Warning!! Chapter 5 Gases. Chapter Objectives. Chapter Objectives. Chapter Objectives. Air Pollution

Similar documents
C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 5 GASES INSTR : FİLİZ ALSHANABLEH

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases. Characteristics of Gases. Unlike liquids and solids, gases

Chapter 11 Gases 1 Copyright McGraw-Hill 2009

Chapter 10. Gases THREE STATES OF MATTER. Chapter 10 Problems 6/29/2012. Problems 16, 19, 26, 33, 39,49, 57, 61

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings.

Chapter 5. The Gas Laws

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10. Gases.

AP Chemistry Ch 5 Gases

Part One: The Gas Laws. gases (low density, easy to compress)

Properties of Gases. 5 important gas properties:

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams.

Gases: Their Properties & Behavior. Chapter 09 Slide 1

vapors: gases of substances that are normally liquids or solids 1 atm = 760 mm Hg = 760 torr = kpa = bar

Chapter 5. Gases and the Kinetic-Molecular Theory

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI.

Chapter 5 The Gaseous State

Gas Density. Standard T & P (STP) 10/29/2011. At STP, 1 mol of any ideal gas occupies 22.4 L. T = 273 K (0 o C) P = 1 atm = kpa = 1.

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Gases. A gas. Difference between gas and vapor: Why Study Gases?

7/16/2012. Characteristics of Gases. Chapter Five: Pressure is equal to force/unit area. Manometer. Gas Law Variables. Pressure-Volume Relationship

Although different gasses may differ widely in their chemical properties, they share many physical properties

B 2, C 2, N 2. O 2, F 2, Ne 2. Energy order of the p 2p and s 2p orbitals changes across the period.

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Section Using Gas Laws to Solve Problems

Chapter 10 Notes: Gases

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

AP Chemistry Unit 5 - Gases

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Why study gases? A Gas 10/17/2017. An understanding of real world phenomena. An understanding of how science works.

Example Problems: 1.) What is the partial pressure of: Total moles = 13.2 moles 5.0 mol A 7.0 mol B 1.2 mol C Total Pressure = 3.

10/16/2018. Why study gases? An understanding of real world phenomena. An understanding of how science works.

Chapter 10. Gases. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

GASES (Chapter 5) Temperature and Pressure, that is, 273 K and 1.00 atm or 760 Torr ) will occupy

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

The Kinetic-Molecular Theory of Gases

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

L = 6.02 x mol Determine the number of particles and the amount of substance (in moles)

Gases and Kinetic Theory

Chapter Ten- Gases. STUDY GUIDE AP Chemistry

Lecture 2 PROPERTIES OF GASES

Chapter 5 The Gaseous State

10/15/2015. Why study gases? An understanding of real world phenomena. An understanding of how science works.

Comparison of Solids, Liquids, and Gases

Gases! n Properties! n Kinetic Molecular Theory! n Variables! n The Atmosphere! n Gas Laws!

Standard T & P (STP) At STP, 1 mol of any ideal gas occupies 22.4 L. The standard temperature and pressure for gases is:

Chapter 10 Gases. Measurement of pressure: Barometer Manometer Units. Relationship of pressure and volume (Boyle s Law)

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 13. Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion

Pressure. Pressure Units. Molecular Speed and Energy. Molecular Speed and Energy

CHEMISTRY Matter and Change. Chapter 13: Gases

Chapter 10. Chapter 10 Gases

Ch 6 Gases 6 GASES. Property of gases. pressure = force/area

Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Gases: Units of pressure: the pascal(pa)(1 Pa = 1 N/m2 = 1 kg m-1

12.2. The Ideal Gas Law. Density and Molar Mass of Gases SECTION. Key Terms

Chapter 10. Gases. Characteristics of Gases. Units of Pressure. Pressure. Manometer. Units of Pressure 27/07/2014 P = F A

Chapter 5 Gases and the Kinetic-Molecular Theory

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory

Test Bank for Chemistry 9th Edition by Zumdahl

Chapter 10 Gases Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10.

What we will learn about now

Gases and Kinetic Molecular Theory

Hood River Valley High

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin

Some Fundamental Definitions:

Summary of Gas Laws V T. Boyle s Law (T and n constant) Charles Law (p and n constant) Combined Gas Law (n constant) 1 =

D g << D R < D s. Chapter 10 Gases & Kinetic Molecular Theory. I) Gases, Liquids, Solids Gases Liquids Solids. Particles far apart

Atomic Mass and Atomic Mass Number. Moles and Molar Mass. Moles and Molar Mass

Regions of the Atmosphere

Chemistry 11. Unit 11 Ideal Gas Law (Special Topic)

KINETIC MOLECULAR DESCRIPTION OF THE STATES OF MATTER

Gases and the Kinetic Molecular Theory

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction.

Chapter 10. Gases. The Gas Laws

Preparation of the standard solution. Exp 5: Copyright Houghton Mifflin Company.All

Gases. Chapter 5. Elements that exist as gases at 25 0 C and 1 atmosphere

UNIT 10.

Slide 1 / A gas at a pressure of 10.0 Pa exerts a force of N on an area of 5.5 m 2 A 55 B 0.55 C 5.5 D 1.8 E 18

Calculate the mass of L of oxygen gas at 25.0 C and 1.18 atm pressure.

Chapter 5 Gases. Chapter 5: Phenomena. Properties of Gases. Properties of Gases. Pressure. Pressure

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas

Quick Review 1. Properties of gases. 2. Methods of measuring pressure of gases. 3. Boyle s Law, Charles Law, Avogadro s Law. 4. Ideal gas law.

Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures

CHEMISTRY II B. Chapter 10 & Chapter 12. Gases

Gases. Chapter 11. Preview. 27-Nov-11

Centimeters of mercury

Gases. Which elements exist as gases at ordinary temperature and pressure? Gases: Have simple molecular formulas. Chapter 10 part 1: Ideal Gases

Chapter 5: Phenomena. Chapter 5: Gases. Molar Mass. Volume (L) Amount (mol) Pressure (atm) Temperature ( C) Odor

Chapter 10 Gases. Dr. Ayman Nafady. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E.

Gas Volumes and the Ideal Gas Law

IMPORTANT CONCEPTS. 5.1 Pressure Units for pressure STP. 5.6 Kinetic Molecular Theory. 5.3 Ideal Gas Law. 5.4 Gas Stoichiometry Gas density Molar mass

General Properties of Gases

The Kinetic-Molecular Theory of Gases

The Gaseous State of Matter

Comparison of Solid, Liquid, and Gas

SAMPLE EXERCISE 10.1 Converting Units of Pressure. SAMPLE EXERCISE 10.1 continued

Chapter 5 Gases. A Gas- Uniformly fills any container Mixes completely with any other gas Can easily be compressed Exerts pressure on its surroundings

4. 1 mole = 22.4 L at STP mole/volume interconversions at STP

Transcription:

Warning!! Larry Brown Tom Holme www.cengage.com/chemistry/brown Chapter 5 Gases These slides contains visual aids for learning BUT they are NOT the actual lecture notes! Failure to attend to lectures most probably result in failing the lecture! So I strongly recommend that you attend to the classes. Take a pen, a notebook and WRITE! Jacqueline Bennett SUNY Oneonta 2 Chapter Objectives Describe the physical properties of gases. Identify several gaseous compounds or classes of compounds that are important in urban air pollution. Use the ideal gas law for calculating changes in the conditions of gases. Use the concept of partial pressure to work with mixtures of gases. Chapter Objectives Perform stoichiometric calculations for reactions involving gases as reactants or products. State the postulates of the kinetic theory of gases. Describe qualitatively how the postulates of the kinetic theory account for the observed behavior of gases. Describe the Maxwell-Boltzmann distribution of speeds and the effects of temperature and molar mass on molecular speed. 3 4 Chapter Objectives Identify conditions under which gases might not behave ideally. Use the van der Waals equation to perform calculations for gases under nonideal conditions. Describe the principles of operation for some pressuremeasuring devices. Clean air is a mixture of several gases. Nitrogen and oxygen are major components Water vapor (humidity) varies with place, time, and temperature. Dry air is a convenient reference point 5 6 1

Six Principal Criteria Pollutants CO, NO 2, O 3, SO 2, Pb, and Particulate Matter (PM) Commonly found throughout the country; cause a variety of negative effects on health, environment, and/or property. EPA established criteria for acceptable levels: Primary standards intended to protect health. Nonattainment area: region that exceeds primary standards Secondary standards intended to protect environment and property. The criteria pollutant nitrogen dioxide, NO 2, is emitted by automobiles. High temperatures inside car engines cause oxygen and nitrogen to react to produce a variety of nitrogen oxides, designated with the generic formula NO x. Brown color of smog due to NO 2 ; attacks lung membranes Allowable levels usually less than one part per million (ppm). 7 8 Photochemical reactions, reactions initiated by light energy, can trigger formation of ozone, another criteria pollutant, at ground level from: nitrogen oxides volatile organic compounds (VOCs): hydrocarbons that readily evaporate Reactions between these two types of compounds produce a mixture a gases collectively referred to as smog. Many components are lung irritants. Ozone is the most significant lung irritant. Pollutant levels vary with time of day and location. 9 10 Properties of Gases Expand to fill the volume of any container. Have much lower densities than solids or liquids. Have highly variable densities, depending on conditions. Mix with one another readily and thoroughly. Change volume dramatically with changing temperature. Properties of Gases The ideal gas law is the quantitative relationship between pressure (P), volume (V), moles gas present (n), and the absolute temperature (T). R is the universal gas constant. R = 0.08206 L atm mol -1 K -1 : used in most gas equations R = 8.314 J mol -1 K -1 : used in equations involving energy PV nrt 11 12 2

Pressure Pressure Pressure is force per unit area. P F A Atmospheric pressure is the force attributed to the weight of air molecules attracted to Earth by gravity. As altitude increases, atmospheric pressure decreases. Pressure results from molecular collisions between gas molecules and container walls. Each collision imparts a small amount of force. Summation of the forces of all molecular collisions produces the macroscopic property of pressure. 13 14 Measuring Pressure History and Application of the Gas Law A barometer is used to measure atmospheric pressure. The height of the mercury column is proportional to atmospheric pressure. Units of Pressure 1 torr = 1 mm Hg 1 atm = 760 torr (exactly) 1 atm = 101,325 Pa (exactly) 760 torr = 101,325 Pa (exactly) Gases change significantly when the conditions in which they are found are altered. These changes are determined empirically using gas laws. Charles s Law: relationship between T and V Boyle s Law: relationship between P and V Avogadro s Law: relationship between n and V The empirical gas laws led to the ideal gas law 15 16 Charles s Law Jacques Charles studied relationship between volume and temperature. Plots of V versus T for different gas samples converged to the same temperature at zero volume. Basis of the Kelvin temperature scale. Charles s Law For fixed pressure and fixed number of moles of gas, the volume and the absolute temperature of a gas are directly proportional. V T All of the fixed variables can be factored out of the ideal gas law as a new constant that can be used to relate two sets of conditions: V 1 T 1 nr P constant V 2 T 2 17 18 3

Boyle s Law Avogadro s Law Pressure and volume are inversely proportional. V 1 P Avogadro s Law states that for fixed pressure and temperature, the volume and moles of a gas are directly proportional. V n All of the fixed variables can be factored out as a new constant that can be used to relate two sets of conditions: P 1 V 1 nrt constant P 2 V 2 V 1 n 1 RT P constant V 2 n 2 19 20 Example Problem 5.1 A common laboratory cylinder of methane has a volume of 49.0 L and is filled to a pressure of 154 atm. Suppose that all of the CH 4 from this cylinder is released and expands until its pressure falls to 1.00 atm. What volume would the CH 4 occupy? Example Problem 5.2 A balloon is filled with helium and its volume is 2.2 L at 298 K. The balloon is then dunked into a thermos bottle containing liquid nitrogen. When the helium in the balloon has cooled to the temperature of the liquid nitrogen (77 K), what will the volume of the balloon be? 21 22 Units and the Ideal Gas Law Example Problem 5.3 Temperature must be expressed in Kelvin for all gas calculations! Negative temperatures would result in negative pressures, volumes, and moles. In some engineering fields, the Rankine temperature scale is used, which is another absolute temperature scale. 0 R = 0 K; 1 R = 1.8 K A sample of CO 2 gas has a volume of 575 cm 3 at 752 torr and 72 F. What is the mass of carbon dioxide in this sample? The unit for moles is always mol. The units for measuring pressure and volume can vary. In gas calculations, these units must agree with those of the gas constant R = 8.314 J mol -1 K -1 R = 0.08206 L atm mol -1 K -1 R = 62.37 L torr mol -1 K -1 23 24 4

Partial Pressure Partial Pressure Air is a mixture of gases. Gas laws do not depend on identity of gases. Pressure due to total moles gas present. The pressure exerted by a component of a gas mixture is called the partial pressure for the component gas. Dalton s law of partial pressures: The total pressure (P) of a mixture of gases is the sum of the partial pressures of the component gases (P i ). P i P i Daltons Law can be expressed in terms of mole fraction. Mole fraction (X i ) for a gas in a gas mixture is the moles of the gas (n i ) divided by the total moles gas present. The partial pressure of each gas is related to its mole fraction. X i n i P i X i P n total 25 26 Example Problem 5.4 A scientist tries to generate a mixture of gases similar to a volcano by introducing 15.0 g of water vapor, 3.5 g of SO 2, and 1.0 g of CO 2 into a 40.0 L vessel held at 120.0 C. Calculate the partial pressure of each gas and the total pressure. Example Problem 5.5 A mixture has the mole fractions given in the following table: Gas N 2 O 2 H 2 O SO 2 Mole Fraction 0.751 0.149 0.080 0.020 If the desired pressure is 750. torr, what should the partial pressures be for each gas? If the gas is to be in a 15.0 L vessel held at 30 C, how many moles of each substance are needed? 27 28 Stoichiometry of Reactions Involving Gases For reactions involving gases, the ideal gas law is used to determine moles of gas involved in the reaction. Use mole ratios (stoichiometry) Example Problem 5.6 When an experiment required a source of carbon dioxide, a student combined 1.4 g of sodium bicarbonate (NaHCO 3 ) with excess hydrochloric acid (HCl). If the CO 2 produced is collected at 722 torr and 17 C, what volume will the gas occupy? Connect number of moles of a gas to its temperature, pressure, or volume with ideal gas law PV nrt 29 30 5

STP Conditions Example Problem 5.7 Standard temperature and pressure, STP, for a gas is 0 C (273.15 K) and 1 atm. For one mole of gas at STP, the standard molar volume is 22.41 L (calculated using ideal gas law) Carbon dioxide can be removed from a stream of gas by reacting it with calcium oxide to form calcium carbonate. If we react 5.50 L of CO 2 at STP with excess CaO, what mass of calcium carbonate will form? This number provides a conversion factor for stoichiometric problems that include gases, provided the STP conditions are maintained. 31 32 Kinetic-Molecular Theory and Ideal versus Real Gases In many important practical settings, gases do not always behave ideally, especially at very high pressure and/or very low temperature. Nonideal gas behavior can be explained using Kinetic Molecular Theory. Provides connections between observed macroscopic properties of gases, the gas law equation, and the behavior of gas molecules on a microscopic scale. Gases are made up of large collections of particles, which are in constant, random motion. Gas particles are infinitely small and occupy negligible volume. Gas particles move in straight lines except when they collide with other particles or with the container walls. These collisions are elastic, so kinetic energy of particles is conserved. Particles interact with each other only when collisions occur. 33 34 The average kinetic energy of a gas is proportional to the absolute temperature of the gas but does not depend upon the identity of the gas KE avg 1 2 m 2 rms As temperature increases, average speed for gas molecules increases. Faster moving molecules collide more often and with greater force, exerting a higher pressure. At a given temperature, gas molecules in a sample can be characterized by an average speed. Some gas molecules move faster than average, some move slower than average. The distribution function that describes the speeds of a collection of gas particles is known as the Maxwell- Boltzmann distribution of speeds. 35 36 6

As temperature increases, average speed increases. As temperature increases, the fraction of molecules moving at higher speeds increases. For a fixed temperature, as the molecular weight increases, the average speed for the gas molecules decreases. 37 38 The equation for the Maxwell-Boltzmann distribution describes N(), which is the number of molecules moving with speeds close to. N() M 4 2 RT N total Most gas molecules move at the most probable speed, which is the peak of the curve in the Maxwell-Boltzmann plot. mp 3/2 2RT M 2 e M2 /2 RT 39 The Maxwell-Boltzmann distribution can be described in terms of the average speed or root-mean-square speed. Average speed, avg, is 1.128 times mp. The existence of the tail on the distribution curve at high speeds will pull the average to a speed higher than the most probable value. rms = 1.085 times avg. The root-mean-square speed is useful because the average kinetic energy is given by KE avg 1 2 m 2 rms 40 Real Gases and Limitations of the Kinetic Theory Real Gases and Limitations of the Kinetic Theory Kinetic molecular theory implies that the volume of a gas molecule is insignificant compared to the empty space volume for a gas sample. Mean free path used to test validity of assumption. Average distance a particle travels between collisions with other particles. The mean free path for air at room temperature and atmospheric pressure is 70 nm. This value is 200 times larger than the typical radius of a small molecule like N 2 or O 2. Volume of empty space in a gas is 1 million times that of gas particle volume. The volume of a gas particle is significant compared to the empty space volume under high pressure conditions. Mean free path decreases as pressure increases. Gas molecules are very close together. Therefore, volume of the gas particles becomes significant. 41 42 7

Real Gases and Limitations of the Kinetic Theory Real Gases and Limitations of the Kinetic Theory Kinetic molecular theory asserts that gas molecules move in straight lines and interact only through perfectly elastic collisions. Gas molecules neither attract nor repel. Strength of attractive forces small compared to kinetic energy of gas molecules. Attractive and repulsive forces are significant under conditions of low temperature. Kinetic energy decreases with temperature. Gas molecules experience sticky collisions. Collision rate decreases, decreasing the pressure. 43 The ideal gas model breaks down at high pressures and low temperatures. high pressure: volume of particles no longer negligible low temperature: particles move slowly enough to interact 44 Correcting the Ideal Gas Equation Correcting the Ideal Gas Equation van der Waals equation is commonly used to describe the behavior of real gases P an2 V 2 V nb nrt a corrects for attractive forces. Molecules with stronger attractive forces have larger a values. The van der Waals constants a and b are compound specific. Both are zero in gases behaving ideally. b corrects for the volume occupied by gas molecules. Large molecules have larger b values. 45 46 Example Problem 5.8 An empty 49.0 L methane storage tank has an empty mass of 55.85 kg and, when filled, has a mass of 62.07 kg. Calculate the pressure of CH 4 in the tank at 21 C using both the ideal gas equation and the van der Waals equation. Gas Sensors The concentration of air pollutants is monitored by the EPA. The concentration of a gas is proportional to the partial pressure of the gas. Gas pressure sensors are used to monitor changes in partial pressure or concentration of gases. What is the percentage correction achieved by using the more realistic van der Waals equation? 47 48 8

Capacitance Manometer Thermocouple Gauge Changes in pressure cause deflections in the diaphragm, changing the capacitance. Used to measure pressures from 0.001-1000 torr Measures pressure by the cooling effect of colliding gas molecules. Higher pressure, more collisions with heated filament, lowers filament temperature. Used to measure pressures from 0.01 to 1.0 torr 49 50 Ionization Gauge Gas Sensors Pressure measured by producing gaseous caions with the electrons emitted from a hot filament. Higher pressure, more gas cations, more current collected at the grid. Used to measure pressures as low as 10-11 torr. 51 A thermocouple gauge, a capacitance manometer, and an ionization gauge. 52 Mass Spectrometers Mass spectrometers can be used to measure partial pressures for gas mixtures. Mass spectrometers ionize gas like an ionization gauge, but can select the mass of the gas being analyzed with the use of a magnetic field. Several masses can be scanned simultaneously allowing for multiple gas analyses. Current generated can be used to determine the partial pressure of gas. 53 9