Neuro-Adaptive Design II:

Similar documents
Neuro-Adaptive Design - I:

Integrals and Invariants of Euler-Lagrange Equations

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

EEE 241: Linear Systems

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

Introduction. - The Second Lyapunov Method. - The First Lyapunov Method

Dynamic Inversion Design II

Integrals and Invariants of

risk and uncertainty assessment

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Linear Feature Engineering 11

Adaptive sliding mode reliable excitation control design for power systems

Multilayer Perceptron (MLP)

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Numerical Heat and Mass Transfer

Appendix B. The Finite Difference Scheme

Errors for Linear Systems

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

Off-policy Reinforcement Learning for Robust Control of Discrete-time Uncertain Linear Systems

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

Design and Optimization of Fuzzy Controller for Inverse Pendulum System Using Genetic Algorithm

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Finding The Rightmost Eigenvalues of Large Sparse Non-Symmetric Parameterized Eigenvalue Problem

Suppose that there s a measured wndow of data fff k () ; :::; ff k g of a sze w, measured dscretely wth varable dscretzaton step. It s convenent to pl

A Fuzzy-Neural Adaptive Iterative Learning Control for Freeway Traffic Flow Systems

Polynomial Regression Models

Parameter Estimation for Dynamic System using Unscented Kalman filter

Digital Signal Processing

Erratum: A Generalized Path Integral Control Approach to Reinforcement Learning

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

1 Convex Optimization

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method

PARTICIPATION FACTOR IN MODAL ANALYSIS OF POWER SYSTEMS STABILITY

A Hybrid Variational Iteration Method for Blasius Equation

4DVAR, according to the name, is a four-dimensional variational method.

Iterative General Dynamic Model for Serial-Link Manipulators

10.34 Numerical Methods Applied to Chemical Engineering Fall Homework #3: Systems of Nonlinear Equations and Optimization

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Second Order Analysis

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

Improved delay-dependent stability criteria for discrete-time stochastic neural networks with time-varying delays

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Winter 2008 CS567 Stochastic Linear/Integer Programming Guest Lecturer: Xu, Huan

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

COEFFICIENT DIAGRAM: A NOVEL TOOL IN POLYNOMIAL CONTROLLER DESIGN

The Concept of Beamforming

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

Relevance Vector Machines Explained

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Robust observed-state feedback design. for discrete-time systems rational in the uncertainties

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

Linear Approximation with Regularization and Moving Least Squares

CS : Algorithms and Uncertainty Lecture 17 Date: October 26, 2016

Finite Element Modelling of truss/cable structures

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Modeling of Dynamic Systems

Singular Value Decomposition: Theory and Applications

Advanced Mechanical Elements

On Finite Rank Perturbation of Diagonalizable Operators

2. PROBLEM STATEMENT AND SOLUTION STRATEGIES. L q. Suppose that we have a structure with known geometry (b, h, and L) and material properties (EA).

The Quadratic Trigonometric Bézier Curve with Single Shape Parameter

One-sided finite-difference approximations suitable for use with Richardson extrapolation

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

DUE: WEDS FEB 21ST 2018

Stability and Stabilization for Discrete Systems with Time-varying Delays Based on the Average Dwell-time Method

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

Convexity preserving interpolation by splines of arbitrary degree

Multilayer neural networks

The Analytical Solution of a System of Nonlinear Differential Equations

Handout # 6 (MEEN 617) Numerical Integration to Find Time Response of SDOF mechanical system. and write EOM (1) as two first-order Eqs.

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Tensor Smooth Length for SPH Modelling of High Speed Impact

Mathematical Preparations

Applied Mathematical Modelling

6.3.4 Modified Euler s method of integration

On a direct solver for linear least squares problems

Modeling curves. Graphs: y = ax+b, y = sin(x) Implicit ax + by + c = 0, x 2 +y 2 =r 2 Parametric:

Observers for non-linear differential-algebraic. system

829. An adaptive method for inertia force identification in cantilever under moving mass

IV. Performance Optimization

Lecture 5 Decoding Binary BCH Codes

Image Analysis. Active contour models (snakes)

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

Decentralized robust control design using LMI

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1

SIMULATION OF ROBUST CONTROL OF TEMPERATURE FIELDS IN DPS BLOCKSET FOR MATLAB & SIMULINK

Course 395: Machine Learning - Lectures

Visualization of the Economic Impact of Process Uncertainty in Multivariable Control Design

1 Derivation of Point-to-Plane Minimization

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

Lecture 4: Universal Hash Functions/Streaming Cont d

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

Transcription:

Lecture 37 Neuro-Adaptve Desgn II: A Robustfyng Tool for Any Desgn Dr. Radhakant Padh Asst. Professor Dept. of Aerospace Engneerng Indan Insttute of Scence - Bangalore

Motvaton Perfect system modelng s dffcult Sources of mperfecton Unmodelled dynamcs (mssng algebrac terms n the model) Inaccurate knowledge of system parameters Change of system parameters/dynamcs durng operaton Black box adaptve approaches exst. But, makng use of exstng desgn s better! (faster adaptaton, chance of nstablty before adaptaton s mnmal) The adaptve desgn should preferably be compatble wth any nomnal control desgn Dr. Radhakant Padh, AE Dept., IISc-Bangalore

Reference Radhakant Padh, Nshant Unnkrshnan and S. N. Balakrshnan, Model Followng Neuro-Adaptve Control Desgn for Non-square, Nonaffne Nonlnear Systems, IET Control Theory and Applcatons, Vol. 1 (6), Nov 007, pp.1650-1661. Dr. Radhakant Padh, AE Dept., IISc-Bangalore 3

Modelng Inaccuracy: A Smple Example ( ) 0.1sn( ) x = sn x + x Known part of actual system (nomnal system) Unknown part of actual system ( x) csn( x) = sn +Δ Weght Bass Functon Dr. Radhakant Padh, AE Dept., IISc-Bangalore 4

Objectve: To ncrease the robustness of a nomnal controller wth respect to parameter and/or modelng naccuraces, whch lead to mperfectons n the system model. Dr. Radhakant Padh, AE Dept., IISc-Bangalore 5

Problem Descrpton and Strategy Desred Dynamcs: Actual Plant: Goal: (, ) X = f X U d d d X = f( X, U) + d( X) (unknown) X X, as t d Approxmate System: Strategy: ( ) X = f( X, U) + dˆ ( X) + K X X ( K > 0) a a a X X, a Xd as t a NN Approx. Dr. Radhakant Padh, AE Dept., IISc-Bangalore 6

Steps for assurng Select a gan matrx K > 0 such that E + K E = 0, E X X Ths leads to Solve for the control X a X { f ( X U) dˆ ( X) K ( )} a X Xa f ( Xd Ud) K( Xa Xd), + +, + = 0 { } d d a a a d (, ) = (, ) ˆ ( ) ( ) ( ) f X U f X U d X K X X K X X ( ) = ( ) e.. f X, U h X, X, X, U U a d d d ( ) d d d a d Dr. Radhakant Padh, AE Dept., IISc-Bangalore 7

Control Soluton: (No. of controls = No. of states) Affne Systems: ( ) + ( ) = (,,, ) f X g X U h X X X U d a d 1 [ ( )] (,,, ) ( ) { } U= g X h X X X U f X d a d Non-affne Systems: Use Numercal Method (e.g. N-R Technque) (, ) = (,,, ) f XU h X X X U ( U ) guess k d a d Ud : k = 1 = Uk 1 : k =,3,... Dr. Radhakant Padh, AE Dept., IISc-Bangalore 8

Control Soluton: (No. of controls < No. of states) Modfy X a dynamcs: (, ) ˆ ( ) ( ) ( ) ( ) X = f X U + d X Ψ X U +Ψ X U + K X X a s s a a (, ) ˆ ( ) ( ) ( ) = f X U + d X +Ψ X U + K X X a s a a Solve for the control from: { f ( X U) d ˆ ( ) ( ) ( )} a X X Us Ka X Xa f ( Xd Ud) K( Xa Xd), + +Ψ +, + = 0 { } (, ) +Ψ ( ) = (, ) ˆ ( ) ( ) ( ) f X U X U f X U d X K X X K X X s d d a a a a d (,,, ) = h X X X U a d d Dr. Radhakant Padh, AE Dept., IISc-Bangalore 9

Soluton for affne systems: (No. of controls < No. of states) { f ( X) + g( X) U} +Ψ ( X) Us = h( X, Xa, Xd, Ud) U f X g X X h X X X U ( ) + ( ) Ψ( ) = (,,, ) U s a d d ( ) = ( ) + (,,, ) G X V f X h X X X U 1 ( ) ( ) (,,, ) a d d { a d d } V= G X f X + h X X X U Extract U from V For smplcty, we wll not consder ths specal case n our further dscusson. Dr. Radhakant Padh, AE Dept., IISc-Bangalore 10

Steps for assurng X X a Error: Error Dynamcs: ( ), ( ) E X X e x x a a a a (, ) ( ) (, ) ˆ ( ) x = f X U + d X x = f X U + d X + k e a a a e = x x a a d ( ) ˆ X d( X) kae a T { ( ) } ˆ T ε ( ) T ( ) ε = = W Φ X + W Φ X k e a a e = W Φ X + k e a a a Dr. Radhakant Padh, AE Dept., IISc-Bangalore Ideal neural network T d ( X) = W ϕ ( X) + ε Actual neural network ˆ ( ) ˆ T d X = W ϕ ( X) ( W ˆ ) W W 11

Stable Functon Learnng Lyapunov Functon Canddate 1 1 L = pe a + W W p γ > γ ( ) ( T ) (, 0) Dervatve of Lyapunov Functon 1 T L = pe e + W W γ a a 1 = pe W Φ X + k e W Wˆ W W Wˆ γ ( T T ( ) ε ) ( ) a a a T 1 W pe X W ˆ = Φ + pe k pe γ ( ) ε a a a a 0 Dr. Radhakant Padh, AE Dept., IISc-Bangalore 1

Stable Functon Learnng Weght update rule (Neural network tranng) Wˆ = γ pe Φ X a ( ) Dervatve of Lyapunov Functon L = pe ε k pe a a a The system s Practcally Stable L < 0 f e > / k ( ε ) a a Dr. Radhakant Padh, AE Dept., IISc-Bangalore 13

Neuro-adaptve Desgn: Implementaton of Controller Weght update rule: where, Wˆ e = γ pe Φ, Wˆ 0 = 0 γ : Learng rate a Φ a : Bass functon ( ) ( ) Estmaton of unknown functon: dˆ X = x x = Wˆ a T Φ Dr. Radhakant Padh, AE Dept., IISc-Bangalore 14

Neuro-adaptve Desgn: Implementaton of Controller Desred Dynamcs: Actual Plant: (, ) X = f X U d d d (unknown) X = f( X, U) + d( X) In realty, X(t) should be avalable from sensors and flters! Approxmate System: NN Approxmaton ( ) ( ) X = f ( X, U ) + dˆ ( X ) + K X X, K > 0 pdf a a a a Intal Condton: ( ) = ( ) = ( ) X 0 X 0 X 0 : known d a Dr. Radhakant Padh, AE Dept., IISc-Bangalore 15

Example 1 A Motvatng Scalar Problem Dr. Radhakant Padh Asst. Professor Dept. of Aerospace Engneerng Indan Insttute of Scence - Bangalore

Example 1: A scalar problem System dynamcs (nomnal system) System dynamcs (actual system) Problem objectves: ( ) ( 1 ) x = x + x + + x u d d d d d ( ) ( 1 ) ( ) x = x+ x + + x u+ d x d( x) = sn ( π x/ ) ( unknown for control desgn) * Nomnal control desgn: x 0 * Adaptve control desgn: x Note: The objectve x x should be acheved much faster than x 0 d d x d d Dr. Radhakant Padh, AE Dept., IISc-Bangalore 17

Example 1: A scalar problem Nomnal control (dynamc nverson) Nomnal control Adaptve control Desgn parameters k =.5 k = 1 p = 1 γ = 30 a ( x) ( x/ x ) ( x/ x ) ( x/ x ) Φ = 3 0 0 0 ( x 0) + ( 1/ τ ) ( x 0) = 0 ( τ = 1) d d d d 1 ( ) ( 1 ) u = + x x + x + x d d d d d ( xd + xd ) + ( 1+ xd ) ud k( xa xd ) ( ) ˆ ( ) a( a) 1 u = 1+ + x x x d x k x x T Dr. Radhakant Padh, AE Dept., IISc-Bangalore 18

Example 1: A scalar problem State Trajectory Control Trajectory Dr. Radhakant Padh, AE Dept., IISc-Bangalore 19

Example 1: A scalar problem Approxmaton of the unknown functon Dr. Radhakant Padh, AE Dept., IISc-Bangalore 0

Example Double Inverted Pendulum: A Benchmark Problem Dr. Radhakant Padh Asst. Professor Dept. of Aerospace Engneerng Indan Insttute of Scence - Bangalore

Example : Double nverted pendulum Dr. Radhakant Padh, AE Dept., IISc-Bangalore

Example : Double nverted pendulum Nomnal Plant: Actual Plant: x 1 x 1 = x1 kr u kr x = α sn( x ) + l b + tanh u + sn x x = x 1max ( ) ( ) ( ) 1 1 1 1 1 1 J1 J1 4J1 1 = x x = α sn( x ) + kr l b u + tanh u kr + sn x max ( ) ( ) ( ) 1 1 1 J J 4J 1 1 1 1 kr u1 tanh ( u1) kr 1 1 = ( α1 +Δ α1)sn( 1) + ( ) + + sn( ) + m1 J1 J1 4J1 1 = x 1 kr u tanh ( u) kr 1 = ( α +Δ α)sn( ) + ( ) + + sn ( 1) + m J J 4J x x l b x K e x 1 max ax 1 1 x x l b x K e 1 max ax Dr. Radhakant Padh, AE Dept., IISc-Bangalore 3

Example : Double nverted pendulum α β ξ σ mgr J kr J u max J kr 4J kr 4J ( l b) Dr. Radhakant Padh, AE Dept., IISc-Bangalore 4

Example : Double nverted pendulum Parameters n unknown functon Δα, Δα : 0% off 1 Control desgn parameters K = 0. I4, Ka = I4 10 10 0 0 ψ ( X ) = 10 10 10 10 p γ = p4 = 1 = γ 4 = 0 ( ) T a1 = a = 0.01 K m = K = m 1 0.1 17 17 T Φ X = 1 x1 /1! x1 /17! 1 x /1! x /17! 17 17 T Φ 4( X) = 1 x3 /1! x3 /17! 1 x4 /1! x4 /17! Dr. Radhakant Padh, AE Dept., IISc-Bangalore 5

Example : Double nverted pendulum Poston of Mass 1 Velocty of Mass 1 Dr. Radhakant Padh, AE Dept., IISc-Bangalore 6

Example : Double nverted pendulum Poston of Mass Velocty of Mass Dr. Radhakant Padh, AE Dept., IISc-Bangalore 7

Example : Double nverted pendulum Torque for Mass 1 Torque for Mass Dr. Radhakant Padh, AE Dept., IISc-Bangalore 8

Example : Double nverted pendulum Capturng d ( X ) Capturng d ( X) 4 Dr. Radhakant Padh, AE Dept., IISc-Bangalore 9

Neuro-Adaptve Desgn for Output Robustness Dr. Radhakant Padh Asst. Professor Dept. of Aerospace Engneerng Indan Insttute of Scence - Bangalore

N-A for Robustness of Output Dynamcs Desred output dynamcs: Actual output dynamcs: Y = f X + G X U + d X Y d ( ) ( ) ( ) Y d Objectve: Y Y d as soon as possble Dr. Radhakant Padh, AE Dept., IISc-Bangalore 31

N-A for Robustness of Output Dynamcs Dynamcs of auxlary output: ( ) ˆ Y = f X + G ( X) U + d( X) + K ( Y Y ) a Y Y a a d d Strategy: Approxmate state NN Approx. Y a Actual Y state Y d Desred state Dr. Radhakant Padh, AE Dept., IISc-Bangalore 3

Steps for assurng Ya Yd Enforce the error dynamcs E + KE = 0 E ( Y Y ) d d d a d After carryng out the necessary algebra f( X, U) = h( X, X, X, U ) In case of control affne system The control s gven by a d d f ( X ) + [ g( X)] U = h( X, X, X, U ) d a d U = g X h X X X U f X 1 [ ( )] { (, d, a, d) ( )} Dr. Radhakant Padh, AE Dept., IISc-Bangalore 33

Steps for assurng Y Y a The error n the output s defned as E ( Y Y ) e ( y y ) a a a a Ideal neural network s gven by: T d ( X) = W ϕ ( X) + ε where W s the weght matrx and ϕ ( X ) s the radal bass functon Dr. Radhakant Padh, AE Dept., IISc-Bangalore 34

Functon Learnng: Defne error e Output dynamcs a Δ ( y ya y = f ( X) + g ( X) U + d ( X) Y Y y = f ( X) + g ( X) U + dˆ ( X) + k e a Y Y a a Error dynamcs e = d ( X) dˆ ( X) k e a a a T = W Φ ( X) + ε k e a a ) From unversal functon approxmaton property T d ( X) = W ϕ ( X) + ε ˆ ( ) ˆ T d X = W ϕ ( X) Dr. Radhakant Padh, AE Dept., IISc-Bangalore 35

Lyapunov Stablty Analyss Lyapunov Functon Canddate: Dervatve of Lyapunov Functon: Weght Update Rule: L = e pe + W γ W T a a T T = e ( ) ˆ a p W Φ X + ε kae a W γw = W e p ( X) γ Wˆ Φ + e pε k e p a T 1 a a a 0 Dr. Radhakant Padh, AE Dept., IISc-Bangalore 36

Lyapunov Stablty Analyss Ths condton leads to L = e p ε k a a e a p whenever e > ε / k a a Usng the Lyapunov stablty theory, we conclude that the trajectory of ea and W ~ are pulled towards the orgn. Hence, the output dynamcs s Practcally Stable! Dr. Radhakant Padh, AE Dept., IISc-Bangalore 37

Neuro-Adaptve Desgn wth Modfed Weght Update Rule (wth σ modfcaton) Dr. Radhakant Padh Asst. Professor Dept. of Aerospace Engneerng Indan Insttute of Scence - Bangalore

Neuro-adaptve Desgn wth σ Modfcaton Weght update rule: where, ˆ W = γ e Φ γσwˆ, Wˆ 0 = 0 γ : Learng rate, e = x x a Φ a : Bass functon Estmaton of unknown functon: dˆ X ( ) a ˆ T = W Φ σ ( ) > 0: Stablzng factor Dr. Radhakant Padh, AE Dept., IISc-Bangalore 39

Neuro-adaptve Desgn wth σ Modfcaton Lyapunov functon canddate: 1 1 T 1 v = ea + W γ W p = Then v = e e + W γ W T 1 a a ( ε ) ( Note: 1) T = e e + σw Wˆ (can be derved so, wth k = 1) a a a Consder the last term n v T ˆ 1 WW = ( T WW ˆ ) 1 T 1 T T = W W W = W W W W ( ) ( ) Dr. Radhakant Padh, AE Dept., IISc-Bangalore 40

Neuro-adaptve Desgn wth σ Modfcaton However, T T T WW = WW + WW ( ˆ ) ( ˆ ) T T = W W + W + W W W T ˆ T T ˆ T = WW + WW + WW WW ˆ T T T = W W W + W W + W W ( ) ˆ T ˆ T T = WW + WW + WW T ˆ 1 ˆ T ˆ T T T T σww = σ WW+ WW + WW WW WW 1 ( ˆ T ˆ T T = σww σww + σww) 1 ( ) σ W ˆ σ W + σ W Hence, ( ) Dr. Radhakant Padh, AE Dept., IISc-Bangalore 41

Neuro-adaptve Desgn wth σ Modfcaton Hence, the equaton for v becomes 1 1 1 v ˆ eaε ea σ W σ W + σ W ea ε 1 1 1 + e W W + W ea ε 1 1 1 σ ˆ + + W σ W σ W ˆ a σ σ σ Dr. Radhakant Padh, AE Dept., IISc-Bangalore 4

Neuro-adaptve Desgn wth σ Modfcaton Defnng β ( ) W W W ε 1 ˆ + σ We have v ea < 0, whenever > β e.. v < 0, whenever e > β a Dr. Radhakant Padh, AE Dept., IISc-Bangalore 43

Summary: Neuro-Adaptve Desgn N-A Desgn: A generc model-followng adaptve desgn for robustfyng any nomnal controller It s vald for both non-square and nonaffne problems n general Extensons: Robustness of output dynamcs only Structured N-A desgn for effcent learnng Dr. Radhakant Padh, AE Dept., IISc-Bangalore 44

References Padh, R., Unnkrshnan, N. and Balakrshnan, S. N., Model Followng Neuro-Adaptve Control Desgn for Non-square, Non-affne Nonlnear Systems, IET Control Theory and Applcatons, Vol. 1 (6), Nov 007, pp.1650-1661. Padh, R., Kothar, M., An Optmal Dynamc Inverson Based Neuro-adaptve Approach for Treatment of Chronc Myelogenous Leukema, Computer Methods and Programs n Bomedcne, Vol. 87, 007, pp. 08-4. Rajasekaran, J., Chunodkar, A. and Padh, R., Structured Model-followng Neuro-adaptve Desgn for Atttude Maneuver of Rgd Bodes, Control Engneerng Practce, Vol. 17, 009, pp.676-689. Dr. Radhakant Padh, AE Dept., IISc-Bangalore 45

Dr. Radhakant Padh, AE Dept., IISc-Bangalore 46