Neutrino and dark matter physics with sub-kev germanium detectors

Similar documents
arxiv: v1 [physics.ins-det] 8 Feb 2016

arxiv: v1 [hep-ex] 18 Oct 2017

Ge and Dark Matter Searches: CDEX, present and future

Characterization of the sub-kev Germanium detector

Low Energy [Neutrino &] Dark Matter Physics with sub-kev Germanium Detectors

Technical Specifications and Requirements on Direct detection for Dark Matter Searches

Recent Results and Status of TEXONON Experiments

Taiwan EXperiment On NeutrinO History, Status and Prospects

SuperCDMS SNOLAB: A G2 Dark Matter Search. Ben Loer, Fermilab Center for Particle Astrophysics On behalf of the SuperCDMS Collaboration

A survey of recent dark matter direct detection results

David Reyna Belkis Cabrera-Palmer AAP2010, Japan

arxiv: v1 [physics.ins-det] 2 May 2013

Neutrino and Dark Matter Detections via Atomic Ionizations at sub-kev Sensitivities

arxiv: v2 [hep-ph] 9 Jun 2016

Status and Prospects of China JinPing Deep Underground Laboratory (CJPL) and China Dark Matter EXperiment (CDEX)

arxiv: v1 [physics.ins-det] 4 Nov 2017

Status and Results from CDEX Collaboration at China Jinping Underground Laboratory

Measurement of nuclear recoil responses of NaI(Tl) crystal for dark matter search

Constraints on Neutrino Electromagnetic Properties via Atomic Ionizations with Germanium Detectors at sub-kev Sensitivities

D. Medvedev GEMMA and vgen Nalchik, June 6, Investigation of neutrino properties with Ge detectors on KNPP

arxiv: v1 [physics.ins-det] 22 Dec 2016

China JinPing underground Laboratory (CJPL) and China Darkmatter Experiment (CDEX) Qian Yue Tsinghua University Mar.24, 2011

Sensitivity of sodium iodide cryogenic scintillation-phonon detectors to WIMP signals

ANAIS: Status and prospects

Measurements of liquid xenon s response to low-energy particle interactions

Recent results from PandaX- II and status of PandaX-4T

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments

DARK MATTER SEARCHES AT CANFRANC: ANAIS AND ROSEBUD: an update INTRODUCTION AND EXPERIMENTAL GOALS SUMMARY OF RECENT ACHIEVEMENTS AND EFFORTS

Direct Detection of! sub-gev Dark Matter

Status of KIMS-NaI experiment

SuperCDMS: Recent Results for low-mass WIMPS

DarkSide. Bianca Bottino Università di Genova and INFN Sezione di Genova on behalf of the DarkSide collaboration 1

DarkSide new results and prospects

- The CONUS Experiment - COherent elastic NeUtrino nucleus Scattering

Neutrino nucleus coherent scattering - Prospects of future reactor experiments with germanium detectors

Search for Inelastic Dark Matter with the CDMS experiment. Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich,

Dark Matter Detection and the XENON Experiment. 1 Abstract. 2 Introduction

Oak Ridge National Laboratory, TN. K. Scholberg, Duke University On behalf of the COHERENT collaboration August 2, 2017 DPF 2017, Fermilab

arxiv: v1 [physics.ins-det] 27 Sep 2018

Walter C. Pettus University of Wisconsin Madison. Weak Interactions Discussion Group Yale Physics 21 Oct 2013

Direkte Suche nach Dark Matter

Collaborazione DAMA & INR-Kiev. XCVIII Congresso SIF Napoli, 18 Settembre F. Cappella

arxiv:nucl-ex/ v4 15 Jan 2002

Results from 730 kg days of the CRESST-II Dark Matter Search

DARWIN: dark matter WIMP search with noble liquids

ANAIS: Status and prospects

School of Mathematics and Physics, Fujian University of Technology, Fuzhou , China

Status of the ANAIS experiment at Canfranc

PPC Ge detectors for dark matter, neutrino-less double beta decay and CNS measurements

XMASS: a large single-phase liquid-xenon detector

Coherency in Neutrino-Nucleus Elastic Scattering

The CoGeNT Dark Matter experiment

arxiv:astro-ph/ v1 24 Jun 2004

PoS(ICHEP2016)474. SoLid: Search for Oscillations with a Lithium-6 Detector at the SCK CEN BR2 reactor

Status of Dark Matter Detection Experiments

DARK MATTER SEARCH AT BOULBY MINE

Recent results from the second CDMSlite run and overview of SuperCDMS SNOLAB project

Detectors for the COHERENT neutrino experiment R. Tayloe Indiana U. for the COHERENT collaboration

Search for Low Energy Events with CUORE-0 and CUORE

Searches for Low-Mass WIMPs with CDMS II and SuperCDMS

Sterile Neutrinos & Neutral Current Scattering

Experimental Searches for Neutrinoless Double-Beta Decays in 76-Ge Alan Poon

Direct Dark Matter and Axion Detection with CUORE

The 17 MeV Anomaly in Beryllium Decays and U(1) Portal to Dark Matter

arxiv: v1 [physics.ins-det] 1 Nov 2011

arxiv:astro-ph/ v1 15 Feb 2005

PoS(EPS-HEP2017)074. Darkside Status and Prospects. Charles Jeff Martoff Temple University

arxiv:hep-ex/ v1 1 Oct 1999

The relevance of XENON10 constraints in this low-mass region has been questioned [15] C.E. Aalseth et al. arxiv: v1

China Jinping Underground Laboratory and experiments inside. Qian YUE Tsinghua University Mar. 28, 2017

Background Studies for the XENON100 Experiment. Alexander Kish Physics Institute, University of Zürich Doktorandenseminar August 30, 2010 UZH

Direct Dark Matter and Axion Detection with CUORE

The COSINUS project. development of new NaI- based detectors for dark ma6er search. STATUS report Karoline Schäffner

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST

The GERmanium Detector Array

Dark anti-atoms. Quentin Wallemacq IFPA, AGO Dept., University of Liège. CosPa Meeting 19 th of November 2014

DETECTOR RESPONSE TO LOW ENERGY NUCLEAR RECOILS. D Ann Barker and D.-M. Mei University of South Dakota

Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

Measurement of e -electron scattering cross section with a CsI(Tl) scintillating crystal array at the Kuo-Sheng nuclear power reactor

The Search for Dark Matter with the XENON Experiment

Dark Matter Searches. Marijke Haffke University of Zürich

Prospects of Dark Matter Direct Search under Deep Sea Water in India

The COHERENT Experiment: Overview and Update of Results

Can the DAMA annual modulation be explained by Dark Matter?

The EDELWEISS DM search Phase II to Phase III

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Latest results of EDELWEISS II

The 46g BGO bolometer

Nuclear Recoil Scintillation and Ionization Yields in Liquid Xenon

SCIENCE CHINA Physics, Mechanics & Astronomy

The Neutron/WIMP Acceptance In XENON100

Cryodetectors, CRESST and Background

NEUTRINO EXPERIMENTS : HIGHLIGHTS

DarkSide-50: performance and results from the first atmospheric argon run

arxiv: v1 [hep-ex] 2 Jan 2018

arxiv: v1 [astro-ph.co] 7 Nov 2012

Dark matter search with the SABRE experiment

Study well-shaped germanium detectors for lowbackground

Coherent Neutrino-Nucleus Scattering Using the DAEdALUS Cyclotron(s) and a CLEAR-like Detector

Chapter 12. Dark Matter

Transcription:

PRAMANA c Indian Academy of Sciences Vol. 83, No. 5 journal of November 204 physics pp. 829 838 Neutrino and dark matter physics with sub-kev germanium detectors ARUN KUMAR SOMA,2, LAKHWINDER SINGH,2, MANOJ KUMAR SINGH,2, VENKTESH SINGH,2 and HENRY T WONG,, on behalf of the TEXONO Collaboration Institute of Physics, Academia Sinica, Taipei 529, Taiwan 2 Department of Physics, Banaras Hindu University, Varanasi 22 005, India Corresponding author. E-mail: htwong@phys.sinica.edu.tw DOI:.07/s2043-04-0876-5; epublication: 4 November 204 Abstract. Germanium detectors with sub-kev sensitivities open a window to study neutrino physics to search for light weakly interacting massive particle (WIMP) dark matter. We summarize the recent results on spin-independent couplings of light WIMPs from the TEXONO experiment at the Kuo-Sheng Reactor Neutrino Laboratory. Highlights of the physics motivation, our R&D programme, as well as the status and plans are presented. Keywords. Neutrino interactions; dark matter; radiation detector. PACS Nos 3.5.+g; 95.35.+d; 29.40. n. Introduction The current themes of the Taiwan-based Taiwan EXperiment On NeutrinO (TEXONO) and China-based China Dark matter EXperiment (CDEX) research programmes are on the studies of low-energy neutrino and dark matter physics. The current objectives are to open the sub-kev detector window with germanium detectors []. The generic benchmark goals in terms of detector performance are: () modular target mass of order of kg, (2) detector sensitivities reaching the range of 0 ev and (3) background at the range of kg kev day (cpkkd). The neutrino physics programme [2,3] is pursued at the established Kuo-Sheng Reactor Neutrino Laboratory (KSNL), while dark matter searches are conducted at the new China Jinping Underground Laboratory (CJPL) [4,6] officially inaugurated in December 20. The three main scientific subjects for research are neutrino magnetic moments [2,5], neutrino-nucleus coherent scattering [] and dark matter searches [7]. We highlight the physics motivations, as well as the latest TEXONO results of the dark matter programme at KSNL in this paper. Pramana J. Phys., Vol. 83, No. 5, November 204 829

Arun Kumar Soma et al 2. Low-energy reactor neutrino physics The observable spectra due to neutrino interactions on Ge target with reactor ν e at φ( ν e ) = 3 cm 2 s are depicted in figure. Neutrino magnetic moment (μ ν ) is an intrinsic neutrino property which describes the possible neutrino photon couplings in which the neutrino helicity is flipped [2,5]. Observations of μ ν at levels relevant to the present or future generations of experiments which strongly favour the neutrinos are Majorana particles [8]. The μ ν -induced neutrino electron scattering ν e + e ν e + e has a /T dependence modified by atomic binding energy effects [9], where T is the electron recoil energy. Accordingly, sensitivities will be enhanced to the μ B level at 0 ev threshold. Neutrino nucleus coherent scattering (νn): ν e +N ν e +N is a fundamental neutrino interaction which has never been observed. In addition to the experiment with reactor neutrinos [], projects with neutrinosfrom spallation neutronsource [] and accelerator [] are also pursued. Measurement of the νn coherent scattering will provide a sensitive test to the Standard Model. The coherent interaction plays an important role in astrophysical processes. It may provide new approaches to the detection of supernova neutrinos and is a promising avenue towards a compact and relatively transportable neutrino detector for real-time monitoring of nuclear reactors. After quenching effects are taken into account, the maximum measureable energy for nuclear recoil events in Ge due to reactor ν e is about 400 ev. The typical spectrum is depicted in figure. At benchmark sensitivities, the typical event rate is 20 kg day or 4000 7000 kg yr with a signal-to-background ratio >20. Low detector threshold is crucial in such experiments. ) day kev Rate (kg 4 3 2-2 -3-4 -5-6 -7-8 -2 ν e N (SM) ν e e (SM) ν e e (MM) Recoil Energy (kev) Figure. The observable spectra due to neutrino interactions on Ge target with reactor ν e at φ( ν e ) = 3 cm 2 s. Contributions due to magnetic moment-induced ν e e (MM) at μ ν = μ B, as well as Standard Model (SM) induced ν e e and ν e N coherent scattering are shown. 830 Pramana J. Phys., Vol. 83, No. 5, November 204 2 3 4

Neutrino and dark matter physics with sub-kev germanium detectors 3. Light WIMP dark matter searches There are compelling evidences that about one-quarter of the energy density in the Universe is composed of cold dark matter [7] due to a not-yet-identified particle, generically categorized as weakly interacting massive particle (WIMP, denoted by χ). A direct experimental detection of WIMP is one of the biggest challenges in the frontiers of particle physics and cosmology. The WIMPs interact with matter predominantly via elastic coherent scattering like neutrinos: χ +N χ +N. There may be both spin-independent (σχn SI ) and spin-dependent (σχn SD ) interactions between the WIMP and the matter. An experiment with 0 ev threshold would open a window for cold dark matter WIMP searches in the unexplored mass range down to several GeV [,6]. Based on the data taken at KSNL with the 20-g prototype ultra-low-energy germanium detector (ULEGe) and 900-g point contact germanium detector (PCGe), limits were derived in the low WIMP mass region, which showed an improvement over those from the previous experiments at 3 <m χ < 8GeV[2]. There are allowed regions implied by data from the DAMA/LIBRA, CoGeNT, CRESST-II and CDMS(Si) experiments [7,3]. These have stimulated intense theoretical interests and speculations on this parameter space. The KSNL was originally built for reactor neutrino physics, where studies of neutrino magnetic moments and neutrino electron scattering cross-sections [2,3] have been pursued. The CJPL [4,6] is the deepest operating underground laboratory in the world, having 2400 m of rock overburden and tunnel drive-in access. It is located at southwest Sichuan, China. The baseline design of the TEXONO experiment at KSNL and the CDEX experiment at CJPL is depicted in figure 2. The germanium targets are enclosed Figure 2. Baseline design with Ge target and NaI(Tl) crystal scintillator as anti- Compton detector, at both KSNL and CJPL. Pramana J. Phys., Vol. 83, No. 5, November 204 83

Arun Kumar Soma et al by the active anti-compton detector made of NaI(Tl) scintillating crystals, further surrounded by passive shielding of copper and a radon purge system. The entire system is enclosed inside shielding structures made of copper, boron-loaded polyethylene and lead. There is an additional cosmic-ray veto system with plastic scintillators at KSNL. In addition, design and construction of the next-generation point-contact germanium detectors (PCGe) array with total mass at the kg range is proceeding at CJPL. This new detector CDEX- will be shielded and enclosed in a liquid argon chamber which serves as both cryogenic medium and active shielding and anti-compton detector where the scintillation light will be read out by photomultipliers. 4. Sub-keV germanium detectors Point-contact germanium detectors (PCGe) [4] offer sub-kev sensitivities with detector having kg-size modular mass, an improvement over the conventional ULEGe design. WIMPs with mass down to a few GeV can be probed. Several R&D directions [6] are intensely pursued towards improvement on the threshold and background for sub-kev germanium detectors, some of them are: () Pulse shape analysis near noise-edge It has been demonstrated that by studying the correlation of the Ge signals in two different shaping times [2] as depicted in figure 3, the threshold can be further reduced below the hardware noise edge via pulse shape discrimination (PSD). The achieved thresholds at 50% signal efficiency are 220 and 3 ev for 20-g ULEGe and 500-g PCGe, respectively. The relative timing between the PCGe and anti-compton (AC) NaI(Tl) detectors are shown in figure 4a, for sub-noise 50 (Arb. Unit) P SA 6 45 40 35 30 25 20 PSD cut Background Events Calibration Events self trigger random trigger 0 0.5.5 2 2.5 T SA 2 (kev) Figure 3. Scattered plots of the SA P 6 (shaping time is 6 μs with partial integration) vs. SA T 2 (shaping time is 2 μs with partial integration) signals, for both calibration and physics events. The PSD selection is shown. 832 Pramana J. Phys., Vol. 83, No. 5, November 204

Neutrino and dark matter physics with sub-kev germanium detectors 3 Before PSD After PSD Counts per Bin 2 (a) 0 50 0 50 200 250 300 350 400 450 500 NaI Timing(50ns) 0.8 Pulser Background PSD Efficiency 0.6 0.4 0.2 (b) 0 0 0. 0.2 0.3 0.4 0.5 0.6 0.7 Energy(keV) Figure 4. (a) Relative timing between AC-NaI(Tl) and PCGe systems, before and after PSD selection. The 50 200 ns is the coincidence window where the signals at PCGe are mainly due to physics events correlated with the AC detector. (b) PSD selection efficiencies were derived from the survival probabilities of AC-tagged events. The trigger efficiencies of the 500-g PCGe detector, as derived from the test pulser and in-situ background events. edge events at 200 400 ev before and after PSD. Events in coincidence with AC at the 50 200 ns window are due to multiple Compton scatterings, which are actual physical processes having similar pulse shapes as the neutrino and WIMP signals. The PSD selection efficiencies depicted in figure 4b were derived from the survival probabilities of the AC-tagged samples in the coincidence window. The trigger efficiencies were measured using two methods: the fractions of calibrated pulser events above the discriminator threshold provided the first measurement, while the studies on the amplitude distributions of in-situ background provided the other measurement. Pramana J. Phys., Vol. 83, No. 5, November 204 833

Arun Kumar Soma et al (2) Pulse shape analysis for surface vs. bulk events discrimination The surface events from p-type PCGe detectors exhibit anomalous behaviour due to incomplete charge collection. They can be differentiated from the signal bulk events because of their slower rise-time [6,5]. The rise-time distribution as well as the typical events are illustrated in figure 5a. Calibration schemes have been devised [5,6] using low- and high-energy γ -sources as well as an n- type PCGe detector where anomalous surface effects are absent. The measured (a) 0.9 0.95 0.8 0.7 BS λ 0.9 0.85 λ BS 0.6 PN 0.8 (b) 0.5.5 2 2.5 T(keVee) BS (Ga X-ray) 0.75 0.5.5 2 2.5 T(keVee) Figure 5. (a) Rise-time plots, as characterized by the amplitude of the fast timing amplifier signals, showing different behaviour between surface (faster) and bulk (slower) events. (b) The signal-retaining and background-suppression efficiencies (ɛ BS,λ BS ) from the bulk-surface selection. 834 Pramana J. Phys., Vol. 83, No. 5, November 204

Neutrino and dark matter physics with sub-kev germanium detectors signal-retaining and background-suppression efficiencies (ɛ BS,λ BS ) are displayed in figure 5b. (3) Background understanding and suppression The MeV-range background was understood to the percent level in our previous neutrino electron measurement with CsI(Tl) scintillating crystal array [3]. However, the residual spectra at KSNL [2,6] at the sub-kev energy range cannot be completely accounted for by conventional background modelling. Intense efforts on hardware cross-checks, further simulation and software analysis are underway. Data collection at CJPL, where the cosmic-induced background is absent, will also elucidate the origin of the observed sub-kev events. (4) Fabrication of advanced electronics for Ge detectors R&D programme is being pursued to produce advanced junction field-effect transistor (JFET) and pre-amplifier electronics with goals of further reducing the threshold and improving energy resolution. Data acquisition and trigger systems with real-time analysis capabilities using field programmable gate arrays (FPGA) are being installed. ) kevee day Rate ( kg 7 6 5 4 3 2 40 30 20 - - AC CR B 0 0.5.5 2 2.5 3 - AC CR - RAW 43,45 49 Ti V 20-40 ( 7 GeV ;.5 x cm 2 ) -40 ( 7 GeV ; 0.5 x cm 2 ) 0 0.5.5 2 2.5 55 Fe 65 Zn 68 Ga 68,7 Ge 74 As - - AC CR B' 0 2 4 6 8 2 T ( kevee ) Figure 6. Measured energy spectra, showing the raw data and those with AC CR ( B ) selections. The large inset shows the (ɛ BS,λ BS )-corrected AC CR B spectrum, with a flat background and L-shell X-ray peaks overlaid. The small inset depicts the residual spectrum superimposed with that due to the allowed (excluded) cross-section at m χ = 7GeV. Pramana J. Phys., Vol. 83, No. 5, November 204 835

Arun Kumar Soma et al -39 TEXONO 07 ) 2 SI ( cm σ p -40-4 DAMA CRESST-II CoGeNT 20 CoGeNT 203 CDMS-II Si CDMSlite CDEX 3 TEXONO 3-42 Projected ( kg-y ; cpkkd ; 0 ev) LUX XENON0 CDMS-II (Si) 3 4 5 6 7 8 9 20 30 2 M χ ( GeV/c ) Figure 7. Exclusion plot of spin-independent χn cross-sections vs. WIMP-mass, displaying the TEXONO results [2,6] and those defining the current boundaries [7,7,8]. The allowed regions from the DAMA, CoGeNT, CRESST-II and CDMS(Si) experiments [7,3,9] are also shown. Projected reach of sub-kev Ge experiments at benchmark sensitivities are indicated as dotted lines. 5. Recent TEXONO results on spin-independent cross-sections A total of 39.5 kg-days of data taken with a p-type PCGe detector at KSNL was analysed [6]. The application of cosmic-ray (CR) and NaI(Tl) anti-compton (AC) vetos would lead to the AC CR spectrum, with both detectors in anticoincidence. The selected events at various stages of the analysis are depicted in figure 6. The RAW spectrum above the electronic noise edge of 400 kev is due to physical events. Selection of bulk events according to figure 5a produce the measured AC CR B spectrum, while the (ɛ BS,λ BS )-corrected spectrum for physics analysis is denoted as AC CR B in the large inset. When the flat background due to high-energy γ -rays from ambient radioactivity and the contributions of L-shell X-rays are subtracted, the residual spectrum in the small inset of figure 6 can be interpreted as WIMP χn candidate events. The corresponding exclusion plot is displayed in figure 7, together with the results defining the sensitivity boundary in the light WIMP regions [7,7,8]. Part of the allowed regions of the DAMA, CoGeNT-20(204), CRESST-II and CDMS(Si) experiments [7,3,9] is probed and excluded. 836 Pramana J. Phys., Vol. 83, No. 5, November 204

Neutrino and dark matter physics with sub-kev germanium detectors 6. Prospects and outlook A detector with kg modular mass, 0 ev threshold and kg kev day background level has important applications in neutrino and dark matter physics, as well as in the monitoring of reactor operation. Crucial advances have been made in adapting the Ge detector technology towards these requirements. Relevant limits have been achieved at KSNL on the WIMP couplings with matter. The sub-kev events are still to be understood. Intensive research programmes are being pursued along various fronts towards the realization of experiments which can meet all the technical challenges. Further improvement in sensitivities can be expected with the -kg scale PCGe detectors already operating at KSNL and CJPL. The CDEX results from CJPL were reported [20] and the exclusion curve is displayed in figure 7. Electronics will be improved and lower physics threshold can be expected. In addition, n-type PCGe detectors allow less ambiguous interpretation of the low-energy signals due to the absence of anomalous surface events. The next-generation CDEX- programme of -kg range PCGe enclosed in active liquid argon is being pursued. Acknowledgements The TEXONO Collaboration consists of groups from Taiwan (Academia Sinica, Kuo- Sheng Nuclear Power Station), China (Tsinghua University, Institute of Atomic Energy, Nankai University, Sichuan University), India (Banaras Hindu University) and Turkey (Middle East Technical University, Dokuz Eylül University). The authors are grateful to their contributions. References [] Q Yue et al, High Energy Phys. Nucl. Phys. 28, 877 (2004) H T Wong et al, J. Phys. Conf. Ser. 39, 266 (2006) H T Wong et al, J. Phys. Conf. Ser. 20, 04203 (2008) [2] H B Li et al, Phys. Rev. Lett. 90, 3802 (2003) BXinet al, Phys. Rev.D72, 02006 (2005) H T Wong et al, Phys. Rev.D75, 0200 (2007) [3] H B Li et al, Nucl. Instrum. Methods A 459, 93 (200) YLiuet al, Nucl. Instrum. Methods A 482, 25 (2002) YFZhuet al, Nucl. Instrum. Methods A 557, 490 (2006) MDenizet al, Phys. Rev.D8, 07200 (20) [4] K J Kang et al, J. Phys. Conf. Ser. 203, 02028 (20) D Normile, Science 324, 246 (2009) KJKanget al, Front. Phys. China 8, 42 (203) [5] H T Wong and H B Li, Mod. Phys. Lett. A 20, 3 (2005) and references therein [6] H T Wong, Int. J. Mod. Phys. D 20, 463 (20) Q Yue and H T Wong, Mod. Phys. Lett. A 28, 340007 (203) [7] Particle Data Group: J Beringer et al, Phys. Rev. D 86, 000, 289 (202) and references therein Pramana J. Phys., Vol. 83, No. 5, November 204 837

Arun Kumar Soma et al [8] S Davidson, M Gorbahn and A Santamaria, Phys. Lett. B 626, 5 (2005) NFBellet al, Phys. Rev. Lett. 95, 5802 (2005) NFBellet al, Phys. Lett. B 642, 377 (2006) [9] V I Kopeikin et al, Phys. Atom. Nucl. 60, 2032 (997) S A Fayans, L A Mikaelyan and V V Sinev, Phys. Atom. Nucl. 64, 475 (200) K A Kouzakov, A I Studenikin and M B Voloshin, Phys. Rev. D83, 300 (20) JWChenet al,arxiv:3.5294 (203) [] D Akimov et al, arxiv:3.025 (203) and references therein [] S J Brice et al,arxiv:3.5958 (203) and references therein [2] H T Wong, Mod. Phys. Lett. A 23, 43 (2008) STLinet al, Phys. Rev. D76, 06(R) (2009) [3] C E Aalseth et al, Phys. Rev. Lett. 6, 330 (20); Phys. Rev. Lett. 7, 430 (20); Phys. Rev. D88, 02002 (203); arxiv:40.3295 (204) [4] P N Luke et al, IEEE Trans. Nucl. Sci. 36, 926 (989) P A Barbeau, J I Collar and O Tench, J. Cosmol. Astropart. Phys. 09, 009 (2007) [5] H B Li et al, Astropart. Phys., in press (204) arxiv:3.5957 [6] H B Li et al, Phys. Rev. Lett., 2630 (203) [7] R Agnese, Phys. Rev. Lett. 2, 04302 (204) [8] D S Acre, Nucl. Instrum. Methods A 704, (203) D S Akerib,arXiv:3.824 (203) [9] R Agnese, Phys. Rev. Lett., 2530 (203) R Agnese, Phys. Rev. D88, 034 (203) [20] W Zhao et al, Phys. Rev.D88, 052004 (203) KJKanget al, Chin. Phys. C 37, 26002 (203) 838 Pramana J. Phys., Vol. 83, No. 5, November 204