DOI: /jcprm :

Similar documents
DOI: /jcprm / : (391) ,

DOI: /jcprm :

Terpolymerization of 2-ethoxy ethylmethacrylate, styrene and maleic anhydride: determination of the reactivity ratios

DOI: /jcprm : (343) ,

:

Supporting information to: Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin,

A Facile and High-Recovery Material for Rare Metals Based on a Water- Soluble Polyallylamine with Side-Chain Thiourea Groups

ph dependent thermoresponsive behavior of acrylamide-acrylonitrile UCSTtype copolymers in aqueous media

MODIFICATION WITH A SULFONATE MONOMER

The functionality of a monomer is the number of binding sites that is/are present in that monomer.

International Journal of Engineering Research & Science (IJOER) ISSN: [ ] [Vol-3, Issue-11, November- 2017]

Synthesis of Random Copolymers Poly (methylmethacrylate-co-azo monomer) by ATRP-AGET

Supplementary Information. Rational Design of Soluble and Clickable Polymers Prepared by. Conventional Free Radical Polymerization of

Polymers are high molecular mass macromolecules composed of repeating structural

Probing Side Chain Dynamics of Branched Macromolecules by Pyrene Excimer Fluorescence INTRODUCTION EXPERIMENTALS

SALT EFFECT ON THE RADICAL COPOLYMERIZATION OF 3-DIMETHYL(METHACRYLOYLOXYETHYL)AMMONIUM PROPANE SULFONATE WITH N-VINYL-2-PYRROLIDONE IN WATER

Fall 2011 CHEM Test 4, Form A

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 01

Supporting Information. for

Modulation of Poly(β-amino ester) ph-sensitive Polymers by Molecular Weight Control

Solutions and Ions. Pure Substances

Reverse Polyvinylpyrrolidones (PVP) By: Robert B Login

Supporting Information. for A Water-Soluble Switching on Fluorescent Chemosensor of. Selectivity to Cd 2+

MATHEMATICAL SIMULATION OF THE STYRENE- BUTADIENE RUBBER S PRODUCTION IN THE CASCADE OF REACTORS BY THE MONTE CARLO METHOD

Biological Macromolecules

Size exclusion chromatography of branched polymers: Star and comb polymers

Online Monitoring of 4-Vinylbenzene sulfonic acid Sodium Salt Acrylamide Copolymerization in Water

SYNTHESIS AND MONOMER REACTIVITY RATIOS OF [3-(TRIMETHOXYSILYL) PROPYL METHACRYLATE/N- VINYL PYRROLIDONE] COPOLYMER

Chemical initiation mechanism of maleic anhydride grafted onto styrene butadiene styrene block copolymer

Polymer Chemistry - Ring-Opening-Polymerisation (ROP)

Lecture 27 More Polymers

Supporting Information Water-soluble 1,2,4-Triazole with Diethylene Glycol Monoethyl Ether

Siberian Branch of RAS, (Russia)

Supporting Information

A L A BA M A L A W R E V IE W

Three-Dimensional Free-Radical Polymerization

Molecular Weight Averages and Degree of Branching in Self-Condensing Vinyl Copolymerization in the Presence of Multifunctional Initiators

CHEM 10113, Quiz 5 October 26, 2011

UNIVERSITY OF CALGARY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEMISTRY 353 READ ALL THE INSTRUCTIONS CAREFULLY

Supporting Information for

Supplementary Information. "On-demand" control of thermoresponsive properties of poly(n-isopropylacrylamide) with cucurbit[8]uril host-guest complexes

(12) United States Patent (10) Patent No.: US 6,762,262 B1

The particle size and shape of polyaniline in aqueous solutions of poly-(n-vinylpyrrolidone)

IDENTIFICATION AND ISOLATION OF PHARMACOLOGICALLY ACTIVE TRITERPENES IN Betuale cortex, Betula pendula Roth., Betulaceae

RAPID COMMUNICATION. Synthesis of Disyndiotactic Polylactide INTRODUCTION EXPERIMENTAL

Orientational behavior of liquid-crystalline polymers with amide groups

Repeated insertion. Multiple insertion leads to dimerization, oligomerization or polymerization. κ 1: mainly dimerization κ

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section

Anomalous phase behavior in blends of -SO 3 H terminated polystyrene with poly(n-butyl acrylate) containing a small amount of tertiary amino groups

POLYMERIZATION REACTION MONITORING FOR PSA PRODUCTION USING AN ATR-FTIR PROBE

Deconvoluting the responses of polymer-scaffolded dynamic combinatorial libraries to biomacromolecular templates

Supporting Information

Combined metallocene catalysts: an efficient technique to manipulate long-chain branching frequency of polyethylene

SUPPORTING INFORMATION

Information on the exercises and home assignments in polymer chemistry

IPR Temperature Response of Aqueous Solutions of a Series of Pyrene End- Labeled Poly(N-isopropylacrylamide)s Probed by Fluorescence

CHEMICAL POLYMERIZATION OF SUBSTITUTED DERIVATIVES OF ANILINE IN OXALIC ACID MEDIUM

Anthracene-based Acrylamides and Methacrylamides as Functional Monomers: Synthesis and Characterization

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

Determination of Compositional Hete TitleAcrylonitrile-Styrene Copolymers by. Author(s) Wälchli, Jürg; Miyamoto, Takeaki; I

Contribution of the solid phase polymerization to the molecular weight distribution in acrylonitrile precipitation copolymerization

Spontaneous Copolymerization of N-Butyl Maleimide and Ethyl -Phenyl Acrylate with High Alternating Tendency

DOI: /jcprm

Experimental Section

Molecular Weight and Chain Transfer

Complete spectral assignments of methacrylonitrile-styrenemethyl methacrylate terpolymers by 2D NMR spectroscopy

Chemistry Standard level Paper 1

SUPPLEMENTARY INFORMATION

New Reagents for the Synthesis of Organic/Fluoroalkyl Copolymers DAVID A. VICIC

Rational design of a biomimetic glue with tunable strength and ductility

Solvent & geometric effects on non-covalent interactions

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine

Preparation and Characterization of Organic/Inorganic Polymer Nanocomposites

KINETICS AND MECHANISM OF GRAFT POLYMERIZATION OF ACRYLONITRILE ONTO STARCH INITIATED WITH POTASSIUM PERSULFATE

Electronic Supplementary Information (ESI)

Chapter : 15. POLYMERS. Level-1:Questions

Method for preparing plastic optical fiber preform

Chemistry Class 12 th NCERT Solutions

DOI: /jcprm

Probing Hydrogen Bond Energies by Mass Spectrometry

Polymeric surface coatings for use as leather finishes--part I. Studies on synthesis and characterisation of urethane acrylate oligomers

Chemistry Standard level Paper 1

8. Relax and do well.

ESI. Core-Shell Polymer Nanoparticles for Prevention of GSH Drug Detoxification and Cisplatin Delivery to Breast Cancer Cells

CHEM4. (JUN15CHEM401) WMP/Jun15/CHEM4/E5. General Certificate of Education Advanced Level Examination June 2015

Figure 1. Principle of crosslinking emulsion copolymers by using hexaallylamino-cyclo-triphosphazene

Research Article. Selective extraction of betulinic acid from Zizyphus joazeiro Mart. bark: A preliminary study

[RSiO 1.5 ] n Nanobuilding Blocks for Photonic and Electronic Applications

Anionic Polymerization - Initiation and Propagation

MAXIMAL SUBALGEBRAS AND CHIEF FACTORS OF LIE ALGEBRAS DAVID A. TOWERS

Synthesis of Arborescent Polybutadiene. Ala Alturk and Mario Gauthier, IPR Symposium, University of Waterloo, N2L 3G1 Canada

Supporting information

Reactive oligomers based on a cyanuric epoxy resin

If anything confuses you or is not clear, raise your hand and ask!

Sustainable Inverse-Vulcanised Sulfur Polymers

NAME: SECOND EXAMINATION

THE POLARITY OF POLYMER RADICALS

University of Groningen. Rheokinetics Cioffi, Mario

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers)

(07) 2 (c) 2 (c) (i) Calculate the ph of this buffer solution at 25 oc (3 marks) (Extra space)

Transcription:

. 2014. 4.. 91 99. DI: 10.14258/jcprm.201404238 678.744.342:547.9. *,.,.,.,. 3,, 614013 ( ), e-mail: mngorb@newmail.ru (Bétula) 2-, c., - N-. MS. :,,. ( 15-03-01701- ) -. - -. [1], - [2]. -,, -,,, -,.,, -,. -,,.,,, e-mail: mngorb@newmail.ru,,,, -. -. - [3], 2,3- - [4], - [5]. *,.

92.,.,.,. [6] 2- - [7] (.,. 2- -. (Bétula) [8]. [6], 2- - [9]. 2- [10]. ( ) Alfa Aesar, T. 78 º, n 20 D = 1,3910. N ( ) Lancaster, = 65 º / 1,5., n 20 = 1,5117. D ( ),, -. 70 90.... - 50.. r 1 r 2 [11] [12]. 1 Varian Mercury c 300. DCl 3,. 549 ( ), RD ( ) MS ( ) - DMEM ( A549 RD) RPMI 1640 ( MS) 10%, 2 M L- 1% 37 C 5% C 2. MS, - -.. (. ). 96- - DMEM 10% 0,3% 37 5% 2 C 2 Isotemp Barnstead ( ). 24 100 1,56. 72 - [13] FLUstar PTIMA BMG Labtech GMBH ( )., - 4000,., XX. [14 22].,,. 1788. - 35%. [22].

93 2- - 30 ( ) 2- ( ) (. 1). 1.. 1. ( ) 2- ( ),, -, 2 2 ( P n 3 30) [23, 24]. - 2 -. 2.,. CH 2 CH CH 2 CH CH 2 CH 2 CH 2 CH 2 CH CH CH 2 XR XR CH 2 XR XR CH 2 CH CH XR CH 2 CH CHXR : -, -,. -.,.,.. [23, 25 32].,, ( ),., (CaCl 2, ZnCl 2 ) (HCl, H 3 P 4 ) - n = 10 3. -. [33, 34]., ( ) [35]. ( - ). - (,, - ),. - [36, 37], -,.,.

94.,.,.,., -, - N-., (. 2). - ( 1 ) 1., -. - (. 3). - (M 2 ), -,. - 70 90. - 88,3 ± 1,5. «-»., -,,,. -. 1 H (. 2).. - -29. m 2.% 1 3 y = 0,5x - 15 R² = 0,2571. 2. (1, 3) (2, 4) (1, 2) (3, 4). M 2 m 2. 1 + 2 ] = 5,7, [ ] = 0,13, T = 80 C. 3. ( 1 ) (1) (2). ] = 3.%, = 80 1. ( 2 ) (, 80 ) 1 2 r 1 r 2 r 1 r 2 0,12 ± 0,003 4,65 ± 0,20 0,56 0,02 ± 0,001 6,15 ± 0,23 0,12 0,49 ± 0,006 1,48 ± 0,11 0,73 0,35 ± 0,050 1,94 ± 0,10 0,68

95 2. 1 13 (DMS) 1 29 30 20 21 19 12 18 22 11 25 26 13 17 28 1 9 14 2 16 10 8 15 3 4 7 27 5 6 23 24 C NH 31 32 33 n 34 35 m 36 CN 1644-1 (CNH), 1702-1 ( ), 2245-1 (CN), 3361-1 (NH). 0,86, 0,92, 0,98, 1,01, 1,14 (15, 5, 5 3 23, 24, 25, 26, 27); 1,28 (2,, 2-34); 1,57 (2,, 2-32); 1,67 (3,, 3-30); 1,83 (2,, 2-33); 2,39 (1,, -35); 3,14 (3,, -19, H-31); 4,58 4,64 (2, 2, 2-29), 7,78 (1,, NH). HN 3 11 25 2 1 9 10 4 5 6 23 24 29 30 20 21 19 12 18 22 26 13 17 28 14 16 8 15 27 7 C NH 31 32 33 n 34 35 m 36 CN 1641-1 (CNH, =N), 1708-1 (C=), 2239-1 (CN), 3413-1 (H, NH). 0,78, 0, 92, 0,99, 1,05, 1,08 (15, 5, 5 3 H-23, 24, 25, 26, 27); 1,24 (2,, 2-34); 1,69 (2,, 2-32); 1,71 (3,, 3-30); 1,83 (2,, 2-33); 1,96 2,78 (2, 2, 2-1), 2,11 (1,, -35); 3,21 (3,, -19, H-31), 4,60 4,72 (2, 2, 2-29), 6,68 (1,, NH). 11 25 1 9 2 10 3 4 5 6 23 24 29 30 20 21 19 12 18 22 26 13 17 28 14 16 8 15 27 7 C NH 31 32 33 n 34 35 39 38 N 36 m 37 1644-1 (CNH), 1680-1, 1712-1 ), 3361-1 (NH). 0,85, 0,87, 0,92, 0,97, 1,05 (15, 5, 5 3 H-23, 24, 25, 26, 27); 1,20 (2,, 2-34); 1,36 (2,, 2-32); 1,45 (2,, 2-33); 1,63 (3,, 3-30); 1,79 (2,, 2-38); 2,38 (2,, 2-37); 3,04 (1,, -19); 3,35 (2,, H-31); 3,68 (1,, 2-39); 4,45 (1,, -35); 4,53 4,65 (2, 2, 2-29); 7,79 (1,, NH). HN 29 30 20 21 19 12 18 22 11 25 26 13 17 28 2 1 9 14 C 16 10 8 15 3 4 7 27 5 6 23 24 NH 31 32 33 n 34 35 N 39 38 36 m 37 1642-1 (CNH, =N), 1675-1, 1708-1 (C=), 3419-1 (H, NH). 0,90, 0,91, 0,99, 1,07, 1,12 (15, 5, 5 3 H-23, 24, 25, 26, 27); 1,17 (2,, 2-34); 1,30 (2,, 2-32); 1,48 (2,, 2-33); 1,68 (3,, 3-30); 1,96 (2,, 2-38); 2,12 2,91 (2, 2, 2-1); 2,31 (2,, 2-37); 3,25 (3,, - 19, H-31); 3,34 (1,, 2-39); 4,47 (1,, -35); 4,60 4,71 (2, 2, 2-29); 7,85 (1,, NH).. [16, 17, 38 40],, -., -., AA 4 MS - (. 3).

96.,.,.,. 3. (. 2), 50% (IC 50 ), S RD A549 187,84 ± 7,32 44,55 ± 0,25 (2) (4) 40,48 ± 7,19 171,90 ± 1,11 1., 2- -. 2. N- - -. 3., (, ),. 1. Lee S.M., Min B.S., Lee C.G., Kim K.S., Kho Y.H. Cytotoxic triterpenoids from the fruits of Zizyphus jujuba // Planta Med. 2003. Vol. 69. N11. Pp. 1051 1054. 2. olstikova.g., Sorokina I.V., Tolstikov G.., Tolstikov.G., Flekhter.B. Biological activity and pharmacological prospects of lupane terpenoids: II. Semisynthetic lupane derivatives // Rus. J. Bioorg. Chem. 2006. Vol. 32. N3. Pp. 291 307. 3. Era V., Jaaskelamen P., Ukkonen. Fatty acid ersters from betulinol // J. Amer. il Chem. Soc. 1981. Vol. 58. N1. Pp. 20 23. 4. Era V., Mustonen., Jaaskelainen. Polyakrylates from betulinol // Mackromol. Chem. Rapid Commun. 1981. Vol. 2. Pp. 283 286. 5.. 1671666 ( ). - /.,.,. / 1991.. 18. 6..,.,.,.,.,.,.,.,.,.,.,. 3- // -. 2002.. 36. 6.. 21 24. 7. 2477134 ( ). -1 /.,.,.,. /2013. 8..,.,.,.,.,.,.,.,.,.,. -. // -. 2002.. 36. 9.. 26 28. 9..,.,.,.,. - 2,3- //. 2009. 5.. 566 568. 10..,.,.,. - //. 2013. 2.. 239 242. 11. Finemann M., Ross S.D. Linear method for determining monomer reactivity ratios in copolymerization // J. Polym. Sci. 1950. Vol. 5. Pp. 269 284. 12. Kelen T., Tüd s F. Analysis of the linear methods for determining copolymerization reactivity ratios. I. A new improved linear graphic method // J. Macromol. Sci., Chem. 1975. Vol. 9. N1. Pp. 1 27. 13. Scudiero D.A., Shoemaker R.H., Paull K.D., Monks A., Tierney S., Notziger T.H., Currens M.T., Seniff D., Boyd M.K. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines // Cancer Res. 1988. Vol. 48. Pp. 4827 4833. 14. Ruzicka L. Perspektiven der Biogenese und der Chemie der Terpene // Pure Appl. Chem. 1963. N6. Pp. 493 524. 15. Hayek., Jordis U., Moche W., Saure F. A bicentennial of betulin // Phytochemistry. 1989. N28. Pp. 2229 2242. 16. Ekman R. Lipophilic extractives of the inner bark of birch, Betula verrucosa Ehrh // Finn. Chem. Lett. 1983. N7 8. Pp. 162 165. 17. Ekman R. The suberin monomers and triterpenoids from the outer bark of Betula verrucosa Ehrh // Holzforschung. 1983. Vol. 37. N4. Pp. 205 211. 18. Cole B., Bentley M., Hua Y., Bu L. Triterpenoid constituens in the outer bark of Betulaalleghaniensis (yellow birch) // J. Wood Chem. Technol. 1991. Vol. 11. N2. Pp. 209 223.

97 19. Seshadri.,Vedantham T. Chemical examination of the barks and heartwoods of betula species of american origin // Phytochemistry. 1971. Vol. 10. N4. Pp. 897 898. 20. HuaY., Bentley M., Cole B., Murray K., Alford R. Triterpenes from the uter Bark of Betulanigra // J. Wood Chem. Technol. 1991. Vol. 11. N4. Pp. 503 516. 21. Habiyaremye I., Stevanovic-Janezic B., Garneau F.-X., Riedl B., Jean F.-I. Pentacyclictriterpene constituents of yellow birch (Betulaalleghaniensis) bark from Quebec // J. Wood Chem. Technol. 2002. Vol. 22. N2. Pp. 83 91. 22..,. Betula //. 1988. 3.. 325 341. 23..,.,..., 1987. 256. 24..,.,. //. 1970.. 39. 2.. 276 303. 25. Zubov V.P., Lachinov M.B., Golubev V.B., Kulikova V.F., Kabanov V.A., Polak L.S., Kargin V.A. The influence of complex agents on the polymerization of vinyl and allyl monomers // J. Polym. Sci. C. 1968. Vol. 23. N1. p. 147 155. 26..,.,.,.,..,. - //. A. 1967.. 9. 2.. 299 302. 27..,.,.,.,.,.,. - // -.. 1971.. 13. 8.. 1830 1843. 28..,.,.,.,.,. - //.. 1973.. 15. 1.. 100 106. 29..,.,.,.,. - //.. 1976.. 18. 9.. 1957 1962. 30. Zubov V.P., Kumar M. Vijaya, Masterova M.N., Kabanov V.A. Reactivity of allyl monomers in radikal polymerization // J. Macromol. Sci.. 1979. Vol. 13. N1. Pp. 111 131. 31.. :......., 1970. 32. Hill D.J.T., Donnell J.J., Sullivan P.W. The role of donor-acceptor complexes in polymerization // Prog. Polym. Sci. 1982. Vol. 8. N3. Pp. 215 276. 33..,.,..., 1983. 214. 34..,.,. N- //.. 1979.. 21. 12.. 912 916. 35..,.,. N- - //. 1993.. 66. 11.. 2525 2529. 36..,.,. //.. 1968.. 10. 11.. 2460 2464. 37..,.,.,. - //.. 1970.. 12. 9.. 1983 1986. 38..,.,.,.,.. //. 2005.. 13.. 1 30. 39. Krasutsky P. A. Birch bark research and development // Nat. prod. rep. 2006. Vol. 23. N6. Pp. 919 942. 40. Alakurtti S., Mäkelä T., Koskimies S., Yli-Kauhaluoma J. Pharmacological properties of the ubiquitous natural product betulin // Europ. J. Pharm. Sciences. 2006. Vol. 29. Pp. 1 13. 23 2014. 10 2014.

98.,.,.,. Gorbunova M.N. *, Krainova G.F., Tolmacheva I.A., Grishko V.V. SYNTHESIS F NEW BILGICALLY ACTIVE PLYMER BICNJUGATES N THE BASIS F LUPANE ALLYLAMIDES Institute of Technical Chemistry of Ural Branch of RAS, ul. ac. Korolev, 3, Perm, 614013 (Russia), e-mail: mngorb@newmail.ru The work is devoted to the synthesis of new copolymers based on allylamides of betulonic and 2 hydroximinobetulonic acids and study of their cytotoxic activity. Allylamides of betulonic and 2 hydroximinobetulonic acids were prepared by the reaction of corresponding acids with allylamine in the presence of oxalyl chloride and triethylamine. It was established that the allylamides obtained do not homopolymerize, but copolymerize with low rates with acrylonitrile and N-vinylpyrrolidone in the presence of radical initiators The investigations of radical copolymerization of allylamides with acrylonitrile and N-vinylpyrrolidone showed that the resulting copolymers have a statistical distribution of the comonomer units in the macromolecule, wherein in the entire range of monomer concentrations the copolymers are enriched by the vinyl monomer units. The copolymerization rates are considerably reduced by increasing the content of allylamides in the initial monomer mixture in all copolymerization systems, the copolymerization rate of allylamide with acrylonitrile is higher than with N-vinylpyrrolidone. At the copolymerization in bulk with enhancing degree of conversion there is a "gel-effect", which is associated with an increasing of the viscosity in the absence of solvent; at the copolymerization in solution "gel-effect" is absent. The structure of the copolymers obtained was determined by 1 H NMR spectroscopy. It was established that the products obtained are a mixture of copolymers of allyl amides and oligomers thereof. In the spectra of the reaction products a number of additions of the vinyl monomer with the participating of double bond of isopropylidene group is also observed. The copolymers obtained have a cytotoxic activity: the copolymer of allylamide of betulonic acid with N-vinylpyrrolidone exhibits 4-fold higher activity against MS culture when compared with the initial ally amide and is promising for developing new bioactive polymer bioconjugates. Keywords: Lupanova allylamides, radical copolymerization, cytotoxic activity. References 1. Lee S.M., Min B.S., Lee C.G., Kim K.S., Kho Y.H. Planta Med. 2003, vol. 69, no. 11, pp. 1051 1054. 2. olstikova.g., Sorokina I.V., Tolstikov G.., Tolstikov.G., Flekhter.B. Rus. J. Bioorg. Chem. 2006, vol. 32, no. 3, pp. 291 307. 3. Era V., Jaaskelamen P., Ukkonen. J. Amer. il Chem. Soc. 1981, vol. 58, no. 1, pp. 20 23. 4. Era V., Mustonen., Jaaskelainen. Mackromol. Chem. Rapid Commun. 1981, Vol. 2, pp. 283 286. 5. Patent 1671666 (SU). 1991. (in Russ.). 6. Flehter.B., Ashavina.Ju., Boreko E.I., Karachurina L.T., Pavlova N.I., Kabal'nova N.N., Savinova.V., Galin F.Z., Nikolaeva S.N., Zarudij F.S., Baltina L.A., Tolstikov G.A. Himiko-farmacevticheskij zhurnal, 2002, vol. 36, no. 6, pp. 21 24. (in Russ.). 7. Patent 2477134 (RU). 2013. (in Russ.). 8. Flehter.B., Nigmatullina L.R., Baltina L.A., Karachurina L.T., Galin F.Z., Zarudij F.S., Tolstikov G.A., Boreko E.I., Pavlova N.I., Nikolaeva S.N., Savinova.V. Himiko-farmacevticheskij zhurnal, 2002, vol. 36, no. 9, pp. 26 28. (in Russ.). 9. Tolmacheva I.A., Grishko V.V., Boreko E.I., Savinova.V., Pavlova N.I. Himija prirodnyh soedinenij, 2009, no. 5, pp. 566 568. (in Russ.). 10. Krajnova G.F., Tolmacheva I.A., Gorbunova M.N., Grishko V.V. Himija prirodnyh soedinenij, 2013, no. 2, pp. 239 242. (in Russ.). 11. Finemann M., Ross S.D. J. Polym. Sci. 1950, vol. 5, pp. 269 284. 12. Kelen T., Tüd s F. J. Macromol. Sci., Chem. 1975, vol. 9, no. 1, pp. 1 27. 13. Scudiero D.A., Shoemaker R.H., Paull K.D., Monks A., Tierney S., Notziger T.H., Currens M.T., Seniff D., Boyd M.K. Cancer Res. 1988, vol. 48, pp. 4827 4833. 14. Ruzicka L. Pure Appl. Chem. 1963, no. 6, pp. 493 524. 15. Hayek., Jordis U., Moche W., Saure F. Phytochemistry, 1989, no. 28, pp. 2229 2242. 16. Ekman R. Finn. Chem. Lett. 1983, no. 7 8, pp. 162 165. 17. Ekman R. Holzforschung, 1983, vol. 37, no. 4, pp. 205 211. 18. Cole B., Bentley M., Hua Y., Bu L. J. Wood Chem. Technol. 1991, vol. 11, no. 2, pp. 209 223. 19. Seshadri.,Vedantham T. Phytochemistry, 1971, vol. 10, no. 4, pp. 897 898. 20. HuaY., Bentley M., Cole B., Murray K., Alford R. J. Wood Chem. Technol. 1991, vol. 11, no. 4, pp. 503 516. 21. Habiyaremye I., Stevanovic-Janezic B., Garneau F.-X., Riedl B., Jean F.-I. J. Wood Chem. Technol. 2002, vol. 22, no. 2, pp. 83 91. 22. Pohilo N.D., Uvarova N.I. Himija prirodnyh soedinenij, 1988, no. 3, pp. 325 341. (in Russ.). 23. Kabanov V.A., Zubov V.P., Semchikov Ju.D. Komplekso-radikal'naja polimerizacija. [Complexo-radical polymerization]. Moscow, 1987, 256 p. (in Russ.). 24. Volodina V.I., Tarasov A.I., Spasskij S.S. Uspehi himii, 1970, vol. 39, no. 2, pp. 276 303. (in Russ.). 25. Zubov V.P., Lachinov M.B., Golubev V.B., Kulikova V.F., Kabanov V.A., Polak L.S., Kargin V.A. J. Polym. Sci. C. 1968, vol. 23, no. 1, pp. 147 155. 26. Kulikova V.F., Savinova I.F., Zubov V.P., Kabanov V.A., Polak L. S., Kargin V.A. Vysokomolekuljarnye soedinenija. A. 1967, vol. 9, no. 2, pp. 299 302. (in Russ.). * Corresponding author.

99 27. Kornil'eva V.F., Masterova M.N., Garina E.S., Zubov V.P., Kabanov V.A., Polak L.S., Kargin V.A. Vysokomolekuljarnye soedinenija. A. 1971, vol. 13, no. 8, pp. 1830 1843. (in Russ.). 28. Zubov V.P., Garina E.S., Kornil'eva V.F., Masterova M.N., Kabanov V.A., Polak L.S. Vysokomolekuljarnye soedinenija. A. 1973, vol. 15, no. 1, pp. 100 106. (in Russ.). 29. Masterova M.N., Andreeva L.I., Zubov V.P., Polak L.S., Kabanov V.A. Vysokomolekuljarnye soedinenija. A. 1976, vol. 18, no. 9, pp. 1957 1962. (in Russ.). 30. Zubov V.P., Kumar M. Vijaya, Masterova M.N., Kabanov V.A. J. Macromol. Sci.. 1979, vol. 13, no. 1, pp. 111 131. 31. Zubov V.P. Jeffekty kompleksoobrazovanija v radikal'noj polimerizacii: diss. dokt. him. nauk. [Effects of complexation in radical polymerization: doctor chemical sciences diss.]. Moscow, 1970. (in Russ.). 32. Hill D.J.T., Donnell J.J., Sullivan P.W. Prog. Polym. Sci. 1982, vol. 8, no. 3, pp. 215 276. 33. Zubov V.P., Golubev V.B., Stojachenko I.L. Novoe v cheredujushhejsja sopolimerizacii. [New in the alternating copolymerization]. Moscow, 1983, 214 p. (in Russ.). 34. Korshak V.V., Shtil'man M.I., Zalukaeva T.P. Vysokomolekuljarnye soedinenija. B. 1979, vol. 21, no. 12, pp. 912 916. (in Russ.). 35. Panarin E.F., Tarasova N.N., Gorbunova.P. Zhurnal prikladnoj himii. 1993, vol. 66, no. 11, pp. 2525 2529. (in Russ.). 36. Ageev A.I., Ezrielev A.I., Roskin E.S. Vysokomolekuljarnye soedinenija. A. 1968, vol. 10, no. 11, pp. 2460 2464. (in Russ.). 37. Ageev A.I., Ezrielev A.I., Mazo L.D., Roskin E.S. Vysokomolekuljarnye soedinenija. A. 1970, vol. 12, no. 9, pp. 1983 1986. (in Russ.). 38. Tolstikov G.A., Flehter.B., Shul'c Je.Je., Baltina L.A., Tolstikov A.G. Himija v interesah ustojchivogo razvitija, 2005, vol. 13, pp. 1 30. (in Russ.). 39. Krasutsky P. A. Nat. prod. rep. 2006, vol. 23, no. 6, pp. 919 942. 40. Alakurtti S., Mäkelä T., Koskimies S., Yli-Kauhaluoma J. Europ. J. Pharm. Sciences. 2006, vol. 29, pp. 1 13. Received January 23, 2014 Revised December 10, 2014