx = g 2 f 1 f 2 dx ( g j dx is the integral over the core j = 1 or 2.) Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 12 Nation / 29

We seek for a solution as u = R(z)f 1 (x)e iϕ + S(z)f 2 (x)e iϕ, i.e., two interacting modes. We report it into the GKP equation and get after averaging on x: z R = z S = iw g (K c K g ) I 2 (R + S), 2ω 1 + I 1 The few-cycle pulse is expanded as a Fourier integral of such modes, u 1 = Re iϕ dω, u 2 = Se iϕ dω. We report z R and z S into z u 1, and get the linear coupling terms. Finally, we get the system of two coupled modified Korteweg-de Vries (mkdv) equations z u 1 = A 3 t u 1 + B t u 3 1 + V t u 1 + C t u 2 + D 3 t u 2, z u 2 = A 3 t u 2 + B t u 3 2 + V t u 2 + C t u 1 + D 3 t u 1, Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 13 Nation / 29

We seek for a solution as u = R(z)f 1 (x)e iϕ + S(z)f 2 (x)e iϕ, i.e., two interacting modes. We report it into the GKP equation and get after averaging on x: z R = z S = iw g (K c K g ) I 2 (R + S), 2ω 1 + I 1 The few-cycle pulse is expanded as a Fourier integral of such modes, u 1 = Re iϕ dω, u 2 = Se iϕ dω. We report z R and z S into z u 1, and get the linear coupling terms. Finally, we get the system of two coupled modified Korteweg-de Vries (mkdv) equations z u 1 = A 3 t u 1 + B t u 3 1 + V t u 1 + C t u 2 + D 3 t u 2, z u 2 = A 3 t u 2 + B t u 3 2 + V t u 2 + C t u 1 + D 3 t u 1, Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 13 Nation / 29

We seek for a solution as u = R(z)f 1 (x)e iϕ + S(z)f 2 (x)e iϕ, i.e., two interacting modes. We report it into the GKP equation and get after averaging on x: z R = z S = iw g (K c K g ) I 2 (R + S), 2ω 1 + I 1 The few-cycle pulse is expanded as a Fourier integral of such modes, u 1 = Re iϕ dω, u 2 = Se iϕ dω. We report z R and z S into z u 1, and get the linear coupling terms. Finally, we get the system of two coupled modified Korteweg-de Vries (mkdv) equations z u 1 = A 3 t u 1 + B t u 3 1 + V t u 1 + C t u 2 + D 3 t u 2, z u 2 = A 3 t u 2 + B t u 3 2 + V t u 2 + C t u 1 + D 3 t u 1, Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 13 Nation / 29

We seek for a solution as u = R(z)f 1 (x)e iϕ + S(z)f 2 (x)e iϕ, i.e., two interacting modes. We report it into the GKP equation and get after averaging on x: z R = z S = iw g (K c K g ) I 2 (R + S), 2ω 1 + I 1 The few-cycle pulse is expanded as a Fourier integral of such modes, u 1 = Re iϕ dω, u 2 = Se iϕ dω. We report z R and z S into z u 1, and get the linear coupling terms. Finally, we get the system of two coupled modified Korteweg-de Vries (mkdv) equations z u 1 = A 3 t u 1 + B t u 3 1 + V t u 1 + C t u 2 + D 3 t u 2, z u 2 = A 3 t u 2 + B t u 3 2 + V t u 2 + C t u 1 + D 3 t u 1, Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 13 Nation / 29

Nonlinear coupling An analogous procedure, treating the nonlinear term as a perturbation, allows to derive the nonlinear coupling terms The complete final system is z u 1 = A t 3 u 1 + B t u1 3 + V t u 1 +C t u 2 + D t 3 ( u 2 + E t 3u 2 1 u 2 + u2 3 ) z u 2 = A t 3 u 2 + B t u2 3 + V t u 2 +C t u 1 + D t 3 ( u 1 + E t 3u1 u 2 + u1 3 ) H. Leblond, and S. Terniche, Phys. Rev. A 93, 043839 (2016) Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 14 Nation / 29

Nonlinear coupling The complete final system is We evidence z u 1 = A t 3 u 1 + B t u1 3 + V t u 1 +C t u 2 + D t 3 ( u 2 + E t 3u 2 1 u 2 + u2 3 ) z u 2 = A t 3 u 2 + B t u2 3 + V t u 2 +C t u 1 + D t 3 ( u 1 + E t 3u1 u 2 + u1 3 ) a standard linear coupling term, a linear coupling term based on dispersion, a nonlinear coupling term H. Leblond, and S. Terniche, Phys. Rev. A 93, 043839 (2016) Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 14 Nation / 29

Nonlinear coupling The complete final system is We evidence z u 1 = A t 3 u 1 + B t u1 3 + V t u 1 +C t u 2 + D t 3 ( u 2 + E t 3u 2 1 u 2 + u2 3 ) z u 2 = A t 3 u 2 + B t u2 3 + V t u 2 +C t u 1 + D t 3 ( u 1 + E t 3u1 u 2 + u1 3 ) a standard linear coupling term, a linear coupling term based on dispersion, a nonlinear coupling term H. Leblond, and S. Terniche, Phys. Rev. A 93, 043839 (2016) Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 14 Nation / 29

Nonlinear coupling The complete final system is We evidence z u 1 = A t 3 u 1 + B t u1 3 + V t u 1 +C t u 2 + D t 3 ( u 2 + E t 3u 2 1 u 2 + u2 3 ) z u 2 = A t 3 u 2 + B t u2 3 + V t u 2 +C t u 1 + D t 3 ( u 1 + E t 3u1 u 2 + u1 3 ) a standard linear coupling term, a linear coupling term based on dispersion, a nonlinear coupling term H. Leblond, and S. Terniche, Phys. Rev. A 93, 043839 (2016) Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 14 Nation / 29

Nonlinear coupling The complete final system is We evidence z u 1 = A t 3 u 1 + B t u1 3 + V t u 1 +C t u 2 + D t 3 ( u 2 + E t 3u 2 1 u 2 + u2 3 ) z u 2 = A t 3 u 2 + B t u2 3 + V t u 2 +C t u 1 + D t 3 ( u 1 + E t 3u1 u 2 + u1 3 ) a standard linear coupling term, a linear coupling term based on dispersion, a nonlinear coupling term H. Leblond, and S. Terniche, Phys. Rev. A 93, 043839 (2016) eblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 14 Nation / 29

We assume a purely linear and non-dispersive coupling z u = t (u 3 ) 3 t u C t v, z v = t (v 3 ) 3 t v C t u, We look for stationary states (vector solitons) in this model The stationary states oscillate with t and z:. few-cycle solitons are breathers. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 15 Nation / 29

A typical example of few-cycle vector soliton (Dotted lines: u, solid lines: v. Left: at z = 0, right: at z = 60. < A u >= 1.837). Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 16 Nation / 29

Evolution of soliton s maximum amplitude during propagation. max t ( u ) max t ( v ) 2 1.8 1.6 0.6 0.5 0.4 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 z Soliton with < A u >= 1.789. Two types of oscillations: Fast: phase - group velocity mismatch Slower: periodic energy exchange, as in linear regime. z Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 17 Nation / 29

Consider now the coupled equations in the linearized case. The monochromatic solutions are ( ) ( ) u A = e i(ωt+bω3z), v B With, due to coupling, A = u 0 cos cωz + iv 0 sin cωz, B = v 0 cos cωz + iu 0 sin cωz. The maximum amplitude and the power density of the wave oscillate with spatial frequency cω/π = σ 0 = 1.326. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 18 Nation / 29

Consider now the coupled equations in the linearized case. The monochromatic solutions are ( ) ( ) u A = e i(ωt+bω3z), v B With, due to coupling, A = u 0 cos cωz + iv 0 sin cωz, B = v 0 cos cωz + iu 0 sin cωz. The maximum amplitude and the power density of the wave oscillate with spatial frequency cω/π = σ 0 = 1.326. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 18 Nation / 29

Consider now the coupled equations in the linearized case. The monochromatic solutions are ( ) ( ) u A = e i(ωt+bω3z), v B With, due to coupling, A = u 0 cos cωz + iv 0 sin cωz, B = v 0 cos cωz + iu 0 sin cωz. The maximum amplitude and the power density of the wave oscillate with spatial frequency cω/π = σ 0 = 1.326. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 18 Nation / 29

Consider now the coupled equations in the linearized case. The monochromatic solutions are ( ) ( ) u A = e i(ωt+bω3z), v B With, due to coupling, A = u 0 cos cωz + iv 0 sin cωz, B = v 0 cos cωz + iu 0 sin cωz. The maximum amplitude and the power density of the wave oscillate with spatial frequency cω/π = σ 0 = 1.326. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 18 Nation / 29

Oscillations of the few-cycle vector solitons The energies E u = u 2 dt and E v = v 2 dt oscillate almost harmonically, as E u =< E u > + E u sin(2πσ a z + φ E,u ), The same for A u = max t ( u ) and A v = max t ( v ) Spatial frequency σ a [1.06,1.17], increasing with < A u >. (linear: σ 0 = 1.326). Amplitudes of oscillations vs amplitude of field u 0.2 A u, A v, E u 0.15 0.1 0.05 0 1.79 1.8 1.81 1.82 1.83 1.84 1.85 1.86 <A u > black saltires: E u; blue stars: A u; red crosses: A v. Well fitted with E R A < A >, etc., with A = 1.854. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 19 Nation / 29

Oscillations of the few-cycle vector solitons The energies E u = u 2 dt and E v = v 2 dt oscillate almost harmonically, as E u =< E u > + E u sin(2πσ a z + φ E,u ), The same for A u = max t ( u ) and A v = max t ( v ) Spatial frequency σ a [1.06,1.17], increasing with < A u >. (linear: σ 0 = 1.326). Amplitudes of oscillations vs amplitude of field u 0.2 A u, A v, E u 0.15 0.1 0.05 0 1.79 1.8 1.81 1.82 1.83 1.84 1.85 1.86 <A u > black saltires: E u; blue stars: A u; red crosses: A v. Well fitted with E R A < A >, etc., with A = 1.854. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 19 Nation / 29

Oscillations of the few-cycle vector solitons The energies E u = u 2 dt and E v = v 2 dt oscillate almost harmonically, as E u =< E u > + E u sin(2πσ a z + φ E,u ), The same for A u = max t ( u ) and A v = max t ( v ) Spatial frequency σ a [1.06,1.17], increasing with < A u >. (linear: σ 0 = 1.326). Amplitudes of oscillations vs amplitude of field u 0.2 A u, A v, E u 0.15 0.1 0.05 0 1.79 1.8 1.81 1.82 1.83 1.84 1.85 1.86 <A u > black saltires: E u; blue stars: A u; red crosses: A v. Well fitted with E R A < A >, etc., with A = 1.854. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 19 Nation / 29

Oscillations of the few-cycle vector solitons The energies E u = u 2 dt and E v = v 2 dt oscillate almost harmonically, as E u =< E u > + E u sin(2πσ a z + φ E,u ), The same for A u = max t ( u ) and A v = max t ( v ) Spatial frequency σ a [1.06,1.17], increasing with < A u >. (linear: σ 0 = 1.326). Amplitudes of oscillations vs amplitude of field u 0.2 A u, A v, E u 0.15 0.1 0.05 0 1.79 1.8 1.81 1.82 1.83 1.84 1.85 1.86 <A u > black saltires: E u; blue stars: A u; red crosses: A v. Well fitted with E R A < A >, etc., with A = 1.854. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 19 Nation / 29

Oscillations of the few-cycle vector solitons The energies E u = u 2 dt and E v = v 2 dt oscillate almost harmonically, as E u =< E u > + E u sin(2πσ a z + φ E,u ), Amplitudes of oscillations vs amplitude of field u 0.2 A u, A v, E u 0.15 0.1 0.05 0 1.79 1.8 1.81 1.82 1.83 1.84 1.85 1.86 <A u > black saltires: E u; blue stars: A u; red crosses: A v. Well fitted with E u R A 0 < A u >, etc., with A 0 = 1.854. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 19 Nation / 29

Evolution of the ratio v/u Almost constant vs t v 1.5 1 0.5 0-0.5-1 -1.5 1.5 1 0.5 u 0-0.5-1 -1.5 Soliton with < A u >= 1.855. -136-132-128-124 -120 t Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 20 Nation / 29

Evolution of the ratio v/u Or θ = arctan v u. Oscillates almost harmonically with z. Amplitudes of oscillations vs field u amplitude: θ, <θ> (degree) 16 14 12 10 8 6 4 2 0 1.79 1.8 1.81 1.82 1.83 1.84 1.85 1.86 <A u > Black line: mean value < θ >; green line: θ. Crosses: raw numerical data; solid lines: linear or parabolic fits. S. Terniche, H. Leblond, D. Mihalache, and A. Kellou, submitted to Phys.Rev. A Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 21 Nation / 29

1 Waveguiding of a few-cycle pulse How to model it Nonlinear widening of the linear guided modes 2 Waveguide coupling in the few-cycle regime Derivation of the coupling terms Few-cycle optical solitons in linearly coupled waveguides 3 Few cycle spatiotemporal solitons in waveguide arrays Formation of a solitons from a Gaussian pulse Two kind of solitons Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 22 Nation / 29

c g c g c g c g c g c g c g c x... n = 3 n = 2 n = 1 n = 0 n = 1 n = 2 n = 3... A set of coupled waveguides within the same model, as: Initial data z u n = a t (u 3 n) b 3 t u n c t (u n 1 + u n+1 ), ) u n (z = 0,t) = A 0 sin(ωt + ϕ) exp ( n2 x 2 t2 τ 2 ; We fix ϕ 0 = 0, x = 1, λ = 1, and we vary A 0 and τ. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 23 Nation / 29

Formation of a solitons from a Gaussian pulse Input -40 t -20 0 20 40-6 -4-2 0 2 4 6 n z=0, fwhm = 3.5. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 24 Nation / 29

Formation of a solitons from a Gaussian pulse Low amplitude output: diffraction and dispersion -40 t -20 0 20 40-6 -4-2 0 2 4 6 n z = 0.72, A 0 = 0.2, fwhm = 3.5. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 24 Nation / 29

Formation of a solitons from a Gaussian pulse High amplitude output: space-time localization -40 t -20 0 20 40-6 -4-2 0 2 4 6 n z = 288, A 0 = 2.06, fwhm = 3.5. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 24 Nation / 29

An energy threshold for soliton formation? Domain for soliton formation fwhm 7 6 5 4 3 2 1 1.5 2 2.5 3 3.5 A 0 Blue: soliton; red: dispersion-diffraction. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 25 Nation / 29

An energy threshold for soliton formation? Domain for soliton formation 16 15.5 A 0 2 fwhm 15 14.5 14 1.5 2 2.5 3 3.5 A 0 Blue: soliton; red: dispersion-diffraction. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 25 Nation / 29

Two kind of solitons: { breathing and fundamental. localized in space and time Breathing soliton: oscillating wave packet t 320 330 340 350 360 370 380 n -4-2 0 2 4 max u = 3.1801 Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 26 Nation / 29

Two kind of solitons: breathing and fundamental. { localized in space and time Breathing soliton: oscillating wave packet 3 2 u 1 0-1 -2 320 330 340 350 360 370 380 t max u = 3.1801 Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 26 Nation / 29

{ localized in space and time Fundamental soliton: single humped t 20 30 40 50 60 70 80 n -4-2 0 2 4 max u = 2.5667 Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 27 Nation / 29

{ localized in space and time Fundamental soliton: single humped u 0.5 0-0.5-1 -1.5-2 -2.5-3 20 30 40 50 60 70 80 max u = 2.5667 t Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 27 Nation / 29

Thank you for your attention. Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 28 Nation / 29

1 Waveguiding of a few-cycle pulse How to model it Nonlinear widening of the linear guided modes 2 Waveguide coupling in the few-cycle regime Derivation of the coupling terms Few-cycle optical solitons in linearly coupled waveguides 3 Few cycle spatiotemporal solitons in waveguide arrays Formation of a solitons from a Gaussian pulse Two kind of solitons Leblond, Mihalache, Kremer, Terniche ( Laboratoire Propagation de Photonique de solitonsd Angers optiqueslϕa à quelques EA 4464, cycles Université dans des d Angers., guides d ondes Horia couplés Hulubei 29 Nation / 29