Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Similar documents
The Frictional Regime

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f

Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD

Mechanics of Earthquakes and Faulting

SEISMIC SOURCES 1: FAULTING

Lecture 2: Deformation in the crust and the mantle. Read KK&V chapter 2.10

Mechanics of Earthquakes and Faulting

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression

Force and Stress. Processes in Structural Geology & Tectonics. Ben van der Pluijm. WW Norton+Authors, unless noted otherwise 1/9/ :35 PM

Dynamic analysis. 1. Force and stress

Ch 4a Stress, Strain and Shearing

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress?

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

Lecture 5. Rheology. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS

Lecture 6 Folds, Faults and Deformation Dr. Shwan Omar

Geology for Engineers Rock Mechanics and Deformation of Earth Materials

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current

Exercise: concepts from chapter 8

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME:

Classical fracture and failure hypotheses

Chapter 15 Structures

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building

Earthquakes and Seismotectonics Chapter 5

Lecture 9 faults, folds and mountain building

What Causes Rock to Deform?

Lecture 7. Joints and Veins. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Use a highlighter to mark the most important parts, or the parts. you want to remember in the background information.

Geologic Structures. Changes in the shape and/or orientation of rocks in response to applied stress

Crustal Deformation. Earth Systems 3209

Earthquakes. Forces Within Eartth. Faults form when the forces acting on rock exceed the rock s strength.

The Mechanics of Earthquakes and Faulting

Answers: Internal Processes and Structures (Isostasy)

Normal stress causes normal strain σ 22

Preface and Overview. Folded strata in the mountains of Italy (ca AD), Leonardo da Vinci

Module-4. Mechanical Properties of Metals

Faults and Faulting. Processes in Structural Geology & Tectonics. Ben van der Pluijm. WW Norton+Authors, unless noted otherwise 2/2/ :47

Faults, folds and mountain building

σn -2α σ1= Maximum Principal Stress -2Θ

Provided by Tasa Graphic Arts, Inc. for An Introduction to Structural Methods DVD-ROM

Deformation of Rocks. Orientation of Deformed Rocks

Stress and Strain. Stress is a force per unit area. Strain is a change in size or shape in response to stress

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture

Exercise: concepts from chapter 6

Surface changes caused by erosion and sedimentation were treated by solving: (2)

EAS FINAL EXAM

Exam Deformatie en Metamorfose van de Korst Educatorium zaal ALFA

EAS MIDTERM EXAM

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Mechanics of Earthquakes and Faulting

Introduction and Background

A circular tunnel in a Mohr-Coulomb medium with an overlying fault

Chapter 10: Deformation and Mountain Building. Fig. 10.1

Unit 4 Lesson 7 Mountain Building

LAB Exercise #4 - Answers The Traction Vector and Stress Tensor. Introduction. Format of lab. Preparation reading

Structural Geology and Geology Maps Lab

Crustal Deformation Earth - Chapter Pearson Education, Inc.

Mechanics of Earthquakes and Faulting

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II

Introduction Faults blind attitude strike dip

MAE 322 Machine Design. Dr. Hodge Jenkins Mercer University

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Structural Analysis I Chapter 4 - Torsion TORSION

CHAPER THREE ANALYSIS OF PLANE STRESS AND STRAIN

1 Introduction. 1.1 Aims. 1.2 Rock fractures

GG303 Lecture 17 10/25/09 1 MOHR CIRCLE FOR TRACTIONS

Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials

Failure surface according to maximum principal stress theory

ANSYS Mechanical Basic Structural Nonlinearities

Lecture #8: Ductile Fracture (Theory & Experiments)

Deformation: Modification of Rocks by Folding and Fracturing

Rock Mechanics and Rock Engineering

Effect of buttress on reduction of rock slope sliding along geological boundary

Reservoir Geomechanics and Faults

GEOL 321 Structural Geology and Tectonics

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating.

PLANES OF WEAKNESS IN ROCKS, ROCK FRCTURES AND FRACTURED ROCK. Contents

MAE 322 Machine Design Lecture 2. Dr. Hodge Jenkins Mercer University

Data Repository Hampel et al., page 1/5

Lecture # 6. Geological Structures

STRESS DROP AS A RESULT OF SPLITTING, BRITTLE AND TRANSITIONAL FAULTING OF ROCK SAMPLES IN UNIAXIAL AND TRIAXIAL COMPRESSION TESTS

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

Faults. Strike-slip fault. Normal fault. Thrust fault

20. Rheology & Linear Elasticity

Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

11.1 Rock Deformation

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

Rheology and the Lithosphere

Rheology: What is it?

friction friction a-b slow fast increases during sliding

Rheology III. Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep

Module 5: Theories of Failure

Shear Rupture of Massive Brittle Rock under Constant Normal Stress and Stiffness Boundary Conditions

1. classic definition = study of deformed rocks in the upper crust

Lab 6: Plate tectonics, structural geology and geologic maps

Rock slope failure along non persistent joints insights from fracture mechanics approach

Chapter. Mountain Building

Lecture Outline Friday March 2 thru Wednesday March 7, 2018

Transcription:

Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise

Brittle deformation EarthStructure (2 nd ed) 2

Types of brittle deformation Figure 6.4 Brittle deformation is the permanent change that occurs in a solid material due to the growth of fractures and/or due to sliding on fractures once they have formed. Orientation of the remote principal stress directions with respect to an intact rock body. A tensile crack that has been reoriented with respect to the remote stresses and becomes a fault by undergoing frictional sliding. A tensile crack which has been reactivated as a cataclastic shear zone. A tensile crack, forming parallel to σ1 and perpendicular to σ3 (which may be tensile). Tensile crack A shear fracture that has evolved into a fault. Shear fracture A shear fracture, forming at an angle of about 30 to the σ1 direction. (d) A tensile crack that has been reoriented with respect to the remote stresses and becomes a fault by undergoing frictional sliding. A shear fracture that has evolved into a cataclastic shear zone. EarthStructure (2 nd ed) 3

Brittle Deformation Processes EarthStructure (2 nd ed) 4

Atomic perspective FIGURE 6.3 A sketch illustrating what is meant by stretching and breaking of atomic bonds. The chemical bonds are represented by springs and the atoms by spheres. Four atoms arranged in a lattice at equilibrium. If the bonds are stretched too far, they break, and elastic strain is released FIGURE 6.5 A cross-sectional sketch of a crystal lattice (balls are atoms and sticks are bonds) in which there is a crack. The crack is a plane of finite extent across which all atomic bonds are broken. Strength Paradox: Rocks allow only few % elastic strain before ductile or brittle deformation. σ = E. E = 10 11. 0.1 = 10 10 Pa As a consequence of stretching of the lattice, some bonds stretch and some shorten, and the angle between pairs of bonds changes. Thus, theoretical strength is 1000 s Mpa Practical strength 10 s MPa EarthStructure (2 nd ed) 5

Tensile cracking Figures 6.6 and 6.7 Stress concentration adjacent to a hole in an elastic sheet. If the sheet is subjected to a remote tensile stress at its ends (σ r ), then stress magnitudes at the sides of the holes are equal to Cσ r, where the stress concentration factor (C), is (2b/a) + 1. Illustration of a home experiment to observe the importance of preexisting cracks in creating stress concentrations. An intact piece of paper is difficult to pull apart. Two cuts, a large one and a small one, are made in the paper. The larger preexisting cut propagates. For a circular hole, C = 3. For an elliptical hole, C > 3. Remote and local stress: stress concentration, C, is (2b/a) +1 Crack 1 x.02 µm: C = 100! - C becomes larger as cracks grow (larger is weaker) - cracks runaway In the shaded area, a region called the process zone, the plastic strength of the material is exceeded and deforms. EarthStructure (2 nd ed) 6

Axial experiments: Griffith cracks Figs. 6.8 and 6.9 Extension Development of a through-going crack in a block under tension. Compression An envelope model of longitudinal splitting. When tensile stress (σt) is applied, Griffith cracks open up The largest, properly oriented cracks propagate to form a through going crack. A cross section showing a rock cylinder with mesoscopic cracks formed by the process of longitudinal splitting. Effect of preexisting (or Griffith) cracks: preferred activation If you push down on the top of an envelope (whose ends have been cut off), the sides of the envelope will move apart. EarthStructure (2 nd ed) 7

Reminder: crack modes Figs. 6.11 and 6.12 A tensile stress concentration occurs at the ends of a Mode II crack that is being loaded. 2 Propagating shear-mode cracks and the formation of wing cracks. Tensile cracks Mode I Shear cracks Mode II sliding Mode III tearing Shear fracture or crack is a surface across which a rock loses continuity when the shear stress parallel to the surface (a traction) is sufficiently large. Shear cracks are not faults: as they propagate, they rotate into Mode I orientation ( wing cracks ) Mode I wing cracks form in the zones of tensile-crack concentration. EarthStructure (2 nd ed) 8

Formation of shear fractures Fig. 6.14 Stress strain plot (differential stress versus axial shortening) showing the stages (I IV) in a confined Compression experiment. The changes in volume accompanying the axial shortening illustrate the phenomenon of dilatancy; left of the dashed line, the sample volume decreases, whereas to the right of the dashed line the sample volume increases. (I, II) (III) The labels indicate the process that accounts for the slope of the curve. Schematic cross sections showing the behavior of rock cylinders during the successive stages of a confined compression experiment and accompanying stress strain plot, emphasizing the behavior of Griffith cracks (cracks shown are much larger than real dimensions). Pre-deformation state, showing open Griffith cracks. I, II III IV Compression begins and volume decreases due to crack closure. Crack propagation and dilatancy (volume increase) Merging of cracks along through-going shear fracture, loss of cohesion of the sample and mesoscopic failure. EarthStructure (2 nd ed) 9

Shear Failure Criteria 1 Fig. 6.15 Coulomb failure criterion: σ s = C + µσ n σ n is the normal stress across shear fracture at instant of failure σ s is the shear stress parallel to fracture surface at failure C is cohesion, a constant that specifies shear stress necessary to cause failure if normal stress across potential fracture plane equals zero µ is a constant, known as coefficient of internal friction Mohr diagram showing Coulomb failure envelope based on a set of experiments with increasing differential stress Circles represent differential stress states at the instant of shear failure Fracture surfaces (2!) at ~30 o to σ 1 The envelope is represented by two straight lines, oon which the dots represent failure planes EarthStructure (2 nd ed) 10

Why 30 o instead of 45 o fracture angle with σ 1? Figs. 6.16 and 6.17 At point 1 (α = θ = 45 ), shear stress is a maximum, but the normal stress across the plane is quite large. 45 o is maximum shear stress, but fractures form 30 o from σ 1 σ 1 a>b a b At point 2 (θ = 60, α=30 ), the shear stress is still quite high, but the normal stress is much lower. The change in magnitudes of the normal and shear components of stress acting on a plane as a function of the angle α between the plane and the σ1 direction; the angle θ = 90 α is plotted for comparison with other diagrams. Cross-sectional sketch showing how only one of a pair of conjugate shear fractures (a) evolves into a fault with measurable displacement (b). EarthStructure (2 nd ed) 11

Shear failure criteria 2 Fig. 6.18 Parabolic failure envelope: steeper near tensile field and shallower at high σ n Mohr failure envelope. Therefore, the value of α (the angle between fault and σ1) is not constant (compare 2α1, 2α2, and 2α3). Fracture angle varies around 30 o Mohr-Coulomb criterion EarthStructure (2 nd ed) 12

Shear failure criteria - 3 Ductile deformation at high stress, shear stress independent (technically a plastic failure criterion) Mohr diagram illustrating the Von Mises yield criterion Note that the criterion is represented by two lines that parallel the σ n -axis. EarthStructure (2 nd ed) 13

Composite Failure Envelope Fig. 6.21 A representative composite failure envelope on a Mohr diagram. Tensile crack: Griffith criterion Shear fracture: Mohr-Coulomb criterion Sketches of the fracture geometries that form during failure. Note that the geometry depends on the part of the failure envelope that represents failure conditions, because the slope of the envelope is not constant. EarthStructure (2 nd ed) 14

Fault Types EarthStructure (2 nd ed) 15

Anderson s Theory of Faulting EarthStructure (2 nd ed) 16

Anderson s Theory of Faulting Faulting represents a response of rock to shear stress, so it only occurs when the differential stress (σ d = σ 1 σ 3 = 2 σs ) does not equal zero. σ 1 Because shear-stress magnitude on a plane changes as a function of the orientation of the plane with respect to the principal stresses, we should expect a relationship between the orientation of faults formed during a tectonic event and the trajectories of principal stresses during that event. Indeed, faults that initiate as Coulomb shear fractures will form at an angle of about 30 to the σ 1 direction and contain the σ 2 direction. This relationship is called Anderson s theory of faulting. EarthStructure (2 nd ed) 17

Anderson s Theory of Faulting states that in the Earth-surface reference frame, normal faulting occurs where σ 2 and σ 3 are horizontal and σ1 is vertical, thrust faulting occurs where σ 1 and σ 2 are horizontal and σ 3 is vertical, and strike-slip faulting occurs where σ 1 and σ 3 are horizontal and σ 2 is vertical Recall the role of the normal stress, where the ratio of shear stress to normal stress on planes orientated at about 30 to σ1 is at a maximum. The Earth s surface is a free surface (the contact between ground and air/fluid) that cannot, therefore, transmit a shear stress. Therefore, regional principal stresses are parallel or perpendicular to the surface of the Earth in the upper crust. Considering that gravitational body force is a major contributor to the stress state, and that this force acts vertically, stress trajectories in homogeneous, isotropic crust can maintain this geometry at depth. EarthStructure (2 nd ed) 18

Moreover, the dip of thrust faults should be 30, the dip of normal faults should be 60, and the dip of strike-slip faults should be about vertical. For example, if the σ1 orientation at convergent margins is horizontal, Anderson s theory predicts that thrust faults should form in this environment, and indeed belts of thrust faults form in collisional mountain belts. Anderson s theory is a powerful tool for regional analysis, but we cannot use this theory to predict all fault geometries in the Earth s crust for several reasons. First, faults do not necessarily initiate in intact rock. The frictional sliding strength of a preexisting surface is less than the shear failure strength of intact rock; thus, preexisting joint surfaces or faults may be reactivated before new faults initiate, even if the preexisting surfaces are not inclined at 30 to σ1 and do not contain the σ2 trajectory. Preexisting fractures that are not ideally oriented with respect to the principal stresses become oblique-slip faults. Second, a fault surface is a material feature in a rock body whose orientation may change as the rock body containing the fault undergoes progressive deformation. Thus, the fault may rotate into an orientation not predicted by Anderson s theory EarthStructure (2 nd ed) 19

Frictional sliding refers to movement on a surface that takes place when shear stress parallel to surface exceeds frictional resistance to sliding. FIGURE 6.22 Frictional sliding of objects with same mass, but with different (apparent) contact areas. (15 th C da Vinci experiments) Amonton s Laws of Friction: Frictional force is a function of normal force. Frictional force is independent of (apparent) area of contact. The friction coefficients and, therefore, sliding forces (F f ) are equal for both objects, regardless of (apparent) contact area. Frictional force is (mostly) independent of material used. EarthStructure (2 nd ed) 20

Concepts of Asperities Fig. 6.23 Schematic cross-sectional close-up showing the irregularity of a fracture surface and the presence of voids and asperities along the surface The bumps and irregularities that protrude from a (rough) surface are called asperities. the shaded areas are real areas of contact Real v. Apparent Area of contact Map of a fracture surface Larger mass (F), deeper penetration Idealized asperity showing the consequence of changing the load (normal force) on the real area of contact EarthStructure (2 nd ed) 21

Frictional Sliding Criteria (Byerlee s Law) Fig. 6.24 Graph of shear stress and normal stress values at the initiation of sliding on preexisting fractures in a variety of rock types. The best-fit line defines Byerlee s law, which is defined for two regimes. Byerlee s Law depends on σ n For σ n < 200 MPa, the best-fitting criterion is σ s = 0.85σ n. For 200 MPa <σ n < 2000 MPa, the best-fitting criterion is σ s = 50 MPa + 0.6σ n. coefficient of friction (µ) is a constant = σ s / σ n µ = 0.6-0.85 (~0.7) EarthStructure (2 nd ed) 22

Sliding or Fracturing? Fig. 6.25 Mohr diagram based on experiments with Blair dolomite, showing how a single stress state (Mohr circle) would contact the frictional sliding envelope before it would contact the Coulomb envelope (heavy line). Sliding occurs on surfaces between intersections with the friction envelope (marked by shaded area for friction envelope µ = 0.85) before new fracture initiation. Preexisting surfaces B to E are surfaces that will slide with decreasing friction coefficients. Surface A in (b) is the Coulomb shear fracture that would form in an intact rock. Consider the geologic relevance of decreasing friction coefficients for stress state, failure, and fracture orientation. coefficient of friction (µ) is constant = σ s / σ n EarthStructure (2 nd ed) 23

EarthStructure (2 nd ed) 24

Effects of Fluids on Tensile Crack Growth Fig. 2.26 Graph of lithostatic versus hydrostatic pressure as a function of depth in the Earth s crust. Lithostatic pressure P l = ρ g h, weight of overlying column of rock (ρ = 2500 3000 kg/m 3 ). Hydrostatic (fluid) pressure P f = ρ g h, where ρ is density of water (1000 kg/m 3 ), g is gravitational constant (9.8 m/s 2 ), and h is depth EarthStructure (2 nd ed) 25

Fluid Pressure and Effective Stress Mohr diagram showing how an increase in pore pressure moves the Mohr circle toward the origin. Hydraulic fracturing σ s = C + µ (σ n P f ) [fracturing] σ s = µ (σ n P f ) [sliding] In other words, the diameter of the Mohr circle remains constant, but its center moves to the left. outward push (σ n P f ) is commonly labeled σ n, the effective stress. The increase in pore pressure decreases the mean stress (σ mean ), but does not change the magnitude of differential stress (σ1 σ3) So, µ effective = µ (1 P f /σ n ) µ effective µ coefficient of friction (µ) is constant = σ s / σ n EarthStructure (2 nd ed) 26

Slip and Earthquakes Looking ahead Fig. 8.36 The stress drops (dashed lines) correspond to slip events. Associated microfracturing activity is also indicated. Laboratory frictional sliding experiment on granite, showing stick-slip behavior. stress drop Seismic slip (earthquake) Aseismic slip (creep) stress build-up then partial stress release ( stress drop ). Note: Stress drop is 1-10 MPa, i.e. 1/10 th of stress state! EarthStructure (2 nd ed) 27

Limiting stress conditions for sliding Fig. 8.30 Graph showing variation in differential stress necessary to initiate sliding on reverse, strike-slip, and normal faults, as a function of depth. The relationship is given by Equation 8.1, assuming a friction coefficient, µ=0.75, and a fluid pressure parameter, λ=0 (no fluid present) and λ = 0.9 (fluid pressure is 90% of lithostatic pressure). σ d β (ρ g h). (1 λ) σ d is differential stress (= 2σ s ) β is 3, 1.2, and 0.75 for reverse, strike-slip, and normal faulting λ = P f /P l, ratio of pore-fluid pressure and lithostatic pressure (λ ranges from 0.4 for hydrostatic fluid pressure to 1 for lithostatic fluid pressure) EarthStructure (2 nd ed) 28

Rate and Friction State EarthStructure (2 nd ed) 29

Rate and Friction State EarthStructure (2 nd ed) 30

Rate and Friction State EarthStructure (2 nd ed) 31

EarthStructure (2 nd ed) 32