Oxidation-Reduction Reactions

Similar documents
Reactions in aqueous solutions Redox reactions

Oxidation-Reduction (Redox) Reactions

CHEMISTRY 40S: AQUEOUS SOLUTIONS LESSON 4 NOTES. When you have completed this lesson, you will be able to:

An oxidation-reduction (redox) reaction involves the transfer of electrons (e - ). Sodium transfers its electrons to chlorine

Oxidation & Reduction (Redox) Notes

S 8 + F 2 SF 6 4/9/2014. iclicker Participation Question: Balance the following equation by inspection: H + + Cr 2 O 7 + C 2 H 5 OH

Oxidation and reduction reactions v Found often in aqueous environments v Examples include, rusting of metals v Cracking a glow stick, where

Oxidation numbers are charges on each atom. Oxidation-Reduction. Oxidation Numbers. Electrochemical Reactions. Oxidation and Reduction

Honors Chemistry Mrs. Agostine. Chapter 19: Oxidation- Reduction Reactions

1.7 REDOX. Convert these to ionic and half equations and you can see clearly how the electrons are transferred:

Ch. 20 Oxidation-Reduction Reactions. AKA Redox Reactions

Rules for Assigning Oxidation Numbers. 1. The oxidation number of an element in any elementary substance is zero.

Redox reactions. You can remember this by using OiLRiG: Oxidation is Loss Reduction is Gain. Definition 1: Oxidation

Note Taking Guide: Episode electrochemistry the study of -related applications of - reactions

REDOX AND ELECTROCHEMISTRY

Oxidation-Reduction Reactions

Unit 5 Part 2: Redox Reactions and Electrochemistry

Oxidation I Lose electrons. Reduction I Gain electrons

Oxidation and Reduction in Photochromism. Oxidation and Reduction. Examples of Oxidized and Reduced Substances. Electron Loss and Gain.

Practice Exam Topic 9: Oxidation & Reduction

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES

OXIDATION-REDUCTIONS REACTIONS. Chapter 19 (From next years new book)

Unit 8: Redox and Electrochemistry

15.2 Oxidation-Reduction (Redox) Reactions

9.1 Introduction to Oxidation and Reduction

Notes: Chemical Reactions. Diatomic elements: H 2, N 2, O 2, F 2, Cl 2, Br 2, I 2 I Bring Clay For Our New Hut OR HOBrFINCl

REDOX REACTIONS. Chapters 4, 19.1 & 19.2 M. Shozi CHEM110 / 2014

Chapter 17. Oxidation-Reduction. Cu (s) + 2AgNO 3(aq) 2Ag (s) + Cu(NO 3 ) 2(aq) pale blue solution. colorless solution. silver crystals.

1/31/2013 CHEMICAL EQUATIONS & REACTIONS NOTES. Write the formulas of the following compounds: 1. nickel (II) chloride. 2. copper (II) nitrate

Chemistry 30: Reduction-Oxidation Reactions. Single replacement Formation Decomposition Combustion. Double replacement

Danyal Education (Contact: ) A commitment to teach and nurture

Ch. 5 Oxidation-Reduction Reactions. Brady & Senese, 5 th Ed.

2. Indicators of Chemical Rxns. Abbreviations of State (g) gas (l) liquid (s) solid (aq) aqueous a substance dissolved in water

Step by Step: Oxidation Numbers and Balancing Redox reactions. (acidic)

elemental state. There are two different possibilities: DESCRIPTION 1. One cation (+ ion) replaces another. 2. One anion (- ion) replaces another.

1. Parts of Chemical Reactions. 2 H 2 (g) + O 2 (g) 2 H 2 O(g) How to read a chemical equation

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species.

Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS

Aqueous Reactions. The products are just the cation-anion pairs reversed, or the outies (A and Y joined) and the innies (B and X joined).

Lecture 28 Chapter 19, Section 1 Redox Reactions Oxidation Number. Redox Reactions Oxidation Number

Chemical Nomenclature

Chemical Equations. Chemical Reactions. The Hindenburg Reaction 5/25/11

OXIDATION AND REDUCTION

Definition 1 An element or compound is oxidized when it gains oxygen atoms

CHM 101 GENERAL CHEMISTRY FALL QUARTER 2008

( ) 4Fe( l) + 3CO 2 ( g)

(DO NOT WRITE ON THIS TEST)

Chapter 19: Oxidation - Reduction Reactions

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12

Redox Reactions. Sections 4.9, RW Session ID = MSTCHEM1

Chapter 4 Chemical Formulas, Reactions, Redox and Solutions

DOX REACTIONS AND ACTIVITY S

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

Indicators of chemical reactions

Types of Reactions: Reactions

Solubility Rules See also Table 4.1 in text and Appendix G in Lab Manual

Assignment #1: Redox Reaction Skill Drills


Q.1 What is the oxidation state of the elements in?

Unit 8 Chemical Reactions- Funsheets

What is an ion? An ion is an atom (or group of atoms) that has a positive or negative charge

Oxidation-Reduction (Redox)

NOTES PACKET COLLIER CHEMISTRY PRE-AP

Oxidation-Reduction Reactions

Activity Balancing Oxidation-Reduction Reactions

Chapter 4 Electrolytes Acid-Base (Neutralization) Oxidation-Reduction (Redox) Reactions. Dr. Sapna Gupta

IONIC BONDING. Belton High School

Unit 4: Reactions and Stoichiometry

Reaction Writing Sheet #1 Key

Types of Reactions: Reactions

Chapter 4; Reactions in Aqueous Solutions. Chapter 4; Reactions in Aqueous Solutions. V. Molarity VI. Acid-Base Titrations VII. Dilution of Solutions

Exam 3. Objectives: Nomenclature

Chap. 4 AQUEOUS RXNS. O H δ+ 4.1 WATER AS A SOLVENT 4.2 AQUEOUS IONIC REACTIONS. Page 4-1. NaOH(aq) + HCl(g) NaCl(aq) +H 2 O

BALANCING EQUATIONS NOTES

Topic 9: Redox Processes. IB Chemistry SL Coral Gables Senior High School Ms. Kiely

4.4. Revision Checklist: Chemical Changes

*KEY* * KEY * Mr. Dolgos Regents Chemistry NOTE PACKET. Unit 10: Electrochemistry (Redox) REDOX NOTEPACKET 1

Types of Chemical Reactions

Find the oxidation numbers of each element in a reaction and see which ones have changed.

Balancing Redox Reactions

Oxidation-Reduction Reactions. (Redox) Redox Reactions. Types of Redox Rxn s. Not Redox Reactions. Combustion of methane

Zn + Cr 3+ Zn 2+ + Cr. 9. neutrons remain the same: C. remains the same. Redox/Electrochemistry Regents Unit Review. ANSWERS

Chemical Reactions. Chemical changes are occurring around us all the time

Worksheet 1: REPRESENTATIVE PARTICLES

Electrochemistry Crash Course

Chapter 6. Naming Compounds Writing Formulas

Name: Regents Chemistry Date:

Oxidation-Reduction Reactions and Introduction to Electrochemistry

AP Chemistry Honors Unit Chemistry #4 2 Unit 3. Types of Chemical Reactions & Solution Stoichiometry

Reactions (Chapter 4) Notes 2016.notebook. October 14, Chemical Reactions. Chapter 4 Notes. Oct 21 8:44 AM. Oct 22 10:14 AM

4.4. Revision Checklist: Chemical Changes

CHAPTER 4 TYPES OF CHEMICAL REACTIONS & SOLUTION STOICHIOMETRY

Atoms and Bonding. Chapter 18 Physical Science

Chapter 8 Nomenclature

Chemical Formulas and Chemical Nomenclature. Mr. Matthew Totaro Legacy High School Honors Chemistry

Chemical Equation Calculations

Ionic and Metallic Bonding

The Mole Concept. It is easily converted to grams, no of particles or in the case of gas volume.

Chem A Ch. 9 Practice Test

Transcription:

Oxidation-Reduction Reactions What is an Oxidation-Reduction, or Redox, reaction? Oxidation-reduction reactions, or redox reactions, are technically defined as any chemical reaction in which the oxidation number of the participating atom, ion, or molecule of a chemical compound changes. Some common redox reactions include fire, rusting of metals, browning of fruit, and photosynthesis. In simpler terms, redox reactions involve the transfer of electrons from one substance to another. In a redox reaction, electrons can never be lost ; if one substance loses electrons, another substance must gain an equal number of electrons. Therefore, oxidation and reduction always happen at the same time; they are a matched set. What is Oxidation? Oxidation is the loss of electrons by an atom, ion, or molecule. The atom, ion, or molecule that is oxidized will become more positively charged. Oxidation may also involve the addition of oxygen or the loss of hydrogen. What is Reduction? Reduction is the gain of electrons by an atom, ion, or molecule. The atom, ion, or molecule that is reduced will become more negatively charged. Reduction may also involve the loss of oxygen or the gain of hydrogen. Tips for determining if an atom, ion, or compound has been Oxidized or Reduced: Remembering one of the two following mnemonics can be of assistance in determining the difference between oxidation and reduction: 1) OIL RIG- Oxidation Is Loss (of electrons), Reduction Is Gain (of electrons) or 2) LEO GER- Loss of Electrons- Oxidation, Gain of Electrons- Reduction Atoms of metals tend to lose electrons to form positive ions (oxidation) Atoms of non-metals tend to gain electrons to form negative ions (reduction). Existing ions may also gain or lose electrons to become an ion with a different charge or an atom with a neutral charge. Oxidation-Reduction Reactions Provided by Tutoring Services 1 Reviewed February 2011

Always keep in mind when working with redox reactions that electrons are negative!! What are oxidation numbers and how do I assign them? Oxidation numbers are defined as the effective charge on an atom in a compound. A negative oxidation number, or effective charge, denotes the number of electrons an atom has available to donate as it participates in a chemical reaction to form a new substance. Similarly, a positive oxidation number indicates how many electrons an atom may acquire during a chemical reaction. By assigning each individual atom an oxidation number, we are able to keep track of electron transfer when new compounds are formed. There are several general rules that are followed when assigning oxidation numbers to atoms: For an atom in elemental form (an element standing alone with no charge) the oxidation number is always zero. Examples: S N 2 K S and K are atoms in the elemental form and therefore have no charge. N 2 is a molecule that is the elemental form of nitrogen, and its atoms have no charge. The oxidation number for these S, K, and N atoms will be zero. For any monatomic ion (an ion consisting of only one element) the oxidation number equals the charge on the ion. Examples: O 2- H + O 2- and H + are both monatomic ions; thus, the oxidation number for O 2- will be -2 and the oxidation number for H + will be +1. Non-metals generally have negative oxidation numbers. Group I metals in a compound are always +1. Group II metals in a compound are always +2. Fluorine in a compound is always -1. Hydrogen in a compound with metals is always -1. Hydrogen in a compound with non-metals is always +1. Provided by Tutoring Services 2 Oxidation-Reduction Reactions

Oxygen in a compound is generally -2 (UNLESS in peroxides or with fluorine, in which case it is -1). Halogens (Group VII) in a compound are generally -1. The sum of the oxidation numbers of all atoms in a neutral compound is zero. Example: Determine the oxidation number on S in Na 2 SO 3. Na 2 SO 3 is neutral and has no overall charge. Therefore, the sum of the charges on each atom in the compound must equal zero. We will start by identifying the overall charge on oxygen since we know that it will generally always be -2; there are 3 of them so the overall charge for oxygen is -6 (-2 x 3= -6). Likewise, we know that sodium will always have a charge of +1 and there are 2 of them; thus, the overall charge on sodium is +2 (+1 x 2= +2). In order to figure out the unknown charge (and thus the oxidation number) on the sulfur ion, we must set up a mathematical equation: -6 (-2 charge times 3 atoms of O) + 2 (+1 charge times 2 ions of Na) + X (x charge times 1 atom of S) = 0 (Overall charge on Na 2 SO 3 ) -4 (Sum of charges on O atoms and Na ions) + X (Charge of S atom) = 0 (Overall charge on Na 2 SO 3 ) In solving for X, we determine that the oxidation number on sulfur is +4. Example: Determine the oxidation number on C in COCl 2. COCl 2 is neutral and has no overall charge. As with the last example, the sum of the overall charges on each atom must equal zero. Oxygen generally has a charge of -2; there is only 1 of them so the overall charge on oxygen is - 2 (-2 x 1= -2). Chlorine (a halogen) generally has a charge of -1; since there are 2 of them, the overall charge on chlorine is -2 (-1 x 2= -2). At this point, we are ready to set up our mathematical equation to solve for the unknown charge (oxidation number) on carbon. -2 (-2 charge times 1 atom of O) + -2 (-1 charge times 2 atoms of Cl ) + X (x charge times 1 atom of C) = 0 (Overall charge on COCl 2 ) -4 (Sum of charges on O and Cl atoms) + X (Charge on C atom) = 0 (Overall charge on COCl 2 ) In solving for X, we can determine that the oxidation number on carbon to be +4. Provided by Tutoring Services 3 Oxidation-Reduction Reactions

When a monatomic ion is attached to a polyatomic ion, the known charge of the polyatomic ion can be used to determine the oxidation number of the monatomic ion. Example: Determine the oxidation number on Cu in CuSO 4. SO 4 2- has a charge of -2. We know that the compound CuSO 4 has an overall charge of 0 (neutral). Therefore, we can set up a mathematical equation to solve for the overall charge (oxidation number) on Cu. -2 (Charge on SO 4 ion) + X (Charge on Cu) = 0 (Overall charge on CuSO 4 ) In solving for X, we determine that the oxidation number on copper is +2. The sum of the oxidation numbers in a polyatomic ion equals the charge on the ions. Example: Determine the oxidation number on S in SO 4 2-. SO 4 2- has an overall charge of -2. This means that the sum of the overall charges on each atom in the ion must equal -2. Again, we will begin with oxygen. We know that generally oxygen carries a charge of -2; there are 4 oxygen atoms in this ion meaning that the overall charge on oxygen is -8 (-2 x 4= -8). At this point, we can set up a mathematical equation to solve for the unknown charge (oxidation number) on S. -8 (-2 charge times 4 O atoms) + X (Charge on S) = -2 (Overall charge on SO 4 2- ) In solving for X, we determine that the oxidation number on sulfur is +6. Example: Determine the oxidation number on Mn in MnO 4 -. In MnO 4 -, the overall charge on the molecule is -1. This tells us that the sum of the overall charges on each atom in the ion must equal -1. Beginning with oxygen, we can determine the overall charge on oxygen to be -8 (-2 x 4 = -8). We can now set up our mathematical equation in order to solve for the unknown charge (oxidation number) on manganese. -8 (-2 charge times 4 O atoms) + X (Charge on Mn) = -1 (Overall charge on MnO 4- ) In solving for X, we determine that the oxidation number on manganese is +7. Provided by Tutoring Services 4 Oxidation-Reduction Reactions

How do I tell what is oxidized and what is reduced in a reaction? There are several steps involved in determining what is oxidized and what is reduced in a reaction: Example: Cl 2 (g) + 2 NaBr (aq) 2 NaCl (aq) + Br 2 (g) Using the rules for determining oxidation numbers above, write out the charge (oxidation number) held by each atom or molecule in a reaction. I can determine that Cl 2 (g) and Br 2 (g) will both have a charge of zero (both are in elemental form). We know that both NaBr (aq) and NaCl (aq) are neutral compounds; therefore, the sum of the charges of the atoms in each of these compounds will be zero. NaBr: We know that the charge on Na is +1 and that the charge on Br is -1. The sum of these is equal to zero (+1 + -1 =0). NaCl: The charges on Na and Cl can be determined in the same manner as NaBr above: Na has a charge of +1 and Cl has a charge of -1. This brings their sum to zero (+1 + -1 =0). I can now write out the reaction again, this time including the charges on each atom. Cl 20 (g) + 2 Na +1 Br -1 (aq) 2 Na +1 Cl -1 (aq) + Br 20 (g) I now determine the change in charge on each atom from products to reactants and whether electrons were gained or lost. Cl 0 Cl -1 Cl has gone from a charge of 0 to -1; Cl has GAINED one electron (Remember electrons are negative!!) Na +1 Na +1 Na has maintained the same charge, meaning it has neither gained nor lost any electrons. Br -1 Br 0 electron. Br has gone from a charge of -1 to 0; Br has LOST one Based on whether electrons were gained or lost (Remember LEO GER or OIL RIG!!), I can tell which atom is oxidized and which is reduced. Cl has gained one electron; therefore, Cl is reduced. Na has neither gained nor lost so it is neither oxidized nor reduced. Br has lost one electron; therefore, Br is oxidized. Provided by Tutoring Services 5 Oxidation-Reduction Reactions

What is the Activity Series and how do I use it? Metals vary based on how easily they are oxidized (or lose electrons). The activity series is a list of metals in aqueous solutions that shows the relative ease with which metals are oxidized. It allows one to be able to predict the outcome of reactions between metals, metal salts, and acids. Metals at the top of the list are more easily oxidized (lose electrons more easily) than metal at the bottom of the list. The activity series is as follows: http://www.grandinetti.org/teaching/chem121/lectures/solutionreactions/assets/activityseries.png Any metal on the list can be oxidized by (lose electrons to) the ions of the elements below it (ion will be reduced or gain electrons). Metals that are oxidized go from a solid form into solution and ions of the elements that do the oxidizing come out of solution to form solids. Provided by Tutoring Services 6 Oxidation-Reduction Reactions

Example: Will Silver oxidize Copper in the following equation: Cu 0 (s) + 2 Ag + (aq)? Silver is below copper in the activity series; therefore, copper will be oxidized by silver and the equation will be as follows: Cu 0 (s) + 2 Ag + (aq) Cu +2 (aq) + 2 Ag 0 (s) Copper loses electrons. It goes from a charge of zero to a charge of +2; therefore, copper is oxidized. Silver gains electrons. It goes from a charge of +1 to a charge of 0 (remember electrons are negative!!); therefore, silver is reduced. Example: Will an aqueous solution of iron (II) chloride oxidize magnesium metal? If so, write the balanced molecular equation. The first step in solving this equation is to set up the reactants side of the equation, including the oxidation number of each: Mg 0 (s) + Fe +2 (aq)+ 2 Cl -1 (aq)? The next step in solving this equation is to look at the activity series; if iron is below magnesium in the activity series, then iron will oxidize magnesium. Magnesium Mg Mg 2+ + 2e - Aluminum Al Al 3+ + 3e - Manganese Mn Mn 2+ + 2e - Zinc Zn Zn 2+ + +2e - Chromium Cr Cr 3+ + 3e - Iron Fe Fe 2+ + 2e - Iron is indeed below magnesium, meaning that the iron ion will oxidize magnesium, or cause it to lose electrons. Because we now know that this reaction will occur, we write out the products and oxidation numbers on each. Mg 0 (s) + Fe +2 (aq) + 2 Cl -1 (aq) Mg +2 (aq) + 2 Cl -1 (aq) + Fe 0 (s) Magnesium has gone from a solid form into solution and has been oxidized (lost electrons; went from an oxidation number of 0 to +2). Iron has been pulled out of solution to form a solid and has been reduced (gained electrons; went from an oxidation number of +2 to 0). Provided by Tutoring Services 7 Oxidation-Reduction Reactions

Sample Problems Determine the oxidation number on each of the following: 1. Na (s) 2. F -1 (aq) 3. Li +1 (aq) Determine the oxidation number for the indicated element in each of the following substances: 1. S in SO 2 (g) 2. S in Na 2 SO 3 (aq) 3. Cr in Cr 2 O 7 2- (aq) Determine which element is being oxidized and which is being reduced in the following reactions: 1. N 2 (g) + 3H 2 (g) 2NH 3 (g) 2. Mg (s) + CoSO 4 (aq) MgSO 4 (aq) + Co (s) 3. 2Al (s) + 6 HBr (aq) 2 AlBr 3 (aq) + 3H 2 (g) Use the activity series to determine the following. If a reaction will occur, write a balanced molecular equation. 1. Mn (s) + NiCl 2 (aq) 2. Fe (s) + CuSO 4 (aq) 3. Cu (s) + Cr(CH 3 COO) 3 (aq) Provided by Tutoring Services 8 Oxidation-Reduction Reactions

Answers to Sample Problems Determine the oxidation number on each of the following: 1. Na (s): 0 Sodium is in elemental form; the oxidation number is therefore zero. 2. F -1 (aq): -1 The fluorine ion is monatomic; the oxidation number equals the charge on the ion. 3. Li +1 (aq): +1 The lithium ion is monatomic; the oxidation number equals the charge on the ion. Determine the oxidation number for the indicated element in each of the following substances: 1. S in SO 2 (g): +4 Total charge on oxygens: (2 x -2) = -4. Since the molecule is neutral, positive and negative charges must cancel out: -4 (charges on oxygens) + X (charge on sulfur) = 0 (overall charge) Therefore, the charge on sulfur must be +4. 2. S in Na 2 SO 3 (aq):+4 Total charge on oxygens: (3 x -2) = -6. Total charge on sodiums: (2 x = +2. Since the molecule is neutral, positive and negative charges must cancel out: -6 (charges on oxygens) + 2 (charges on sodiums) + X (charge on sulfur) = 0 (overall charge). Therefore the charge on sulfur must be +4. 3. Cr in Cr 2 O 7 2 (aq):+6 Total charge on oxygens: (7 x -2) = -14. The ion has an overall charge of -2; when added together, the charges of chromium and oxygen must equal -2: -14 (charges on oxygens) + 2X (charge on each chromium) = -2 (overall charge) Therefore, the charge on chromium will be +6. Provided by Tutoring Services 9 Oxidation-Reduction Reactions

Determine which element is being oxidized and which is being reduced in the following reactions: 1. N 2 (g) + 3H 2 (g) 2NH 3 (g): Nitrogen is reduced; Hydrogen is oxidized Nitrogen goes from a charge of 0 to -3; it is gaining electrons. Each hydrogen goes from a charge of 0 to +1, for a total of +3 for all three; they are losing electrons. 2. Mg (s) + CoSO 4 (aq) MgSO 4 (aq) + Co (s): Magnesium is oxidized; Cobalt is reduced Magnesium goes from a charge of 0 to +2; it is losing electrons. Cobalt is going from a charge of +2 to 0; it is gaining electrons. The charge on SO 4 2- doesn t change; therefore, it is neither oxidized nor reduced. Also the atoms within the polyatomic ion are neither oxidized nor reduced. 3. 2Al (s) + 6 HBr (aq) 2 AlBr 3 (aq) + 3H 2 (g): Aluminum is oxidized; Hydrogen is reduced Aluminum goes from a charge of 0 to +3; it is losing electrons. Each hydrogen goes from a charge of +1 to 0; it is gaining electrons. The charge on bromide ion doesn t change; therefore it is neither oxidized nor reduced. Use the activity series to determine if a reaction will occur; if so, write a balanced molecular equation. 1. Mn 0 (s) + Ni +2 Cl -1 2 (aq) Mn +2 Cl -1 2 (aq) + Ni 0 (s) Nickel will oxidize manganese because nickel is below manganese on the activity series. 2. Fe (s) + CuSO 4 (aq) Fe +2 SO 4-2 (aq) + Cu 0 (s) Copper will oxidize iron because copper is below iron on the activity series. 3. Cu (s) + Cr(CH 3 COO) 3 (aq) None Chromium will not oxidize copper because chromium is above copper on the activity series. Provided by Tutoring Services 10 Oxidation-Reduction Reactions