TCAD Simulation of Total Ionization

Similar documents
ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Fig The electron mobility for a-si and poly-si TFT.

This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented.

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

MOS Transistor I-V Characteristics and Parasitics

Integrated Circuits & Systems

Modeling Total Ionizing Dose Effects in Deep Submicron Bulk CMOS Technologies. Michael McLain, Hugh Barnaby, Ivan Sanchez

Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout

SOI/SOTB Compact Models

Lecture 3: CMOS Transistor Theory

ECE 342 Electronic Circuits. 3. MOS Transistors

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices: MOS Transistors

MOSFET: Introduction

MOS Transistor Properties Review

The Intrinsic Silicon

= (1) E inj. Minority carrier ionization. ln (at p ) Majority carrier ionization. ln (J e ) V, Eox. ~ 5eV

EECS240 Spring Lecture 21: Matching. Elad Alon Dept. of EECS. V i+ V i-

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

N ano scale l S il ii lco i n B ased N o nvo lat l i atl ie l M em ory r Chungwoo Kim, Ph.D.

NEW VERSION OF LETI-UTSOI2 FEATURING FURTHER IMPROVED PREDICTABILITY, AND A NEW STRESS MODEL FOR FDSOI TECHNOLOGY

MOSFET SCALING ECE 663

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

An Analytical Model for a Gate-Induced-Drain-Leakage Current in a Buried-Channel PMOSFET

EECS130 Integrated Circuit Devices

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

A Multi-Gate CMOS Compact Model BSIMMG

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Lecture 12: MOS Capacitors, transistors. Context

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Future trends in radiation hard electronics

Semiconductor Physics fall 2012 problems

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

Radiation Effect Modeling

Thin Film Transistors (TFT)

Solid-State Electronics

Chapter 20. Current Mirrors. Basics. Cascoding. Biasing Circuits. Baker Ch. 20 Current Mirrors. Introduction to VLSI

Section 12: Intro to Devices

Lecture 12: MOSFET Devices

Lecture 04 Review of MOSFET

ECE 546 Lecture 10 MOS Transistors

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

EE5311- Digital IC Design

The Effects of Process Variations on Performance and Robustness of Bulk CMOS and SOI Implementations of C-Elements

Practice 3: Semiconductors

Radiation Effect Modeling

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

EKV based L-DMOS Model update including internal temperatures

Semiconductor Integrated Process Design (MS 635)

A Computational Model of NBTI and Hot Carrier Injection Time-Exponents for MOSFET Reliability

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

Quarter-micrometre surface and buried channel PMOSFET modelling for circuit simulation

Part 4: Heterojunctions - MOS Devices. MOSFET Current Voltage Characteristics

Radiation Effects on Electronics. Dr. Brock J. LaMeres Associate Professor Electrical & Computer Engineering Montana State University

Introduction and Background

Statistical Model of Hot-Carrier Degradation and Lifetime Prediction for P-MOS Transistors

Extensive reading materials on reserve, including

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

LEVEL 61 RPI a-si TFT Model

Lecture 5: CMOS Transistor Theory

Device Models (PN Diode, MOSFET )

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

HOT-CARRIER RELIABILITY SIMULATION IN AGGRESSIVELY SCALED MOS TRANSISTORS. Manish P. Pagey. Dissertation. Submitted to the Faculty of the

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Introduction to Radiation Testing Radiation Environments

MOS Transistor Theory

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

IMPACT OF SCALING ON ENERGY DEPOSITION IN SENSITIVE VOLUMES DUE TO DIRECT IONIZATION BY SPACE RADIATION. Erik Funkhouser. Thesis

MOS Transistor Theory

Complete Surface-Potential Modeling Approach Implemented in the HiSIM Compact Model Family for Any MOSFET Type

RADIATION EFFECTS IN SEMICONDUCTOR MATERIALS AND DEVICES FOR SPACE APPLICATIONS. Cor Claeys and Eddy Simoen

Lecture 4: CMOS Transistor Theory

EE105 - Fall 2005 Microelectronic Devices and Circuits

Suppression of Gate-Induced Drain Leakage by Optimization of Junction Profiles in 22 nm and 32 nm SOI nfets

EE105 - Fall 2006 Microelectronic Devices and Circuits

P-MOS Device and CMOS Inverters

1. The MOS Transistor. Electrical Conduction in Solids

Nanometer Transistors and Their Models. Jan M. Rabaey

Long-channel MOSFET IV Corrections

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Multiple Gate CMOS and Beyond

ANALYSIS AND MODELING OF 1/f NOISE IN IGZO TFTS

Introduction to Reliability Simulation with EKV Device Model

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft

Classification of Solids

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ]

Long Channel MOS Transistors

ECE 497 JS Lecture - 12 Device Technologies

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Section 12: Intro to Devices

Device Models (PN Diode, MOSFET )

6.012 Electronic Devices and Circuits Spring 2005

Simple and accurate modeling of the 3D structural variations in FinFETs

Modeling of the Substrate Current and Characterization of Traps in MOSFETs under Sub-Bandgap Photonic Excitation

Lecture 11: MOS Transistor

Threshold voltage shift of heteronanocrystal floating gate flash memory

Transcription:

TCAD Simulation of Total Ionization Dose Response on DSOI nmosfet Huang Yang Institute of Microelectronics of Chinese Academy of Sciences Co Authors: Li Binhong (IMECAS), Liu Bing (BISLMV), Shen Chen (Cogenda), Song Yanfu (Cogenda), Li Bo (IMECAS), Han Zhengsheng (IMECAS), Luo Jiajun (IMECAS) @IMECAS 1

Contents I. Radiation Environment II. SOI vs. DSOI III. TCAD model for DSOI IV. TID response of DSOI nmosfet @IMECAS 2

Radiation Environment Radiation Effect: Total Ionization Dose- TID trapped holes in the oxide and interface traps at the Silicon-oxide interface will affect the device performance parameters Single Event Upset-SEU the state change caused by one single ionizing particle striking the sensitive node of a device @IMECAS 3

SOI vs DSOI SOI Advantages: ü good SEU suppression because of the buried oxide isolation(box) ST I Vsource FD-SOI Vsub Vgate BOX Vdrain ST I Gate ox + + X X X Body X X X X + + + + + BOX positive oxide trapped charges interface traps STI Vsource FD-SOI Vsub Vgate BOX Vdrain Sub STI Disadvantages: ü the TID effect is even worse in FDSOI because of the introduction of the buried oxide layer(box) and the coupling effect between the front and back gate @IMECAS 4

SOI vs DSOI DSOI has an additional Si layer (SOI2) STI N+ P N+ BOX1 SOI2 BOX2 STI P+ N P+ BOX1 SOI2 BOX2 STI Sub With SOI2 (Advantages): compensation of TID effect VSOI2 controls the positive trapped charges in the oxide compensate NMOS and PMOS seperately the compensation voltages needed for NMOS and PMOS are different reduction of back-gate effect the back-gate effect can be suppressed with SOI2 biased at a constant voltage @IMECAS 5

SOI vs DSOI TID Experimental Results of DSOI(0.2μm FD NMOS) ü Irradiation state: OFF ü Irradiation dose rate: 50rad(Si)/s ü Irradiation dose: high up to 5Mrad(Si), by 60 Co γ-ray 10-4 10-4 10-6 Vth V SOI2 =0V 10-6 V SOI2 =-7V ID (A) 10-8 10-10 10-12 Ioff 0Krad(Si) 100Krad(Si) 300Krad(Si) 500Krad(Si) 1Mrad(Si) 2Mrad(Si) 3Mrad(Si) 4Mrad(Si) 5Mrad(Si) ID(A) 10-8 10-10 10-12 0 Krad(Si) 500 Krad(Si) 1 Mrad(Si) 2 Mrad(Si) 3 Mrad(Si) 4 Mrad(Si) 5 Mrad(Si) -0.5 0.0 0.5 1.0 1.5 2.0 VG (V) IV shift negatively due to radiation induced holes. By applying V SOI2 properly, IV curves can be recovered. -0.5 0.0 0.5 1.0 1.5 2.0 VG(V) @IMECAS 6

TCAD model for DSOI Software used: Cogenda TCAD device modeling tool(focus on radiation effect simulation) Main characteristics of DSOI(NMOS) FDSOI technology; floating body device üsoi1 thickness: 46.7nm übox1 thickness:158.7nm üsoi2 thickness: 84nm übox2 thickness:156nm ücore gate oxide thickness: 5.6nm üsubstrate: p type, resistivity >1000 ohm-cm üsoi2: n type, resistivity ~10ohm-cm V S V D V SOI2 üchannel stop implant: 15nm to 46.7 nm below SOI1 top surface with peak conc. 5e15cm^-3. üvt implant: 0~12nm below SOI1 top surface with peak conc. 1.6e18cm^-3. üldd implant: peak conc. 9e18cm^-3 at SOI1 top surface. Offset to Poly edge is zero. üs/d implant: 0~15nm below SOI1 top surface with peak conc. 2.0e20cm^-3. Offset spacer distance is 100nm. V G SOI1 SOI2 @IMECAS 7

TCAD model for DSOI Physical models used for TCAD modeling Physical Model Mobility model Impact ionization model Tunneling model DSOI Lucent High field saturation model Selberherr BBT model low field mobility model ü Lucent High Field Mobility Model This model incorporates Philips Unified Mobility model and the Lombardi Surface Mobility model, as well as accounting for Caughey-Thomas model. mobility in the (MOS) inversion layer high field velocity saturation suitable for MOS simulation! Philips Lombardi @IMECAS 8

TCAD model for DSOI ü Selberherr Impact ionization model default avalanche model The generation rate of electron-hole pairs due to the carrier Impact Ionization (II) is generally modeled as: ionization coefficients Selberherr ü Band-to-band tunneling model Many studies have shown that the combined impact of BBT and positive trapped charge in the buried oxide is a significant factor in the radiation response of floating body FDSOI NMOS. @IMECAS 9

TCAD model for DSOI TCAD simulation results vs. experimental results DSOI NMOS (W/L=8/1) Solid lines: simulated curves Dotted lines: experimental curves Kink effect because of floating body Vg=1.8V Vg=1.5V Vd=0.95V Vg=1.2V Vd=0.1V Vg=0.6V good correspondence! @IMECAS 10

TCAD model for DSOI TCAD simulation results of DSOI NMOS Suppression of back-gate effect V SOI2 =0V, IDVG curves with different Sub voltages. V S V G V D V SOI2 BOX1 V SOI2 =0V BOX2 SOI2 works as a good shield! V Sub =5V V Sub @IMECAS 11

TCAD model for DSOI TCAD simulation results of DSOI NMOS I D V G curves with different V SOI2 front VG=-0.6V back Vsoi2=15V, E V and E C TCAD Results ID 5.0x10-5 4.5x10-5 4.0x10-5 3.5x10-5 3.0x10-5 2.5x10-5 2.0x10-5 1.5x10-5 1.0x10-5 5.0x10-6 Vsoi2=-15V Vsoi2=-10V Vsoi2=-5V Vsoi2=0V Vsoi2=5V Vsoi2=10V Vsoi2=15V Vsoi2=15V Experimental Results Vsoi2=-15V 0.0-1.0-0.5 0.0 0.5 VG 1.0 1.5 2.0 ID/A Vsoi2=15V VG=1V VG=0.2V VG=-0.6V VG=0.2V Vsoi2=-15V VG=1V VG/V @IMECAS 12

TID response of DSOI NMOS TID simulation method of Cogenda Difficult to implement Method proposed by N.L. Rowsey (2012) and I.S. Esqueda (2011) energetic particle transport Easy to implement Monte Carlo particle simulation @IMECAS 13

TID response of DSOI NMOS Bias configurations during irradiation and measurement Bias applied during irradiation V G V S V D V SOI2 V sub OFF 0V 0V 1.8V 0V 0V Bias applied during measurement Id-Vg curve V G V S V D V SOI2 V sub V SOI2 =0V V SOI2 =-5V Sweep 0V to 1.98V Sweep 0V to 1.98V 0V 0.1V 0V 0V 0V 0.1V -5V 0V DSOI nmosfets are irradiated up to 1Mrad(Si) by 60 Co γ-ray at a dose rate of 50rad(Si)/s. Irradiation Dose:0rad(Si) 100Krad(Si) 300Krad(Si) 500Krad(Si) 1Mrad(Si) @IMECAS 14

TID response of DSOI NMOS TCAD simulation results vs. experimental results DSOI NMOS (W/L=8/1) Irradiation State: OFF V SOI2 =0V Irradiation Dose: 0rad(Si) 100Krad(Si) 300Krad(Si) 500Krad(Si) 1Mrad(Si) Dose/krad(Si) Threshold (Vth): Vg@Id=(0.1μA)x(W/L) Vth shift/v ~0.6µs ~0.6µs ~1.8V @IMECAS 15

TID response of DSOI NMOS Simulated trapped holes in the BOX1 layer Irradiation Dose: 1Mrad(Si) front interface Source LDD Channel LDD Drain BOX1 V S =0V V G =0V V D =1.8V V SOI2 =0V cutline cutline V Sub =0V back interface @IMECAS 16

TID response of DSOI NMOS Compensation of TID effect with VSOI2 Different V SOI2 during measurement 5.0x10-4 4.5x10-4 4.0x10-4 3.5x10-4 pre Vsoi2=0V 1Mrad(Si) Vsoi2=0V 1Mrad(Si) Vsoi2=-5 Experimental Results Irradiation Bias: OFF V SOI2 =0V TCAD Results ID/A 3.0x10-4 2.5x10-4 2.0x10-4 1.5x10-4 1.0x10-4 Shift back after Vsoi2=-5V Shift negatively after 1Mrad(Si) 5.0x10-5 Irradiation Dose: 1Mrad(Si) Measurement Bias: IDVG curve with V SOI2 =0V and V SOI2 =-5V respectively V D =0.1V 0.0-1.0-0.5 0.0 0.5 1.0 1.5 2.0 VG/V V SOI2 =0V pre V SOI2 =-5V I D V G curve is recovered by V SOI2 after 1Mrad(Si)! @IMECAS 17

TID response of DSOI NMOS Compensation of TID effect with VSOI2 Different V SOI2 during measurement Source Channel Drain Electrical Field VSOI2=0V cutline BOX1 top Electrical Field VSOI2=-5V cutline BOX1 top @IMECAS 18

Summary Background Advantages of DSOI compared with SOI. Successful TID compensation. TCAD model for DSOI Physical model. Good correspondence with experimental results. TCAD simulation results and explanation TCAD simulation before and after irradiation. Impact of V SOI2 before and after irradiation. @IMECAS 19

END @IMECAS 20