The Lucas congruence for Stirling numbers of the second kind

Similar documents
Laplace Transform. Definition of Laplace Transform: f(t) that satisfies The Laplace transform of f(t) is defined as.

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

Integral Equations and their Relationship to Differential Equations with Initial Conditions

BEST PATTERN OF MULTIPLE LINEAR REGRESSION

STOCHASTIC CALCULUS I STOCHASTIC DIFFERENTIAL EQUATION

Analysis of the Preference Shift of. Customer Brand Selection. and Its Matrix Structure. -Expansion to the second order lag

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Efficient Estimators for Population Variance using Auxiliary Information

A Remark on Generalized Free Subgroups. of Generalized HNN Groups

The MacWilliams Identity of the Linear Codes over the Ring F p +uf p +vf p +uvf p

Numerical Methods using the Successive Approximations for the Solution of a Fredholm Integral Equation

Decompression diagram sampler_src (source files and makefiles) bin (binary files) --- sh (sample shells) --- input (sample input files)

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X

An Application of Linear Automata to Near Rings

(1) Cov(, ) E[( E( ))( E( ))]

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

14. Poisson Processes

An improved Bennett s inequality

4. Runge-Kutta Formula For Differential Equations

The Poisson Process Properties of the Poisson Process

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF DISCRETE EQUATIONS ON DISCRETE REAL TIME SCALES

Continuous Time Markov Chains

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula

ONE APPROACH FOR THE OPTIMIZATION OF ESTIMATES CALCULATING ALGORITHMS A.A. Dokukin

Calculation of Effective Resonance Integrals

Linear Approximating to Integer Addition

Reliability Equivalence of a Parallel System with Non-Identical Components

The Linear Regression Of Weighted Segments

Cyclically Interval Total Colorings of Cycles and Middle Graphs of Cycles

Analysis of a Stochastic Lotka-Volterra Competitive System with Distributed Delays

Nilpotent Elements in Skew Polynomial Rings

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination

Parameter Estimation and Hypothesis Testing of Two Negative Binomial Distribution Population with Missing Data

The Products of Regularly Solvable Operators with Their Spectra in Direct Sum Spaces

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

A Class of Lobatto Methods of Order 2s

P-Convexity Property in Musielak-Orlicz Function Space of Bohner Type

TEACHERS ASSESS STUDENT S MATHEMATICAL CREATIVITY COMPETENCE IN HIGH SCHOOL

Integration by Parts for D K

Generalisation on the Zeros of a Family of Complex Polynomials

Competitive Facility Location Problem with Demands Depending on the Facilities

A note on Turán number Tk ( 1, kn, )

Partial Molar Properties of solutions

Key words: Fractional difference equation, oscillatory solutions,

graph of unit step function t

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

The Theory of Membership Degree of Γ-Conclusion in Several n-valued Logic Systems *

LAPLACE TRANSFORMS. 1. Basic transforms

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

X-Ray Notes, Part III

Some Improved Estimators for Population Variance Using Two Auxiliary Variables in Double Sampling

Cyclone. Anti-cyclone

I I M O I S K J H G. b gb g. Chapter 8. Problem Solutions. Semiconductor Physics and Devices: Basic Principles, 3 rd edition Chapter 8

Solution set Stat 471/Spring 06. Homework 2

Chapter #2 EEE Subsea Control and Communication Systems

The Signal, Variable System, and Transformation: A Personal Perspective

Asymptotic Behavior of Solutions of Nonlinear Delay Differential Equations With Impulse

4.8 Improper Integrals

Policy optimization. Stochastic approach

Fractional Fourier Series with Applications

The Covenant Renewed. Family Journal Page. creation; He tells us in the Bible.)

Chapter3 Pattern Association & Associative Memory

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

International Mathematical Forum, Vol. 9, 2014, no. 13, HIKARI Ltd,

Chapter Simpson s 1/3 Rule of Integration. ( x)

2.Decision Theory of Dependence

Midterm Exam. Tuesday, September hour, 15 minutes

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

Stat 6863-Handout 5 Fundamentals of Interest July 2010, Maurice A. Geraghty

The z-transform. LTI System description. Prof. Siripong Potisuk

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005.

CS344: Introduction to Artificial Intelligence

General Complex Fuzzy Transformation Semigroups in Automata

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

A Brief Introduction to Olympiad Inequalities

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

G x, x E x E x E x E x. a a a a. is some matrix element. For a general single photon state. ), applying the operators.

The Mathematical Appendix

CS473-Algorithms I. Lecture 12b. Dynamic Tables. CS 473 Lecture X 1

Introduction to Laplace Transforms October 25, 2017

NONLINEAR SYSTEM OF SINGULAR PARTIAL DIFFERENTIAL EQUATIONS

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

Positive and negative solutions of a boundary value problem for a

A NEW FIVE-POINT BINARY SUBDIVISION SCHEME WITH A PARAMETER

Practice Final Exam (corrected formulas, 12/10 11AM)

Chapter Trapezoidal Rule of Integration

Lecture 3 summary. C4 Lecture 3 - Jim Libby 1

arxiv:math/ v1 [math.gm] 8 Dec 2005

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Linear Open Loop Systems

Continuous Indexed Variable Systems

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Modified Taylor's Method and Nonlinear Mixed Integral Equation

T h e C S E T I P r o j e c t

Transcription:

ACTA ARITHMETICA XCIV 2 The Luc cogruece for Srlg umber of he ecod kd by Robero Sáchez-Peregro Pdov Iroduco The umber roduced by Srlg 7 h Mehodu dfferel [], ubequely clled Srlg umber of he fr d ecod kd, re of he gree uly he clculu of fe dfferece, umber heory, he ummo of ere, he heory of lgorhm, he clculo of he Bere polyoml [9] I h udy, we demore ome propere of Srlg umber of he ecod kd mlr o hoe fed by boml coeffce; prculr we how h hey fy cogruece logou o h of Luc, h o: b b mod p wh p, b b p ; p, b p Ug Propoo 4 we gve oher proof for Keko recurrece formul for poly-beroull umber [] Some of he reul re mlr o hoe of Howrd [5] I cocluo, I wh o gve my be hk o he Geomery Group of he Dprmeo d Memc Pur ed Applc d Dprmeo d Meod Memc per le Sceze Applce of he Uvery of Pdov, for uppor d help gve durg he prepro of h work I prculr, I wh o hk Frk Sullv for h precou dvce d uggeo Noo d defo I h eco, we wll revew vrou defo d oo for Srlg umber of he ecod kd Le, N We e f,, f >,, f, >, f >, > 2 Mhemc Subjec Clfco: A7, B7 [4]

42 R Sáchez- Peregro Defo The umber repreeed by he ymbol re clled Srlg umber of he ecod kd A h oe del oly wh he Srlg umber of he ecod kd, we wll cll hem mply Srlg umber Srlg umber of he ecod kd re lo dced he lerure wh oher ymbol: S, []; S [6] The oo ued here h bee propoed by D Kuh [4]; followg h dvce we my red brcke Wh Defo he eger, re umed o-egve Neverhele, ueful o mplfy oo ll he ecery pge, gvg vlue o he umber eve whe < I h ce, we coveolly pu For, wh mple codero oe verfe h Trdolly, h he wy whch Srlg umber re roduced [6] I hould be oced, moreover, h he Srlg umber k equl o he umber of pro of he e,, o k-block [2, ] Moreover, Srlg umber hve he followg propere: f > ; 2! j j j j See [6], pge 68 d 69, for demoro 2 Addo formul A coequece of j j j j d of propery 2, we hve he followg Propoo 2 For ech prme umber p, p > 2, he Srlg umber fy p mod p for ech, p Propoo 22 ddo Le,, N The j j j j P r o o f The proof by duco o Whe, he rgh hd de of reduce o

Luc cogruece for Srlg umber 4 2 2 However, he ler equl o Thu, formul hold whe Now rem o demore h f rue for url umber >, he lo rue for : j j j j j j j [ j j j j j j j j j f j j j j j j j j j j f f f f f f f f j ]

44 R Sáchez- Peregro 2 j f f h j j j f f f f h h f h h f f f f f If y >, y Therefore, he hrd dded of 2 we c eed he ecod um o, d 2 become f h [ h f h ] h hf f f f h h f f h h f f h hf h f f f f h f h f h hf h h f f Corollry 2 If p he p mod p p Th formul h bee demored by Becker & Rord [], ug oher mehod

Luc cogruece for Srlg umber 45 Lemm 2 Le,, y N The y p y p p mod p The proof by duco o If, he rue ccordg o Corollry 2 I rem o be how h f rue for url umber >, he lo hold for To do h, we c ue procedure logou o h ued o prove Newo Boml Formul Remrk 2 Th lemm mlr o Theorem 42 of Howrd [5] he ce, y < p Th lemm, ogeher wh ey duco rgume o r, gve more elemery proof of Theorem 44 of Howrd [5] Corollry 22 Le,, y N The y p y y p j mod p j Fr pproch o he Luc Theorem Propoo Le, y,, N wh y p, p The y p y y 4 mod p p p 5 P r o o f Le, from Lemm 2 follow h y p y p p y p mod p p p p y j mod p j j p j m m y m mp p mod p Added of 5 whch correpod o m 2 re ull vew of propery of Seco, becue, h ce, y m < m p Added for whch m re ull, ce m p < Hece, we coclude h he ecod um 5 reduce o oly he dded for whch m d m : 6 [ y ] y p

46 R Sáchez- Peregro y y p If we ue Vdermode equly [6] for boml coeffce, equo 6 reduce o y y p Obervo Wh he hypohe h y < p, 4 reduce o y p y mod p p I ueful o oce h h formul very mlr o Luc formul for boml coeffce Remrk I he ce r < p he cogruece 4 gve he formul 47 d 48 of Howrd [5] 4 The Luc Theorem Propoo 4 Le, y,, N The y p y l 7 l, l,, l k l kp k mod p l l l P r o o f The proof by duco o Fr of ll, ccordg o Corollry 22 formul 7 rue whe I rem o be how h f 7 rue for url umber, he lo rue for : y p p l l l l l l l, l,, l l, l,, l y l k l kp k p y l k l kp k p m m m m y p l k l kp k mod p [ y l k l kp k ] mod p m, m,, m y l k l kp k p 2 y m k m kp k

m m m m m m m m 2 m m m m m m m m m m m m m m m m m m m Luc cogruece for Srlg umber 47 y m m, m,, m k m kp k m, m,, m y m k m kp k y m m, m,, m k m kp k y m m m, m,, m k m kp k y m m m, m,, m k m kp k m m, m,, m 2 y m k m kp k y m m m, m,, m k m kp k m, m,, m y m k m kp k Applyg Propoo 4 ow gve he followg heorem Theorem 4 Luc Le, y,, y N,,, m,, y p, y y y y, y N,,, m The y y p y 2 p 2 y m p m p 2 p 2 m p m y y y y 2 y 2 y 22 y 2 y m y m y mm y m y y 2 y m y, y y 2, y 2, y 22 y m, y m,, y mm y y y 2 y m y m y 2 y p mod p 2 y m2 y 22 p 2 m y mm p m

48 R Sáchez- Peregro 5 A pplco o Clue Vo Sud cogruece for he poly-beroull umber For every eger k, we defe equece of rol umber B k,,, whch we refer o poly-beroull umber, by 8 z L kz z e B k! Here, for y eger k, L k z deoe he forml power ere m zm /m k, he kh polylogrhm f k d rol fuco f k Whe k, B he uul Beroull umber wh B /2 [8] Throughou h eco, ν p he drd p-dc vluo o Q The rol p-dc eger Z p Q re he rol umber r uch h ν p r We hve he followg epo of he umber B k erm of he Srlg umber of ecod kd Theorem 5 B k See [7] for demoro m m m! m k m We e m q r p r r p r l p l wh q r [, p ] d [, p ] for r,, l The m! 9 ν p m k rk pr p q r p r l r p p Remrk 5 We deoe he rgh hd de of 9 by Le p k, d le b b p b l p l be he p-dc epo of Pu l b The Remrk 52 We hve p p We eblh he followg lemm whch wll be coly ued below Lemm 5 mod p f p, p mod p f p P r o o f Wh he oo roduced fer Remrk 5, follow from Propoo 4 d Remrk 52 h p k mod p, where p k p p p

Luc cogruece for Srlg umber 49 We c ere h procedure d he ed we ob rp mod p wh r p p p Sce r p d by Propoo cogruece equvle o p mod p, by Propoo 2 we ob he fr equly For he ecod ce he proof he me Theorem 52 If k 2, p, d k 2 p, he p k B k pz p, e p k B k mod p P r o o f Le p be pove prme By Theorem 5 we ob p k B k p k m m! m k m m We e m q r p r r p r l p l wh q r [, p ] d [, p ] for r,, l The by 9 equo equvle o p k B k p k m m! m k p k m m! 2 m m k m r r, > p k m m! m k p p! m p r 2 Becue m eger he rgh hd de of 2 eleme of pz p Sce p prme d m eger, we c prove h he um eleme of pz p By Lemm 5 d by Wlo Theorem he ecod um equvle o mod p Thu we flly ob he ero of Theorem 52 Theorem 5 If k 2, p d k 2 p he p k B k Z p The proof of h heorem mlr o h of Theorem 52 Remrk 5 The ce k 2 of Theorem 52 gve by Keko [7] For p < k 2 he behvour of he ν p B k choc We how h he ce p 2,, k Propoo 5 If eve, he ν 2 B 4 P r o o f Ug 9 we ee h he oly ummd B m m! m m m whch hve vluo le h re! 4 2 mod 4 d 7 mod 4 d 7! 8 7, bu

5 R Sáchez- Peregro Propoo 52 If 2 mod, he ν B 4 P r o o f Ug 9 we ee h he oly ummd B whch gve he vluo of B 8! 9 8, bu 8! 8 9 mod Propoo 5 If 6 8α 2 or 22 8α, he ν B P r o o f By 9 he oly ummd B whch gve corbuo o he vluo re 2! 2, 5! 6 5, d 8! 6 8 We fd by Lemm 5 d by duco h 2 d, 5 mod, 8! 68α2 8 2 α2 e 5 d 8! 228α 8 α 4 h 5, wh d, e, h N I he fr ce we hve 6 8α2 4 ν ν d α 2 2 e ; he ecod ce we hve 22 8α 2 ν ν d α 2 h Propoo 54 Le 8k If 54α, he f α mod, ν B f α mod, f α 2 mod I he remg ce 2854α 2 d 4654α we hve ν B 2 P r o o f By drec clculo d by duco we ob 2 25 d, 5! 5 e, d 8! 54α 8 9α 6 f wh d, e, f N I he ce α mod d α mod we ob 7 ν B α 54α ν d f ; he ce α 2 we ob e ν B 54α m ν 2 d f, ν 8 If 28 54α 2 we ob 8! 2854α 2 8 9α2 7 g 6 wh g N d o 9 ν B α2 2854α 2 ν 2 d g If 46 54α we ob 8! 4654α 8 9α 6 h wh h N d o 7 ν B α 4654α ν 2 d h Remrk 54 I Propoo 5 d 54, mod Propoo 55 If 2 8α or 24 8α 2, he ν B

Luc cogruece for Srlg umber 5 P r o o f By 9 he oly ummd B whch my gve corbuo o vluo re 2! 2, 5! 6 5 d 8! 9 8 Ug Lemm 5 we ob 2 d by duco we ge 5 mod I he fr ce we ob 8! 28α 8 26b 5 c o 4 ν B 28α ν 2 b 2 c I he ecod ce we ob 8! 248α 2 8 4 d d hu ν B 248α 2 ν 2 Propoo 56 Le 8α We hve f α mod 9, ν B 8α f α 6 mod 9, 2 oherwe P r o o f By duco d by drec clculo we ob 2, 5! 5 8 b, d 8! 8 6k 6 d The 2! ν B ν 5! 2 6 8! 8k 5 9 ν 8 4 2 Remrk 55 I Propoo 55 d 56, mod Ackowledgme We wh o hk M Keko for h dvce o h ubjec, d we wh o epre our cere hk o he referee for h helpful comme d uggeo h led o coderble mproveme of h pper Referece [] H W Becker d J Rord, The rhmec of Bell d Srlg umber, Amer J Mh 7 948, 85 94 [2] L Crlz, Weghed Srlg umber of he fr d ecod kd, I, Fbocc Qur 8 97, 47 62 [] L Come, Alye Combore, Tome,, Pree Uv de Frce, Pr, 97 [4] A E Fekee, Apropo wo oe o oo, Amer Mh Mohly 99 992, 4 422 [5] F T Howrd, Cogruece for he Srlg umber d oced Srlg umber, Ac Arh 55 99, 29 4 [6] C Jord, Clculu of Fe Dfferece, Chele, New York, 96 [7] M Keko, Poly Beroull umber, J Théor Nombre Bordeu 9 997, 22 228 [8] N Koblz, p-dc Number, p-dc Aly, d Ze-Fuco, Grd Te Mh 58, Sprger, Berl, 977

52 R Sáchez- Peregro [9] R Sáchez-Peregro, Ideé de Bere pour ue foco homogèe à gulré olée, Red Sem M Uv Pdov 8 989, 22 227 [], Aoher proof of Keko recurrece formul for he Beroull umber, prepr [] J Srlg, Mehodu dfferel, ve rcu de ummoe e erpolzoe ererum frum, Lod, 7 Dprmeo de Memc Pur ed Applc Uverà d Pdov V Belzo, 7 5 Pdov, Ily E-ml: chez@mhupd Receved o 82998 d reved form o 999 526