Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan.

Similar documents
ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

SUPPLEMENTARY INFORMATION

Key words: High Temperature Superconductors, ARPES, coherent quasiparticle, incoherent quasiparticle, isotope substitution.

High-T c superconductors

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems

2nd Annual International Conference on Advanced Material Engineering (AME 2016)

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates

arxiv:cond-mat/ v3 [cond-mat.supr-con] 23 May 2000

A momentum-dependent perspective on quasiparticle interference in Bi 2 Sr 2 CaCu 2 O 8+δ

A New look at the Pseudogap Phase in the Cuprates.

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

ARPES studies of Fe pnictides: Nature of the antiferromagnetic-orthorhombic phase and the superconducting gap

Photo-enhanced antinodal conductivity in the pseudogap state of high T c cuprates

Polaronic Effects in the Lightly Doped Cuprates. Kyle M. Shen Stanford University

Electron spectroscopy on high temperature superconductors and other novel materials. Gey Hong Gweon

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Electronic quasiparticles and competing orders in the cuprate superconductors

Electron spectroscopy on high temperature superconductors and other novel materials. Gey Hong Gweon

Cuprates supraconducteurs : où en est-on?

F. Rullier-Albenque 1, H. Alloul 2 1

Angle-resolved photoemission spectroscopy (ARPES) Overview-Physics 250, UC Davis Inna Vishik

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Electronic Noise Due to Thermal Stripe Switching

Unusual magnetic excitations in a cuprate high-t c superconductor

Quantum dynamics in many body systems

The High T c Superconductors: BCS or Not BCS?

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron-

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

High Tc cuprates: Recent insights from X-ray scattering

Cuprate high-t c superconductors

Talk online at

Probing e-ph Coupling via RIXS

Can superconductivity emerge out of a non Fermi liquid.

What's so unusual about high temperature superconductors? UBC 2005

Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates

Spin-Charge Separation in 1-D. Spin-Charge Separation in 1-D. Spin-Charge Separation - Experiment. Spin-Charge Separation - Experiment

Surfing q-space of a high temperature superconductor

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

Angle Resolved Photoemission Spectroscopy. Dan Dessau University of Colorado, Boulder

Cuprate high-t c superconductivity: Insights from a model system 北京大学量子材料科学中心

The Nernst effect in high-temperature superconductors

Quantum theory of vortices in d-wave superconductors

High temperature superconductivity - insights from Angle Resolved Photoemission Spectroscopy

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

The Hubbard model in cold atoms and in the high-tc cuprates

Coexistence of Fermi Arcs and Fermi Pockets in High Temperature Cuprate Superconductors

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6

Simultaneous emergence of superconductivity, inter-pocket scattering and. nematic fluctuation in potassium-coated FeSe superconductor., and Y.

Nodal s-wave superconductivity in BaFe 2 (As,P) 2

Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates

BSCCO Superconductors: Hole-Like Fermi Surface and Doping Dependence of the Gap Function

Novel Magnetic Order and Excitations in the Pseudogap Phase of HgBa 2 CuO 4+

arxiv: v2 [cond-mat.supr-con] 21 Aug 2008

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Emergent gauge fields and the high temperature superconductors

Tunneling Spectra of Hole-Doped YBa 2 Cu 3 O 6+δ

Emergent light and the high temperature superconductors

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

CDWs in ARPES. A momentum space picture of Fermi surface instabilities in crystalline solids. Physics 250, UC Davis Inna Vishik

Quantum Melting of Stripes

Superconductivity and spin excitations in orbitally ordered FeSe

doi: /PhysRevLett

Syro Université Paris-Sud and de Physique et Chimie Industrielles - Paris

Stripes developed at the strong limit of nematicity in FeSe film

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

Resonant Inelastic X-ray Scattering on elementary excitations

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4

Dual vortex theory of doped antiferromagnets

Electron State and Lattice Effects in Cuprate High Temperature Superconductors

Perimeter Institute January 19, Subir Sachdev

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal?

High Tc superconductivity in doped Mott insulators

Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor

Fermi surface reconstruction in electron-doped cuprates without antiferromagnetic long-range order. Sand Hill Road, Menlo Park, California 94025, USA

Impact of charge order on the electronic properties of underdoped cuprates Cyril PROUST

New insights into high-temperature superconductivity

Visualizing the evolution from the Mott insulator to a charge. ordered insulator in lightly doped cuprates

Magnetism in correlated-electron materials

Quantum theory of vortices and quasiparticles in d-wave superconductors

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Neutron scattering from quantum materials

Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution. Eran Amit. Amit Keren

Photoemission Studies of Strongly Correlated Systems

Nernst effect in high T c superconductors

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

Fermi-surface-free superconductivity in underdoped (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ (Bi2201)

Inhomogeneous spin and charge densities in d-wave superconductors

arxiv:cond-mat/ v1 [cond-mat.supr-con] 14 May 1999

Effect of the magnetic resonance on the electronic spectra of high-t c superconductors

High temperature superconductivity

Kyle M. Shen. University of British Columbia Department of Physics and Astronomy tel : fax : kmshen [AT] physics.ubc.

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato

Advanced Spectroscopies of Modern Quantum Materials

III.1. MICROSCOPIC PHASE SEPARATION AND TWO TYPE OF QUASIPARTICLES IN LIGHTLY DOPED La 2-x Sr x CuO 4 OBSERVED BY ELECTRON PARAMAGNETIC RESONANCE

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra

Transcription:

Low energy excitations in cuprates: an ARPES perspectie Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan. 15, 2014

Acknowledgements Shen Group Professor Zhi-Xun Shen Dr. Makoto Hashimoto, Dr. Wei-Sheng Lee, Yu He Theory Prof. T. Deereaux (Stanford, SLAC) Prof. S. Johnston (UT Knoxille) Bi2212 Samples Prof. T. Sasagawa (Tokyo Institute of Technology) Prof. S. Uchida, K. Fujita, S. Ishida (Uniersity of Tokyo) M. Ishikado (Japan Atomic Energy Agency) Y. Yoshida, H. Eisaki (Nanoelectronics Research Institute, AIST)

A complex phase diagram

Motiation: phenomenology as starting point for microscopic theory E kin Angle-resoled photoemission spectroscopy h E p k 2mEkin sin B k-space is not a lonely place Gap Dispersion Lineshape Spectral weight

Laser ARPES: unprecedented access to low energy excitations Synchrotron (18.4eV) Time: 30 mins Laser (7eV) Time: 5 mins ^, F ^ Dk~0.035Å -1 Dk~0.005Å -1 DE~8meV DE~3meV 7eV Laser ARPES Energy resolution Momentum resolution Data collection efficiency D

Outline Bi-2212 F D Image: B. Moritz 1. Low energy kink, F Connection to bulk probes 2. Trisected superconducting domefingerprints of quantum phases which coexist with superconductiity

First laser ARPES discoery: low energy (w~10 mev) kink ~ReS Shen group and collaborators Expt: Vishik et al. PRL 104, 207002 (2010) Theory+ Expt: S. Johnston, I. M. Vishik et al. PRL 108 166404 (2012) Other groups: Rameau et al. Phys. Re. B 80 (2009) Plumb et al. Phys. Re. Lett. 105 (2010) Anzai et al. Phys. Re. Lett. 105 (2010) Kondo et al. Phys. Re. Lett. 110 (2013) ~ImS Present in ReS and ImS Obsered in underdoped Bi-2212 and Bi-2201 Kink gets stronger with underdoping

Consequence: doping dependent F DE=20meV: Uniersal nodal F DE=3meV: doping dependent F X. J. Zhou,, et al., Nature 423, 398 (2003) Vishik et al. PRL 105 104, 207002 (2010)

Dierging m* ARPES: Bi2212 Quantum Oscillations: YBCO Cyclotron mass: m*=hk F / F Sebastian et al. PNAS 107 6175 (2010)

Thermodynamics in cuprates Thermodynamics at T=0, determined by F and D F D YBa 2 Cu 3 O 7 (YBCO): Taillefer Group, To be published DOS: Superfluid Density: Electronic Specific Heat: Thermal conductiity: D D D D D D d n k d n k T T d n T C T d n k m m T E E N F B F F B F el F B s s F 3 ) ( 3 ) 1 ( ) ( 2ln 2 (0) ) ( 1 2 ) ( 2 2 0 2 2 2 2 Quantitatie agreement between bulk thermodynamic probe and surface spectroscopy

Recent Disputes about doping dependence of near-nodal superconducting gap D T c D T * D D const ARPES STS D/T c,max Raman, B 2g Doping, p M. Le Tacon, et al. Nat. Phys. 2, 537 (2006) Doping, p Chaterjee et al. Nat. Phys. 6, 99 (2009) Pushp et al. Science 324, 1689 (2009)

Gap measurements, extracting D T c =92K k F DE=3meV Dk~0.005Å -1 D Node Antinode Expected for d-wae superconductor: D T c Norman model: 2 S( k, w) i1 D /[( w i0 ) ( k)] Norman et al. Phys. Re. B 57, R11093 (1998)

Bi-2212, T=10K: three phase regions in superconducting dome p<0.076 0.076<p<0.19 p>0.19 Fully gapped Fermi surface Dopingindependent D D T c Vishik et al. PNAS 109 18332-18337 (2012)

ARPES: three phase regions (10K) D node grows with underdoping A decreases with underdoping D 39 2meV D k B T c 3.7 0.4 I. M. Vishik et al. PNAS 109 (45) 18332 (2012)

Trisected superconducting dome: interpretations?=: Spin glass SDW Coulomb gap Lifshitz transition d x2 y2 +id xy SC+ SDW (A. Gupta et al. arxi:1401.06171) Topological SC (Y.-M. Lu et al., arxi:1311.58921 ) Fulde-Ferrell-Larkin- Ochinniko (T. Das, arxi:1312.05441) SC +? SC+PG SC I. M. Vishik et al. PNAS 109 (45) 18332 (2012)

Phase region A: summary of ARPES data Bi-2212 T c =20K EDC @ k F Bi-2212 Energy well-defined from EDC Gap persists T>T c Vishik et al. PNAS 109 18332-18337 (2012) No comment: DOS at E F, e-h symmetry Ca 2-x Na x CuO 2 Cl 2 : K. M. Shen et al. PRB (2004) La 2-x Sr x CuO 4 (LSCO): E Razzoli et al. PRL (2013) Obsered in other cuprates at SC dopings

Phase region A: summary of other experiments Na-CCOC Transport: change in Fermi surface Kohsaka et al. PRL 93 (2004) LeBoeuf et al. PRB (2011) STS: Percolation of conductie patches Neutron: spin correlations near (,) Haug et al. NJP (2010) ARPES (Bi-2212) and quantum oscillations (YBCO): dierging m* Sebastian et al. PNAS 107 6175 (2010) Vishik et al. PRL 104 (2010)

Phase region B SC +? SC+PG SC Why? Expected behaior for d-wae superconductor in region C ARPES data: Superconductiity/pseudogap coexistence Other experiments (London penetration depth, STM) Open question: Why is D doping-independent? I. M. Vishik et al. PNAS 109 (45) 18332 (2012)

Phase region B: raw data ARPES A UD58 Different positions A B Laser B STS Different dopings Pushp et al. Science 324, 1689 (2009)

Manifestations of pseudogap below T c : ARPES Deiation from simple d-wae form becomes more pronounced with underdoping UD92 (p~0.14)

19% critical point + PG/SC coexistence Extrapolation Something happens SC+PG SC Storey et al. PRB 76, 060502R (2007) Something exists 0<T<T* Baledent et al. PRB 83, 104504 (2011) Parker et al. Nature 678 (2010)

Ubiquitous trisected superconducting ARPES dome Neutron scattering Thermal conductiity I. M. Vishik et al. PNAS 109 18332 (2012) Baledent et al. PRB 83, 104504 (2011) Quantum Oscillations Grissonnanche et al. To appear in Nat. Comm. (2014) Sebastian et al. PNAS 107, 6175 (2010)

Conclusions Laser ARPES proides unprecedented access to low energy excitations in near-nodal region Low energy kink 3 phase regions in SC dome Vishik et al. PRL 105 104, 207002 (2010) I. M. Vishik et al. PNAS 109 (45) 18332-18337 (2012) Open questions: How to explain distinct physics on underdoped edge of SC dome? Why is D dopingindependent oer broad doping range?