Upward Showering Muons in Super-Kamiokande

Similar documents
PHYSICS AND ASTRONOMY WITH SHOWERING UPWARD MUONS IN SUPER-KAMIOKANDE. SHANTANU DESAI Ph.D Final Oral Examination December 3 rd 2003

Recent results from Super-Kamiokande

Search for Astrophysical Neutrino Point Sources at Super-Kamiokande

( Some of the ) Lateset results from Super-Kamiokande

Atmospheric Neutrinos MINOS MINOS Far Detector Type of Atmospheric Neutrinos at MINOS Two MINOS Atmospheric Analyses.

Proton Decay searches -- sensitivity, BG and photo-coverage. Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

arxiv:hep-ex/ v1 1 Oct 1998

Super-Kamiokande ~The Status of n Oscillation ~

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

SK Atmospheric neutrino. Choji Saji ICRR,Univ. of Tokyo for the Super-Kamiokande collaboration

Analyzing Data. PHY310: Lecture 16. Road Map

Showering Muons in Super Kamiokande. Scott Locke University of California, Irvine August 7 th, 2017

(a) (c)

Recent Nucleon Decay Results from Super-Kamiokande

A Search for Point Sources of High Energy Neutrinos with AMANDA-B10

KamLAND. Introduction Data Analysis First Results Implications Future

The Pierre Auger Observatory and ultra-high energy neutrinos: upper limits to the diffuse and point source fluxes

Search for diffuse cosmic neutrino fluxes with the ANTARES detector

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Test of Non-Standard Interactions at Super-K

arxiv: v1 [hep-ex] 30 Nov 2009

The First Results of K2K long-baseline Neutrino Oscillation Experiment

SciBar and future K2K physics. F.Sánchez Universitat Aútonoma de Barcelona Institut de Física d'altes Energies

Dear Radioactive Ladies and Gentlemen,

Detecting Stopping Track Muons with the IceCube Neutrino Observatory

Determination of parameters of cascade showers in the water calorimeter using 3D-distribution of Cherenkov light

Neutron pulse height analysis (R405n)

Atmospheric neutrinos

SalSA. The Saltdome Shower Array: A Teraton UHE Neutrino Detector. Kevin Reil Stanford Linear Accelerator Center.

Proton Decays. -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Análisis de datos en KASCADE-Grande

Search for Neutron Antineutron Oscillations at Super Kamiokande I. Brandon Hartfiel Cal State Dominguez Hills May

Search for UHE photons and neutrinos using Telescope Array surface detector

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration)

Available online at ScienceDirect. Physics Procedia 61 (2015 ) K. Okumura

Status and Future of the HESS experiment

Bump Hunt on 2016 Data

Search for long-lived particles at CMS. TeVPA Brian Francis for the CMS Collaboration

Atmospheric neutrinos with Super-Kamiokande S.Mine (University of California, Irvine) for Super-Kamiokande collaboration

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

Searching for Physics Beyond the Standard Model. IceCube Neutrino Observatory. with the. John Kelley for the IceCube Collaboration

Muon Reconstruction in IceCube

Status KASCADE-Grande. April 2007 Aspen workshop on cosmic ray physics Andreas Haungs 1

The air-shower experiment KASCADE-Grande

Neutrino oscillation physics potential of Hyper-Kamiokande

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration

Lessons from Neutrinos in the IceCube Deep Core Array

Status and Perspectives for KM3NeT/ORCA

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors

The HARP Experiment. G. Vidal-Sitjes (INFN-Ferrara) on behalf of the HARP Collaboration

c Copyright 2012 Michael R. Dziomba

UNO: Underground Nucleon Decay and Neutrino Observatory

Results of the search for magnetic

Radio-chemical method

Neutrino Oscillations and the Matter Effect

arxiv:hep-ph/ v2 8 Sep 2000

KM3NeT/ORCA. R. Bruijn University of Amsterdam/Nikhef. Phystat-Nu 2016 Tokyo

Measurement of the atmospheric νμ energy spectrum and improved limits on the νμ diffuse fluxes with ANTARES

MACRO Atmospheric Neutrinos

PoS(ICRC2017)945. In-ice self-veto techniques for IceCube-Gen2. The IceCube-Gen2 Collaboration

Limit on Non-Standard Interactions from the atmospheric neutrino data

Recent Results from K2K. Masashi Yokoyama (Kyoto U.) For K2K collaboration 2004 SLAC Summer Institute

MiniBooNE Progress and Little Muon Counter Overview

Search for heavy neutrinos in kaon decays

Results from HARP. Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004

Neutrino Mass How can something so small be so important? Greg Sullivan University of Maryland April 1999

Neutron background and possibility for shallow experiments

Latest Results from the OPERA Experiment (and new Charge Reconstruction)

APP-VII Introduction to Astro-Particle Physics. Maarten de Jong

Reconstruction algorithms in the Super-Kamiokande large water Cherenkov detector

Recent Results from Alysia Marino, University of Colorado at Boulder Neutrino Flux Workshop, University of Pittsburgh, Dec 6 8,2012

Recent Results from T2K and Future Prospects

Study of upward-going muons in Super-Kamiokande

Lucite Hodoscope for SANE

Measurement of Properties of Electroweak Bosons with the DØ Detector

The cosmic ray energy spectrum measured using the Pierre Auger Observatory

Search for Point-like. Neutrino Telescope

Super-Kamiokande. Alexandre Zeenny, Nolwenn Lévêque

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone

The Shadow of the Moon in IceCube

Recent T2K results on CP violation in the lepton sector

Neutrino Oscillation Tomography

Measurement of High Energy Neutrino Nucleon Cross Section and Astrophysical Neutrino Flux Anisotropy Study of Cascade Channel with IceCube

SURFACE ARRAY Détecteur de surface pour ANTARES JP Ernenwein CPPM

Mass Composition Study at the Pierre Auger Observatory

PoS(NOW2016)003. T2K oscillation results. Lorenzo Magaletti. INFN Sezione di Bari

CLEO Results From Υ Decays

Neutrino detection. Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015

Electroweak Physics at the Tevatron

The H.E.S.S. Standard Analysis Technique

A M A N DA Antarctic Muon And Neutrino Detector Array Status and Results

Results from T2K. Alex Finch Lancaster University ND280 T2K

T2K neutrino oscillation results

Long Baseline Neutrinos

EeV Neutrinos in UHECR Surface Detector Arrays:

Simulation and validation of the ATLAS Tile Calorimeter response

Neutrinos From The Sky and Through the Earth

Particle Identification Algorithms for the Medium Energy ( GeV) MINERνA Test Beam Experiment

Progress report on simulation and reconstruction developments & Progress report on observation strategies and estimation techniques (PART A)

CDF top quark " $ )(! # % & '

Transcription:

Upward Showering Muons in Super-Kamiokande Shantanu Desai /Alec Habig For Super-Kamiokande Collaboration ICRC 5 Pune

Upward Going Muons in Super-K.5 THRU STOP dφ/dloge υ ( 1-13 cm - s -1 sr -1 ).45.4.35.3.5..15.1.5 E υ (GeV) Thrugoing Stopping 1 1 1 1 3 1 4 1 5

Muon Energy loss as a function of Energy Non-Showering muon Showering Muon < de/dx (MeV cm g -1 ) > 1 1 Total Loss Radiative Loss Ionization Loss Average < de/dx > from M.C. E i L E f de/dx = (E i - E f )/L Distribution asymmetric for each muon energies 1 1 1 1 1 3 1 4 1 5 Muon energy (GeV) (Groom et al 3) Reasonably good agreement of Monte-Carlo with PDG Aim of this analysis is only to separate a given muon into showering/non-showering

Corrections to raw PMT charge Muon track d wat PMT Apply following correction for every PMT in Cherenkov Cone q corr = q raw d wat exp(d wat /L atten ) -------------------------- F(θ) where L atten = Water attenuation length, d wat = Distance from PMT to point of projection to µ track F(θ) = PMT acceptance + shadowing Divide the muon track into 5 cm bins. For each bin, calculate average corrected charge and its error as follows: i Q corr N pmt 1 q corr N pmt where N pmt = No of pmts within the given projected distance corresponding to each bin i Qcorr 1 N pmt N pmt 1 q corr q raw

Corrections to raw PMT charge Muon track d wat PMT Apply following correction for every PMT in Cherenkov Cone q corr = q raw d wat exp(d wat /L atten ) -------------------------- F(θ) where L atten = Water attenuation length, d wat = Distance from PMT to point of projection to µ track F(θ) = PMT acceptance + shadowing Divide the muon track into 5 cm bins. For each bin, calculate average corrected charge and its statistical error as follows: i Q corr i Qcorr N pmt 1 1 N pmt N pmt q corr N pmt q corr 1 q raw where N pmt = No of pmts within the given projected distance corresponding to each bin

Corrected Charge Distribution Comparison of ionizing vs showering muon Mean corrected photo-electrons /.5 m 9 8 7 6 5 4 3 1 Muon Energy = GeV Muon Energy = 1 TeV 4 6 8 1 1 14 16 18 Projected Distance Along Track (m) Mean corrected photo-electrons /.5 m 9 8 7 6 5 4 3 1 4 6 8 1 1 14 16 18 Projected Distance Along Track (m) de/dx =.16 MeV/cm de/dx = 8.5 MeV/cm Both simulated muons have same entry point and direction

{ { Variables used for showering/non-showering separation n i3 where and i Q corr Q corr i Qcorr Shape Comparison n3 4 Q corr n3 4 qlq corr i Q corr i Qcorr 1 i Qcorr Q corr ql Absolute Corrected Charge Comparison (Average corrected charge averaged over entire muon length) for a ionizing muon as a function of path-length Difference in average corrected charge of given muon same for ionzing muon

No of events 6 5 4 3 Data M.C. Variables when applied to 1yr upmu NEUT Monte-Carlo χ comparison for data and monte-carlo 1.5 1 1.5.5 3 3.5 log1 (Σ {(de/dx) i - mean} /dof) 18 16 14 Data Monte-Carlo No of events 1 1 8 6 4-4 - 4 6 8 1 [ mean q corr - Q(L) ] comparison for data and monte-carlo

SHOWERING CUT USED χ /DOF >4 and >1. OR χ /DOF >3 and >. OR χ /DOF> and >.5 OR χ /DOF>5 and >.5 OR > 4.5 Total no of showering events = 5575 (out of 3731) in 1 year upmu NEUT Monte-carlo Efficiency = 71 % where, Efficiency = No of events Identified by algorithm --------------------------------------------- No of events with E / X >.85 MeV/cm E = Energy deposited by muon in inner detector X = Length of muon in inner detector

NEUTRINO ENERGY SPECTRA dφ/dloge υ ( 1-13 cm - s -1 sr -1 ).5.45.4.35.3.5..15.1 Showering Non-showering Stopping <E υ > ~ 1 GeV <E υ > ~ 1 GeV <E υ > ~ 1 TeV.5 1 1 1 1 3 1 4 1 5 E υ (GeV)

Event Display of upward showering muon Super-Kamiokande Run 11 Sub 3 Ev 1539 96-7-5:1:46:37 13 dee4 66 Inner: 1877 hits, 19145 pe Outer: 49 hits, 863 pe (in-time) Trigger ID: xb D wall: 169. cm Upward-Going Muon Mode Charge(pe) >6.7 3.3-6.7.-3.3 17.3-. 14.7-17.3 1.-14.7 1.-1. 8.-1. 6.- 8. 4.7-6. 3.3-4.7.- 3.3 1.3-..7-1.3.-.7 <. 16 1 8 4 5 1 15 Times (ns)

Angular Resolution of showering muons 4 Angular resolution of Showering thrumus Shaded region contains 68 % of total area µ true µ fit Angular resolution = 1.5 No of events 35 3 5 15 1 5 1 3 4 5 6 7 8 9 1 Angle between precision fit and truth fit Thrugoing muons : Angular resolution ~ 1 Stopping muons : Angular resolution ~ 1

Zenith-angle distribution of showering muons 1 No Oscillation m =.5 sin Θ =1. 8 No of events 6 4-1 -.9 -.8 -.7 -.6 -.5 -.4 -.3 -. -.1 cosθ Showering muons relatively insenstive to oscillation ==> For this dataset chi-square for null -oscillation should be very good fit

Background Subtraction Applied the showering algorithm to horizontal thrugoing muon with < cos(θ)<.8 Azimuth distribution of all showering muons (1) () (1) 1 3 19.48 / 14 P1 1.7.8869 P 1.78.789 P3 65.17 1.86 No of Events 1 3 1 Number of Events 1 1 Region (1) Φ < 6, Φ > 4 Region () 6 < Φ < 4 1 1 1 5 1 15 5 3 35 Φ (degrees) 1-1 -.1 -.8 -.6 -.4 -...4.6.8 cosθ Fit to thin rock zenith angle distribution: f[cos(θ)] = p1+ exp [p+p3 cos(θ)] N bkgd = 8.63 +1-5 for cos(θ)> -.1 (Asymmetric distribution because of bump near horizon)

Showering Muon Oscillation Results Best-fit (physical region) : χ = 4.68 / 7 dof for ( m, sin θ) = (.14 ev,.9) Best-fit (null oscillation) : χ = 6.51/9 dof 1 9 No of showering muons 8 7 6 5 4 3 1-1 -.9 -.8 -.7 -.6 -.5 -.4 -.3 -. -.1 cosθ Zenith angle comparison at best fit point Null oscillation normalized by livetime

Projections of chi-square distributions for showering muons 1 8 99% C.L. 9% C.L. 68% C.L. 1 8 99% C.L. 9% C.L. 68% C.L. χ - χ min 6 4 χ - χ min 6 4 1-4 1-3 1 - m (ev )..4.6.8 1 1. 1.4 sin θ Null oscillation allowed even at 68 % confidence level as expected for this high energy ν µ with mean energy of ~ 1 TeV

Comparison with all upward thrugoing muons 1 1 8 99% C.L. 9% C.L. 68% C.L. 8 99% C.L. 9% C.L. 68% C.L. χ - χ min 6 4 χ - χ min 6 4 1-4 1-3 1 -..4.6.8 1 1. 1.4 m (ev ) sin θ Best-fit : χ = 7.64 / 7 dof for ( m, sin θ) = (.4 ev,.96) Best-fit at null oscillation : χ = 19.6/9 dof Upward thrugoing muons sensitive to neutrino oscillation

CONCLUSIONS A sample of upward thrugoing muons which lose energy through radiative processes have been identified. Mean energy of parent neutrinos of upward showering muons ~ 1 TeV. 5575 showering muons in 1yr neut Monte-carlo and 39 events in 1679.6 days data Zenith angle distribution of upward showering muons consistent with null oscillations This dataset will now be used for oscillation analysis with all datasets by providing an extra energy bin at highest energies. A variety of astrophysical searches with upward showering muons done. Nothing found. (S. Desai thesis 3. Also A. Habig poster)