Fast inorganic scintillators - status and outlook -

Similar documents
Characterization of the Lanthanum Chloride Scintillation Detector

Detector technology. Aim of this talk. Principle of a radiation detector. Interactions of gamma photons (gas) Gas-filled detectors: examples

Introduction to scintillators

Inorganic Scintillators

New Scintillators for the Border Monitoring Equipment

Scintillators for photon detection at at medium energies

Prospects for achieving < 100 ps FWHM coincidence resolving time in time-of-flight PET

Scintillation Detectors

Precision Crystal Calorimeters in High Energy Physics: Past, Present and Future

INORGANIC crystal scintillators are widely used in high

OPPORTUNITY TO JOIN IEEE AND NPSS

The Scintillation properties of Pr 3+ doped and Pr 3+, Ce 3+

Precision Crystal Calorimeters in High Energy Physics: Past, Present and Future

LSO/LYSO Crystal Development Ren-yuan Zhu

Precision Crystal Calorimetry in High Energy Physics

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST /$ IEEE

2.5 Physics of the Universe, Astrophysics, Nuclear Planetology Dark Matter and Double Beta Decay Study Planetary Nuclear

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Calibration and Monitoring for Crystal Calorimetry

A new scintillator detector for nuclear physics experiments: the CLYC scintillator

BSO Crystals for the HHCAL Detector Concept

Platinum resistance. also wirewound versions. eg

Large Size LYSO Crystals for Future High Energy Physics Experiments

Scintillation Detectors

Crystals for the HHCAL Detector Concept Rihua Mao, Member, IEEE, Liyuan Zhang, Member, IEEE, and Ren-Yuan Zhu, Senior Member, IEEE

Week 6: Ch. 8 Scintillation Counters

Chapter 4 Scintillation Detectors

Chapter 6: Basic radiation detectors

Ultra High Quantum Efficiency PMT for energy resolution measurements of LaBr 3 (Ce) scintillation crystals

05 - Scintillation detectors

The NaI:Tl and CsI:Tl crystals for effective detection of X-rays and low energy charged particles

Design of a Lanthanum Bromide Detector for TOF PET

CHAPTER 6. Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands Radiation detectors complexity and relevance

A Study on Radiation Damage in PWO-II Crystals

SCINTILLATION DETECTORS AND PM TUBES

SCI-O11. Design of a Compton Spectrometer Experiment for Studying Electron Response of a Scintillator

Gamma-ray Spectroscopy with LaBr 3 :Ce Scintillator Readout by a Silicon Drift Detector

IN the last decade, cerium doped silicate based heavy

Alpha-Gamma discrimination by Pulse Shape in LaBr 3 :Ce and LaCl 3 :Ce

Measurements of liquid xenon s response to low-energy particle interactions

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

Timing and Energy Response of Six Prototype Scintillators

arxiv: v2 [physics.ins-det] 8 Feb 2013

Precision Crystal Calorimetry in High Energy Physics: Past, Present and Future

Scintillators General Characteristics

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

Recent advances and future perspectives of gamma imagers for scintimammography

Fast Crystal Scintillators for Future HEP Experiments

Preparatory experiments for cold-neutron induced fission studies at IKI

Light yield non-proportionality and energy resolution of Lu 1.95 Y 0.05 SiO 5 :Ce and Lu 2 SiO 5 :Ce scintillation crystals

Radiation Detection and Measurement

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

A new timing model for calculating the intrinsic timing resolution of a scintillator detector

Influence of defects and traps in the scintillation process. Anna Vedda University of Milano Bicocca, Italy

EEE4106Z Radiation Interactions & Detection

Non-proportional response and energy resolution of pure SrI 2 and SrI 2 :5%Eu scintillators

Optical transmission radiation damage and recovery stimulation of DSB:Ce 3+ inorganic scintillation material

Calorimetry I Electromagnetic Calorimeters

Dual Isotope Imaging with LaBr3:Ce Crystal and H8500 PSPMT

III. Energy Deposition in the Detector and Spectrum Formation

Radionuclide Imaging MII Detection of Nuclear Emission

Studies of Hadron Calorimeter

Time-of-Flight PET using Cherenkov Photons Produced in PbF 2

arxiv: v1 [physics.ins-det] 29 Jun 2011

ISPA-Tubes with YAP:Ce Active Windows for X and Gamma Ray Imaging.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 56, NO. 3, JUNE

The fast light of CsI(Na) crystals

Scintillation detectors

The interaction of radiation with matter

Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra

Improved scintillation proportionality and energy resolution of LaBr 3 :Ce at 80K

Photonics applications II. Ion-doped ChGs

Gamma Spectroscopy. References: Objectives:

Pulse height non-linearity in LaBr 3 :Ce crystal for gamma ray spectrometry and imaging

A Prototype of LaBr3:Ce in situ Gamma-Ray Spectrometer for Marine Environmental Monitoring

REVIEW OF CRYSTAL CALORIMETERS

Resolution Studies of inorganic Scintillation Screens for high energetic and high brilliant Electron Beams

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber

Sven Schumann. DPG Spring Meeting

PHYS 3446 Lecture #12

The Characterization of new Eu 2+ doped TlSr2I5 Scintillator Crystals

STATUS OF ATLAS TILE CALORIMETER AND STUDY OF MUON INTERACTIONS. 1 Brief Description of the ATLAS Tile Calorimeter

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors

An idea for the future proton detection of (p,2p) reactions with the R 3 B set-up at FAIR

Synchrotron radiation in spectroscopy

Scintillators: new ways to fast emission

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

Improvement of -ray energy resolution of LaBr3:Ce3+ scintillation detectors by Sr2+ and Ca2+ co-doping

THE main physics motivation for building the Compact

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

Future gamma-ray spectroscopic experiment (J-PARC E63) on 4 ΛH

Scintillation Products Technical Note

Particle Energy Loss in Matter

The Next Generation of Crystal Detectors

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

Design and production of Scintillation Detectors

Europium-doped barium halide scintillators for x-ray and -ray detections

Enhanced α-γ Discrimination in Co-doped LaBr 3 :Ce

Neutron Response of LaBr 3 :Ce and CsI:Na Phoswich Crystal Scintillators for PARIS

Upgrade of the CMS Forward Calorimetry

Transcription:

Fast inorganic scintillators - status and outlook - R. W. Novotny 2nd Physics Institute University Giessen scintillator basics and history cross luminescence BaF 2 Ce 3+ luminescence centers PbWO 4 inorganic scintillator fibers outlook

basic concept of a scintillation detector X rays gamma rays heavy charged particles thermal neutrons Photoelectric effect Compton effect Pair production Bethe Bloch e scintillator nuclear reaction ionization excitation many e-h pairs energetic neutrons proton request for a wide spectrum of detector materials

Number of dicovered scintillators Quantity of principal inorganic scintillators discovered history 4 3.5 3 2.5 2 SrI 2 :Eu 1968/2008 LSO:Ce,Ca 2007 LuI 3 :Ce 2003 LaBr 3 :Ce 2001 LYSO:Ce 2001 LuYAP:Ce 2001 LaCl 3 :Ce 2000 LuAP:Ce 1994 LSO:Ce 1982 1.5 1 0.5 0 investigation of Photomultiplier Curran / Baker 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 M.Korzhik, 2003 X-ray imaging screens a -scattering Years year Alcali-Halides Oxides discovery and development of new scintillator materials are strongly correlated with basic research and technology in physics... M.J.Weber J. of Lum. 100 (2002) 35

pulse height / mv inorganic scintillators large variations in: compactness luminescence yield time / ns volume: 1X 0 3

basic processes basic processes in inorganic scintillator ionic crystal host material E gap > ~ 4-12 ev e luminescence center luminescence centre intrinsic or dopant conduction band luminescence h valence band thermalization transport

but it is more complex! e thermally released conduction band Trap radiationless recombination Shallow trap Defect direct excitation relaxation luminescence LC h thermalization transfer or luminescence valence band thermalization 1-100 ps fast to slow (afterglow) > ns estimation of achievable light yield: Y E E gap S Q

interplay of excitation and emission and optical transparency of the material

achievable energy resolution can be further optimized by matching to photo sensor

most scintillators are sensitive to temperature thermal quenching!

YAlO 3 :Ce resolution at 662 kev / % Lu 3 Al 4 O 12 :Pr NaI:Tl BaF 2 BGO LSO:Ce achievable energy resolution not only determined by photon statistics!? 10 8 6 CsI:Tl 4 LaCl 3 SrI 2 :Eu 2 R stat LaBr 3 but: 0 0 5.000 10.000 15.000 20.000 number of detected photons at 662 kev linear response of the scintillator, index of refraction, light collection, quantum efficiency and linearity of sensor, etc.

Energy reslution at FWHM (%) Relative light yield non-proportionality and energy resolution 1.2 1.1 NaI:Tl 1.0 0.9 LaBr 3 :Ce typical examples 10 10 100 1000 Energy (kev)

how everything started: R.Hofstadter, Phys.Rev. 74 (1948) 100 NaI with source NaI without source

BaF 2 kinetics of the two fast scintillation components at l 195nm and l 220nm ideal for fast timing: fast rise time fast decay time sufficient light yield timing determined by arrival of first photons at sensor P.Schotanus et al., NIM A259 (1987) 586

BaF 2 both luminescence components show a different temperature dependence different scintillation mechanisms fast slow component slow component: strongly temperature dependent determines energy resolution dy/dt-1.4%/ 0 K

BaF 2 : fast UV luminescence CondB 6s, 5d Ba 2+ E gap STE ValB 2p F - Ionic crystal E VOC < E gap E VOC fast Core-Valence Luminescence CVL Auger-free luminescence Cross luminescence OCoreB Yu.M. Aleksandrov et al, Sov. Phys. Sol. State 26 (1984) 1734 5p Ba 2+

identification via pulse shape analysis PSA due to intrinsic luminescence properties: scintillation components show different response to electromagnetic or hadronic probes CsI(Tl), BaF 2,... proton time photon E-fast photons protons fast component total light output signal integration width E-total plastic VETO BaF 2 -detector identification of charged and neutral events

time-of-flight / ns E (MeV) particle ID: time-of-flight BaF 2 (TAPS) 250 C 0 X... 200 2 AGeV Ca+Ca 150 100 50 0 0 2 4 6 8 10 t (ns) energy / MeV time resolution: s t > 85 ps

Time-of-flight PET detector concept achieved position resolution S.Tavernier et al., BaF 2 with MWPC-TMAE readout

TAPS 511 modules counts A2@MAMI Mainz tagged photon facility E < 1.5GeV on-line data complete new readout invariant mass / MeV

CVL candidates E gap 4-13 ev Condition for CVL E VOC < E gap I Br Cl F E VOC 13 ev 17 ev Sr 2+ Ca 2+ P.A. Rodnyi, Sov. Phys. Solid State 34(1992)1053 C.W.E. van Eijk, Nucl. Tracks. Radiat. Meas. 21(1993)5 8 ev 10 ev 7.5 ev 4.5 ev Ba 2+ K + CVL Cs + Rb + F, Cl, Br, I CondB ValB OCoreB decay time ~ 1 ns light yield 2000 photons/mev

Ce 3+ luminescence center e Ce 3+ conduction band Core + 1 electron in 4f state excitation h relaxation 5d 4f emission valence band 5d 4f allowed dipole transition fast response ~ 20 ns

Ce 3+ luminescence center energy Intensity (arb. units) Ce 3+ relaxation Stokes shift 1 ps quenching Rodnyi C 3h 5.10 ev 4.96 ev 4.71 ev 4.52 ev 4.41 ev 5d LaCl 3 :0.57%Ce S=5900 cm -1 3.68 ev 3.46 ev 0.1 fs > ns configuration coordinate 4f levels shielded no line broadening Exc. 6.2 ev 150 200 250 300 350 400 450 Wavelength (nm) 4f 1740 cm -1 broad emission lines C. van Eijk

additional candidates ion ground state notation excited state La 3+ Xe configuration (closed shell) Ce 3+,, + 1 4f electron 4f 1 4f 0 5d 1 Pr 3+,, + 2 4f electrons 4f 2 4f 1 5d 1 Nd 3+,, + 3 4f electrons 4f 3 4f 2 5d 1 Eu 2+ (half filled shell) + 7 4f electrons 4f 7 4f 6 5d 1 Gd 3+ (half filled shell) 4f 7 Lu 3+ (closed shell) + 14 4f electrons 4f 14

fast scintillation mechanism see papers by P. Dorenbos Ce 3+ Egap 5d 4f in favourable host Y E E gap LY ~ 20 ns S Q Ce 3+ levels and Egap E [ev] 12 10 fluorides chlorides E gap Ce 3+ E 5d-4f oxides 8 bromides free ion iodides 6 sulfides 4 Egap l matching light sensor 2 0 selenides timing properties: 1 n l 2 2 n 2 5d 4f 3 3 2

K 2 LaX 5 :0.7% Ce 3+ (X = Cl, Br, I) scintillation decay lifetime from Cl to Br to I emission wavelength from Cl to Br to I

LaCl 3 :Ce 3+ Intensity (a.u.) scintillation decay 25 ns 10% LaCl3 :Ce 3+ NaI:Tl 230 ns 30% LSO NaI:Tl Lu 2 SiO 5 :Ce 40 ns 0 200 400 600 800 1000 Time (ns)

LaCl 3 :Ce 3+ Intensity (a.u.) energy resolution 55 Fe R=42% 241 Am R=10.5% 137 Cs R=3.3% 50,000 photons/mev NaI:Tl 40,000 photons/mev 0 5 10 50 Energy (kev) E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K.W. Krämer, H.U. Güdel Appl. Phys. Lett. 77 (2000) 1467 100 500 800 Lu 2 SiO 5 :Ce 26,000 photons/mev

LaCl 3 :Ce 3+ Counts 4 x 6 E/E=4.1% 4 x 6 mm 2 32keV Ba E/E=3.1% La X-ray escape peak 400 500 600 700 800 E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K. W. Krämer, H.U. Güdel, 0 200 400 600 800 Energy (kev) Appl. Phys. Lett. 77 (10) (2000) 1467.

counts (arb. units) LaBr 3 : 5%Ce 3+ energy resolution 1.2 1.0 0.8 0.6 0.4 0.2 Pulse height spectrum 662 kev gamma rays NaI:Tl 61,000 ph/mev 2.8 % FWHM R=2.9% 6.5 % FWHM 0.0 0 100 200 300 400 500 600 700 800 energy (kev) light yield 70,000 photons/mev (NaI:Tl 40,000 ph/mev) decay time 16 ns (NaI:Tl 230 ns) 380 E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K.W. Krämer, H.U. Güdel Appl Phys Lett 79(2001)1573

intensity, normalized LaBr 3 :Ce 3+ decay time and time resolution 10 0 10-1 10-2 0.5% 5% 10% 20 % 30% 511 kev - 511 kev t < 300ps 10-3 decay time 16 ns rise time faster 0 50 100 150 200 250 time, ns courtesy Kanai Shah, RMD

LaBr 3 :Ce 3+ Counts 345 cm 3 volume 6000 5000 BrilLanCe 380 3x3 137 Cs 4000 3000 2000 FWHM 3.00% 1000 380 0 0 200 400 600 800 1000 channel

Lanthanum halides: X-ray excited optical luminescence LaCl 3 :Ce 3+ LaBr 3 :Ce 3+ Ce concentration, light yield Ce concentration, light yield Ce concentration, host emission

some scintillator specs Density g/cm 3 Attenuation length at 511 kev mm Photoel effect % Light yield phot/mev Decay time ns Emission max nm NaI:Tl 3.67 29.1 17 41,000 230 410 Bi 4 Ge 3 O 12 (BGO) 7.1 10.4 40 9,000 300 480 Lu 2 SiO 5 :Ce (LSO) 7.4 11.4 32 26,000 40 420 Lu 2(1-x) Y 2x SiO 5 :Ce (LYSO) X = 0.1 7.1 12 30,000 40 420 LuAlO 3 :Ce (LuAP) 8.3 10.5 30 11,000 18 365 Lu x Y 1-x AlO 3 :Ce (LuYAP) X = 0.2 LaCl 3 :Ce 3.86 28.0 14.7 46,000 25 (65%) 350 LaBr 3 :Ce 5.07 22.3 13.1 70,000 16 (97%) 380 LuI 3 :Ce 5.6 18.2 28 90,000 6-140 (72%) 472, 535 new generation of dense, bright and radiation hard scintillators

counts counts counts Counts PbWO 4 : a fast scintillator - but with low light yield Improved PWO crystal 100000 strong temperature quenching 10000 1000 t1= 6.5 ns D1= 97% t2= 30.4 ns D2= 3% 3000 2500 137 Cs 100 10 2000 1500 s/e=14,5% 1 0 100 200 300 400 500 600 700 800 900 time, ns 1000 500 10000 8000 T = +6 0 C 60Co 0 3000 200 400 600 800 1000 light yield / a.u. s/e=16.9% 6000 4000 2000 T = -7 0 C T = -22 0 C T = -30 0 C 2000 1000 22 Na s/e=10.9% 0 100 200 300 400 500 600 700 800 light yield / a.u. 0 200 400 600 800 1000 light yield / a.u.

E, cm -1 PbWO 4 : a fast scintillator - but with low light yield WO 4 2- Energy levels of dopings pure PbWO 4 3T 3 1, T 2 3.9 ev 3 ev Donor Acceptor non radiative losses in PWO temperature quenching of WO 4 2- luminescence 1 A 1 R doped PWO:Y, La,Mo the shallow WO 4 3- + La centre is an additional radiating centre prevents e - to be trapped by deep Mo centres suppresses afterglow and large part of slow components WO 4 2-3.9 ev 3 ev 1 A 1 e - 0.2 ev 3 ev 1 A 1 WO 4 3- +La 1 A 1 MoO 4 3-2.5 ev

device crystal modules depth photosensor B where beam energy 10 3 X 0 T TeV CMS ECAL PbWO 4 82 26 APD/VPT 4 LHC 7 s E 0.5%@120GeV

the PANDA detector at FAIR photon detection with high resolution over a large dynamic range: barrel 10MeV < E < 15GeV high count-rate capability (2 10 7 ~11.000 Annihilations/s) nearly 4 coverage sufficient radiation hardness endcaps timing information for trigger-less DAQ ~4.000 concept Target Spectrometer PWO-II 200mm (23X o ) crystals 4 detector for spectroscopy and reaction dynamics with antiproton

the Target Spectrometer: based on high-quality PWO-II

optical transmission light yield @RT radiation hardness

energy resolution s prototype performance extension response to to energies high energy < 50MeV photons @ MaxLab optimized light output: PWO-II cooling: operation at T=-25 o C tagged photon facility @ MAMI, Mainz E = 26 MeV E =43.3MeV readout with photomultiplier e - s 64 MeV < E 1.5 GeV readout with incident energy / GeV photomultiplier

readout via SADC: further improvement energy-resolution ( 3x3 matrix ) 1 ns time resolution

rel. light loss @ 25 o C / % consequences of cooling: fast decay kinetics even at T=-25 o C LY(100ns)/LY(1µs) > 0.9 constant ratio LY(-25 o C)/LY(+18 o C) = 3.9 no recovery of radiation damage at T=-25 o C asymptotic light loss correlated with k (RT) T= -25 C k @ RT / m -1

recovery of radiation damage recovery of normalized light yield / % @RT k (420 nm) / m -1 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 @RT 0 50 100 150 200 illumination time / min 100 90 80 70 60 50 @T= -25 o C Spontaneous LED_1550nm LED_1300nm LED_1060nm LED_940nm LED_464nm 0 200 400 600 800 1000 1200 1400 1600 illumination time / min 470 nm 525 nm 640 nm 840 nm 935 nm applied integral dose of 60 Co: D = 30Gy

technology: micro-pulling-down technique (µpd)

material LuAG :Ce density g/cm 3 Z eff emission wavelength nm index of refraction decay time ns light Yield ph/mev 6.7 63 530 1.84 50-100 15.000 Lu 3 Al 5 O 12 :Ce 3+ tested fibers: 0.45mm - 2.0mm emission spectra at various positions: slight changes

LuAG:Ce response to 241 Am - single sided readout Ø 1.0 mm fiber ~ e -μ d additional wrapping with teflon increases the light yield by 70 %

response to 241 Am - coincidence readout fiberlength between 2.5 cm and 4.5 cm LuAG:Ce time resolution of a single PMT: (deduced from left - right coincidence) σ t Δt 2

improvement of technology efficiency reproducibility multi-pulling packaging 100 mm LuAG:Ce simultaneous growth of 7 LuAG fibers 20 fibers of comparable quality

material density g/cm 3 Z eff emission wavelength nm index of refraction decay time ns light Yield ph/mev LYSO 7.4 66 420 1.81 40 27.000 Lu 2(1-x) Y 2x SiO 5 :Ce 3+ tested fibers: 0.6mm - 2.0mm emission spectra: Ø 0.6mm - nearly constant emission - severe attenuation

LYSO:Ce fiber (Ø = 0.3 mm, L = 100 mm) response to 241 Am - single sided readout LYSO:Ce μ 0.018 cm -1 μ 0.68 cm -1 average attenuation coefficient: μ (0.68 ± 0.02) cm -1 LuAG:Ce (Ø 0.3 mm): μ (0.85 ± 0.06) cm -1 good homogeneity of all investigated fibers

LuAG:Ce fibers 100 mm long 1 mm diameter round

SiPM readout PET application KVI LuAG:Ce Hamamatsu MPPC S10362-33-100C 60 Co source placed close to fiber at position A B close-up: fibers coupled to SiPM SiPM fiber bundle of 5 LuAG:Ce MPPC preamplifier (KVI development)

contact established with Russian fiber developer joint activity with WP28 SiPM laboratory in Chernogolovka

Thanks for your attention

energy resolution - example: NaI:Tl 100 40 2.35 N el schematic ΔE/E (%) 20 10 4 2 R sci Non prop 1 4 10 20 40 100 200 400 1000 E / kev

identification via pulse shape analysis PSA all events reaction products: 2 AGeV Ar + Ca charged events protons photons neutral events n

identification via pulse shape analysis PSA radius / MeV visualisation of PSA in polar coordinates transformation: radius short 2 long 2, angle short a tan( ) long protons + photons angle /

Ce 3+ luminescence center 5d 4f energy difference 5d level Ce 3+ 5d-4f level distance 5d bands 5d bands in crystal 5d level shifts down bands split by crystal field 4f levels hardly affected the lowest 5d-band edge matters 4f levels 4f levels free Ce Ce 3+ 3+ ion Pr 3+ Ce 3+ Nd 3+ Pr 3+ Nd 3+ in crystal C. van Eijk

additional candidates Intensity [arb.units] Ce, Pr, Nd 5d-4f transitions - ions in crystal field 5d bands The lowest 5d-band edge matters Radioluminescence spectra of 0.5 % Ce 3+ -doped and Pr 3+ -doped Ca 3 (BO 3 ) 2 single crystals under 241Am 5.5 MeV α-ray. Y. Fujimoto et al, 2010 IEEE NSS Conf. Rec., pp. 192-194. 4f levels Ce 3+ Pr 3+ Nd 3+ Wavelength [nm] X-ray induced emission spectrum of LaF 3 :Nd. C.W.E. van Eijk et al, IEEE Trans. Nucl. Sci., 41, pp. 738-741, 1994.

Ce 3+ energy level shifts E [ev] 12 fluorides E gap Ce 3+ E 5d-4f 10 8 6 4 free ion chlorides oxides bromides iodides sulfides 2 0 selenides

comparison of a 1.0 mm and a 0.3 mm fiber LuAG:Ce Ø Ø = 1.0 mm fiber average attenuation coefficient for Ø = 1.0 mm fibers: μ (1.56 ± 0.32) cm -1 Ø = 0.3 mm fibers: μ (0.85 ± 0.06) cm -1 1 mm

improvement of technology LuAG:Ce special bundle

improvement of technology LYSO:Ce new Iridium crucible with square nozzle 830µm 940µm fiber with quadratic cross section + improved packaging + cost efficient

improvement of technology LYSO:Ce new geometry of the seed: longer size decreases the longitudinal thermal gradient reduced growth speed favors crystallization of monoclinic crystal structures like LYSO operating in oxidizing atmosphere better thermal insulation reduction of macroscopic cracks quadratic LYSO fiber