Flex-Prints for the Mu3e Experiment

Similar documents
Flexprint Design Studies for the Mu3e Experiment

Update from the Mu3e Experiment

The Mu3e PSI

Track Fitting With Broken Lines for the MU3E Experiment

The Mu3e PSI

PoS(ICHEP2016)552. The Mu3e Experiment at PSI. Alessandro Bravar University of Geneva

The Mu3e Experiment. Niklaus Berger. Physics Institute, University of Heidelberg. Charged Lepton Flavour Violation Workshop, Lecce, May 2013

Track reconstruction for the Mu3e experiment Alexandr Kozlinskiy (Mainz, KPH) for the Mu3e collaboration DPG Würzburg (.03.22, T85.

The Mu3e Experiment - Goal

clfv searches using DC muon beam at PSI

The MEG/MEGII and Mu3e experiments at PSI. Angela Papa Paul Scherrer Institut on behalf of the MEG/MEGII and Mu3e collaborations

The Mu3e Experiment. A new search for μ eee with unprecedented sensitivity

Charged Lepton Flavour Violation:

arxiv: v1 [physics.ins-det] 1 Sep 2009

MEG II 実験の準備状況と 今後の展望 東京大学 素粒子物理国際研究センター 岩本敏幸 他MEG II コラボレーション 2018年9月14日 日本物理学会2018年秋季大会 信州大学 JSPS Core-to-Core Program

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo

COMET muon conversion experiment in J-PARC

Status of the LHCb Experiment. Ueli Strauman, University of Zurich, Switzerland. Sept. 13, 2001

Building a Tracking Detector for the P2 Experiment

PoS(FPCP2009)057. Chloé Malbrunot (for the PIENU collaboration ) University of British Columbia Vancouver, Canada

Final Results from the MEG Experiment and the Status of MEG-II

Letter of Intent for an Experiment to Search for the Decay µ eee

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

PoS(EPS-HEP2017)238. Experimental limiting factors for the next generation

Study of Solder Ball Bump Bonded Hybrid Silicon Pixel Detectors at DESY

Overview of the COMET Phase-I experiment

NA62: Ultra-Rare Kaon Decays

Neutron Structure Functions and a Radial Time Projection Chamber

The Silicon Tracking System of the CBM experiment at FAIR

DEPFET sensors development for the Pixel Detector of BELLE II

Mu2e Experiment at Fermilab

Department of Physics and Astronomy University of Heidelberg

Status and Challenges of CEPC Time Projection Chamber Detector. Huirong On behalf of CEPC Tracking Subgroup

MTV - S1183 Beam Time Summary. Performance test of MTV new detector : CDC. Yumi Totsuka. Department of Physics, Rikkyo University, Tokyo, Japan

CESR and CLEO. Lepton Photon 99 Klaus Honscheid Ohio State University. Klaus Honscheid, LP 99 1

The LHCb Upgrade. On behalf of the LHCb Collaboration. Tomasz Szumlak AGH-UST

The Cylindrical GEM detector for the KLOE-2 Inner Tracker

The ATLAS Silicon Microstrip Tracker

Experimental Methods of Particle Physics

Kaon Identification at NA62. Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015

The LHCb Upgrade and beyond

Gas Chamber. (for the HERMES collaboration) Nationaal Instituut voor Kernfysica en Hoge-Energiefysica, NIKHEF

Physics opportunities with the AT-TPC. D. Bazin NSCL/MSU at ReA

The Hermes Recoil Silicon Detector

RICH detectors for LHCb

FoCal Project in ALICE. Yota Kawamura for the ALICE FoCal collaboration TCHoU workshop 2018/3/15

First Results and Realization Status of a Proton Computed Radiography Device

Experimental Searches for Muon to Electron Conversion

Fundamental Symmetries III Muons. R. Tribble Texas A&M University

Department of Physics and Astronomy

b Physics Prospects For The LHCb Experiment Thomas Ruf for the LHCb Collaboration Introduction Detector Status Physics Program

Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons

Der Silizium Recoil Detektor für HERMES Ingrid-Maria Gregor

The HL-LHC physics program

LHC status and upgrade plan (physics & detector) 17 3/30 Yosuke Takubo (KEK)

Latest Results from the OPERA Experiment (and new Charge Reconstruction)

Muon to Electron Conversion: Experimental Status in Japan and the US

Flavor Physics beyond the SM. FCNC Processes in the SM

PoS(HQL 2012)021. The LHCb upgrade. Tomasz Szumlak 1

Results and perspectives of the MEG and MEG II experiments

Department of Physics and Astronomy

The Mu2e Transport Solenoid

Gamma-Ray Polarimetry in the Pair Production Regime

The LHCb detector. Eddy Jans (Nikhef) on behalf of the LHCb collaboration

Content. Complex Detector Systems. Calorimeters Velocity Determination. Semiconductor detectors. Scintillation detectors. Cerenkov detectors

A Triple-GEM Telescope for the TOTEM Experiment

Particle Energy Loss in Matter

Near detector tracker concepts. D. Karlen / U. Vic. & TRIUMF T2K ND280m meeting August 22, 2004

Walter Hopkins. February

arxiv: v1 [hep-ex] 7 Sep 2016

The ALICE Experiment Introduction to relativistic heavy ion collisions

Study of the HARPO TPC for a high angular resolution g-ray polarimeter in the MeV-GeV energy range. David Attié (CEA/Irfu)

arxiv: v1 [physics.ins-det] 3 Dec 2018 Fast Interaction Trigger for the upgrade of the ALICE experiment at CERN: design and performance

Observation of the rare B 0 s µ + µ decay

Design of the new ATLAS Inner Tracker for the High Luminosity LHC era

LHCb in the HL-LHC era A very high luminosity flavor physics experiment at LHC

The LHCb Experiment II Detector XXXIV SLAC Summer Institute, July, 2006

Investigation and development of the suppression methods of the 42 K background in LArGe

ATLAS Tracker HL-LHC

CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration

Particle Detectors A brief introduction with emphasis on high energy physics applications

Polarized muon decay asymmetry measurement: status and challenges

A NEW TECHNIQUE FOR DETERMINING CHARGE AND MOMENTUM OF ELECTRONS AND POSITRONS USING CALORIMETRY AND SILICON TRACKING. Qun Fan & Arie Bodek

Detectors in Nuclear and High Energy Physics. RHIG summer student meeting June 2014

The Importance of High-Precision Hadronic Calorimetry to Physics

pp physics, RWTH, WS 2003/04, T.Hebbeker

arxiv: v2 [physics.ins-det] 8 Feb 2013

Status and prospects of the LHCb experiment

Tracking at the LHC. Pippa Wells, CERN

Tau-neutrino production study at CERN SPS: Novel approach by the DsTau experiment


Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC

Track measurement in the high multiplicity environment at the CBM Experiment

NEMO-3 latest results

Linear Collider Workshop 2017, Strasbourg

arxiv: v1 [hep-ex] 1 Oct 2015

PoS(HCP2009)042. Status of the ALICE Experiment. Werner Riegler. For the ALICE Collaboration. CERN

B the Tevatron

CLICdp work plan and foreseen documents in preparation for the next European Strategy Update

Brief Report from the Tevatron. 1 Introduction. Manfred Paulini Lawrence Berkeley National Laboratory Berkeley, California 94720

Transcription:

Flex-Prints for the Mu3e Experiment Sebastian Dittmeier on behalf of the Mu3e Collaboration Physikalisches Institut - Universität Heidelberg DPG-Frühjahrstagung Hamburg 29 February 2016

Mu3e - Experimental Concept Search for the charged lepton flavor violating decay μ + e + e e + Muons are stopped on Mylar target DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 2

Mu3e - Experimental Concept Search for the charged lepton flavor violating decay μ + e + e e + Muons are stopped on Mylar target Decay at rest in a solenoidal magnetic field of B = 1T Low momentum electrons p e 53 MeV/c DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 2

Mu3e - Experimental Concept Search for the charged lepton flavor violating decay μ + e + e e + Muons are stopped on Mylar target Decay at rest in a solenoidal magnetic field of B = 1T Low momentum electrons p e 53 MeV/c Multiple Coulomb scattering dominates momentum resolution Thin silicon pixel sensors (HV-MAPS) for tracking Scintillating fibres and tiles for precise timing DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 2

Mu3e - Experimental Concept Search for the charged lepton flavor violating decay μ + e + e e + Muons are stopped on Mylar target Decay at rest in a solenoidal magnetic field of B = 1T Low momentum electrons p e 53 MeV/c Multiple Coulomb scattering dominates momentum resolution Thin silicon pixel sensors (HV-MAPS) for tracking Scintillating fibres and tiles for precise timing DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 2

HV-MAPS High Voltage Monolithic Active Pixel Sensors 180 nm HV-CMOS technology reverse biased HV 90 V Charge collection via drift Depletion zone ~ 10 20 μm Can be thinned to 50 μm Integrated digital readout I. Peric et al., NIM A 582 (2007) DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 3

HV-MAPS High Voltage Monolithic Active Pixel Sensors Latest prototype: MuPix7 Pixel size 103 x 80 μm 2 Integrated state machine Serial data output at 1.25 Gb/s Successfully operated at various test beams, also as a beam telescope More on MuPix7 T 72.1 T 72.3 More on MuPix Telescope T 99.5 DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 4

Material Budget for Mu3e Momentum resolution Dominated by multiple Coulomb scattering Material budget of x 1 X 0 per layer required Material budget per layer HV-MAPS (50 μm) ~ 0.5 X 0 + Flex-print ( 50 100 μm) + Kapton support structure (25 μm) ~ 1 radiation length per layer DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 5

Material Budget for Mu3e Momentum resolution Dominated by multiple Coulomb scattering Material budget of x 1 X 0 per layer required Material budget per layer HV-MAPS (50 μm) ~ 0.5 X 0 + Flex-print ( 50 100 μm) + Kapton support structure (25 μm) ~ 1 radiation length per layer Flex-print options Dielectric: Polyimide film (142 μm ~ 0.5 X 0 ) Metal: Aluminium ( 44 μm ~ 0.5 X 0 ) Copper ( 7 μm ~ 0.5 X 0 ) Specific conductance σ Al = 37 10 6 S/m σ Cu = 58 10 6 S/m DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 5

Material Budget for Mu3e Momentum resolution Dominated by multiple Coulomb scattering Material budget of x 1 X 0 per layer required Material budget per layer HV-MAPS (50 μm) ~ 0.5 X 0 + Flex-print ( 50 100 μm) + Kapton support structure (25 μm) ~ 1 radiation length per layer Aluminium saves us a factor 4 in material! Flex-print options Dielectric: Polyimide film (142 μm ~ 0.5 X 0 ) Metal: Aluminium ( 44 μm ~ 0.5 X 0 ) Copper ( 7 μm ~ 0.5 X 0 ) Specific conductance σ Al = 37 10 6 S/m σ Cu = 58 10 6 S/m DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 5

1.8 cm Flex-Print Prototype Production Length: 10 cm In-house production tests Foil laminate: 25 µm Kapton + 25 µm Aluminium Laser evaporation Produced up to 1m length Trace parameters Width: 120 µm Separation: 120 µm DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 6

Impedance Matching of Prototypes Crucial for fast data transmission: Impedance matching Z 0 = 50 Ω, Z diff = 100 Ω Ground plane: Additional Al layer This configuration ~ 0.8 X 0 DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 7

Impedance Matching of Prototypes Crucial for fast data transmission: Impedance matching Z 0 = 50 Ω, Z diff = 100 Ω Ground plane: Additional Al layer This configuration ~ 0.8 X 0 50 Ω cable Time Domain Reflectometry Impedance can be measured by observing reflections of input signal Connectors Solder jumpers 1m long flexprint 52 Ω < Z 0 < 61 Ω DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 7

Bit Error Rate Tests Test quality of data transmission Altera Stratix V GS FPGA 8b10b encoded counter pattern 17 LVDS links (max. 1.6 Gbps) High speed transceivers (max. 14.1 Gbps) Cable length Data rate Channels Errors Run time BER 20 cm 1.6 Gbps 7 0 512 h 1.8 10 16 @ 95% CL 20 cm 3.2 Gbps 5 36 398 h 1.6 10 16 100 cm 1.6 Gbps 7 0 6 h 1.2 10 14 @ 95% CL DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 8

Bit Error Rate Tests Test quality of data transmission Altera Stratix V GS FPGA 8b10b encoded counter pattern 17 LVDS links (max. 1.6 Gbps) High speed transceivers (max. 14.1 Gbps) Cable length Data rate Channels Errors Run time BER 20 cm 1.6 Gbps 7 0 512 h 1.8 10 16 @ 95% CL 20 cm 3.2 Gbps 5 36 398 h 1.6 10 16 100 cm 1.6 Gbps 7 0 6 h 1.2 10 14 @ 95% CL DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 8

Towards Detector Integration Next big steps Next MuPix prototype (MuPix8) large sensor (1.3 2.3 cm 2 ) Integration with flex-print Build first vertex modules DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 9

Towards Detector Integration Next big steps Next MuPix prototype (MuPix8) large sensor (1.3 2.3 cm 2 ) Integration with flex-print Build first vertex modules DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 9

19mm Flex Print Design Studies Vertex module: One flex-print connects three MuPix sensors 120mm MuPix Flex-print MuPix MuPix MuPix MuPix MuPix Contact pads Bottom-up-view Flex-print has to provide power and ground Interconnect for all signals: Common signals as bus Individual signals per chip (data output, ) DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 10

19mm Flex Print Design Studies Vertex module: One flex-print connects three MuPix sensors 120mm MuPix Flex-print MuPix MuPix MuPix MuPix MuPix Contact pads Bottom-up-view Flex-print has to provide power and ground Interconnect for all signals: Common signals as bus Individual signals per chip (data output, ) Current assumption ~ 75 contacts at end ring At least two conducting layers required! Flex-print production with our laser setup is too coarse ( 120 μm) DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 10

Flex Print Design Options Two layer aluminium (LTU Ltd.) 14μm Al + 10μm polyimide per layer Structures 65μm Dielectric spacing 45μm Low material budget ~0.55 X 0 Copper & aluminium laminate (HighTec) Copper layers thin (~2μm) Structures 15μm Little Cu coverage Low material budget ~0.65 X 0 DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 11

Two Layer Aluminium Option Composite View MuPix MuPix MuPix Bottom Layer DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 12

Two Layer Aluminium Option Composite View MuPix MuPix Promising for vertex modules with little material MuPix Bottlenecks Power and Bottom ground Layer distribution Max. # signals reached DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 12

Summary Outlook Mu3e: Search for clfv Tracking detector using HV-MAPS First dummy modules are in production Readout and powering via flex-prints Prototyping: Flex prints up to 100 cm Up to 3.2 Gbps data transmission successful Study of flex-print design for vertex modules Set up to test flex-prints courtesy of LTU Ltd. First vertex modules with MuPix8 More on MuPix7 T 72.1 T 72.3 More on MuPix Telescope T 99.5 More on Mu3e: T 22.4, T 22.5, T 42.5 7, T 43.3, T 75.7, T 98.1, T98.5 DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 13

DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 14

The Mu3e Experiment Search for the charged lepton flavor violating decay μ + e + e e + Standard Model Highly suppressed branching ratio BR SM < 10 54 Probe physics beyond SM Any observation is a clear sign for new physics! DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 15

The Mu3e Experiment Search for the charged lepton flavor violating decay μ + e + e e + Standard Model Highly suppressed branching ratio BR SM < 10 54 Probe physics beyond SM Any observation is a clear sign for new physics! DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 15

The Mu3e Experiment Search for the charged lepton flavor violating decay μ + e + e e + Standard Model Highly suppressed branching ratio BR SM < 10 54 Probe physics beyond SM Any observation is a clear sign for new physics! DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 15

The Mu3e Experiment Current limit on μ + e + e e + BR meas < 10 12 (SINDRUM 1988) Goal of Mu3e Enhance sensitivity to BR < 10 16 DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 16

The Mu3e Experiment Current limit on μ + e + e e + BR meas < 10 12 (SINDRUM 1988) Goal of Mu3e Enhance sensitivity to BR < 10 16 How to achieve this in a reasonable time? High muon rate O 10 9 s 1 Beamline at PSI (CH) DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 16

The Mu3e Experiment Current limit on μ + e + e e + BR meas < 10 12 (SINDRUM 1988) Goal of Mu3e Enhance sensitivity to BR < 10 16 How to achieve this in a reasonable time? High muon rate O 10 9 s 1 Beamline at PSI (CH) What are the main backgrounds? Radiative SM decay μ + e + e e + νν Accidental combinations Excellent momentum and vertex resolution Fast detector electronics and precise timing DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 16

History of CLFV Experiments Updated from W.J Marciano et al., Ann.Rev.Nucl.Part.Sci. 58, 315 (2008) DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 17

Searching for New Physics with Mu3e κ 1 + κ Λ2 m μ 1 + κ Λ2 + André de Gouvêa, Petr Vogel, Lepton flavor and number conservation, and physics beyond the standard model, Progress in Particle and Nuclear Physics, 71 (2013) 75-9 DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 18

Momentum Resolution Requirement R.M Djilkibaev and R.V. Konoplich, Rphzs.Rev., D79 073004, 2009 DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 19

Event Topologies Signal Background Common vertex Coincident p = 0 E = m μ Common vertex Coincident p 0 E m μ No common vertex Not coincident p 0 E m μ DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 20

Serial Readout of the MuPix7 1.25 Gbps LVDS Eye Height > 100 mv Eye Width > 0,65 UI DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 21

More Flexprint Prototypes Width: 100 µm Separation: 150 µm Between pairs: 150 µm Width: 100 µm Separation: 150 µm Between pairs: 650 µm DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 22

Copper Aluminium Laminate Option Composite View Inner Cu Layers DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 23

Copper Aluminium Laminate Option Composite View Higher signal density possible Easier power and ground distribution Inner Cu Layers A bit more material DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 23

Assumption: Signals for MuPix8 DPG Hamburg 2016 Sebastian Dittmeier Flex-Prints for the Mu3e Experiment 24