cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

Similar documents
cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

ANNALES. FLORENT BALACHEFF, ERAN MAKOVER, HUGO PARLIER Systole growth for finite area hyperbolic surfaces

Quartic and D l Fields of Degree l with given Resolvent

ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

Dirichlet Series Associated with Cubic and Quartic Fields

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

ON THE DISTRIBUTION OF CLASS GROUPS OF NUMBER FIELDS

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

ANNALES. Université Paul Sabatier, Toulouse, 2010, tous droits réservés.

cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

CM-Fields with Cyclic Ideal Class Groups of 2-Power Orders

COMPOSITIO MATHEMATICA

Comparing orders of Selmer groups

ERIC LARSON AND LARRY ROLEN

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

SHINTANI S ZETA FUNCTION IS NOT A FINITE SUM OF EULER PRODUCTS

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

Rendiconti del Seminario Matematico della Università di Padova, tome 88 (1992), p

Séminaire Équations aux dérivées partielles École Polytechnique

Groupe de travail d analyse ultramétrique

NUMBER FIELDS WITHOUT SMALL GENERATORS

ANNALES DE L I. H. P., SECTION C

COMPOSITIO MATHEMATICA

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION A

Séminaire Équations aux dérivées partielles École Polytechnique

ANNALES DE L I. H. P., SECTION C

arxiv: v1 [math.nt] 13 May 2018

ANNALESDEL INSTITUTFOURIER

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION A

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. A note on the generalized reflexion of Guitart and Lair

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

ANNALESDEL INSTITUTFOURIER

Five peculiar theorems on simultaneous representation of primes by quadratic forms

COMPOSITIO MATHEMATICA

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

Séminaire de Théorie spectrale et géométrie

INFORMATIQUE THÉORIQUE ET APPLICATIONS

A note on the generic solvability of the Navier-Stokes equations

ANNALES DE L I. H. P., SECTION B

COMPOSITIO MATHEMATICA

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

ANNALES DE L I. H. P., SECTION A

ANNALES DE L INSTITUT FOURIER

Small exponent point groups on elliptic curves

ON THE BILINEAR COMPLEXITY OF THE MULTIPLICATION IN FINITE FIELDS. Stéphane Ballet & Robert Rolland

Stickelberger s congruences for absolute norms of relative discriminants

UPPER BOUNDS FOR RESIDUES OF DEDEKIND ZETA FUNCTIONS AND CLASS NUMBERS OF CUBIC AND QUARTIC NUMBER FIELDS

COMPOSITIO MATHEMATICA

Maximal Class Numbers of CM Number Fields

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Sheaves and Cauchy-complete categories

A TARGETED MARTINET SEARCH

A NOTE ON THE EXISTENCE OF CERTAIN INFINITE FAMILIES OF IMAGINARY QUADRATIC FIELDS

ANNALES DE L I. H. P., SECTION B

SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

QUADRATIC CONGRUENCES FOR COHEN - EISENSTEIN SERIES.

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

ANNALES MATHÉMATIQUES BLAISE PASCAL. Wolfgang Lück Estimates for spectral density functions of matrices over C[Z d ]

SOLVING SOLVABLE QUINTICS. D. S. Dummit

ON THE SEMIPRIMITIVITY OF CYCLIC CODES

Permuting the partitions of a prime

ANNALES DE L I. H. P., SECTION A

ANNALES MATHÉMATIQUES BLAISE PASCAL. Tibor Šalát, Vladimír Toma A Classical Olivier s Theorem and Statistical Convergence

with many rational points

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

Normal integral bases for Emma Lehmer s parametric family of cyclic quintics

Groupe de travail d analyse ultramétrique

RAIRO INFORMATIQUE THÉORIQUE

Research Statement. Enrique Treviño. M<n N+M

REVUE FRANÇAISE D INFORMATIQUE ET DE

Research Article Divisibility Criteria for Class Numbers of Imaginary Quadratic Fields Whose Discriminant Has Only Two Prime Factors

ANNALES DE L I. H. P., SECTION A

Séminaire d analyse fonctionnelle École Polytechnique

Solving Cubic Equations: An Introduction to the Birch and Swinnerton-Dyer Conjecture

Some Generalized Euclidean and 2-stage Euclidean number fields that are not norm-euclidean

ON 3-CLASS GROUPS OF CERTAIN PURE CUBIC FIELDS. Frank Gerth III

Séminaire Équations aux dérivées partielles École Polytechnique

Small Class Numbers and Extreme Values

Séminaire Dubreil. Algèbre et théorie des nombres

Imaginary quadratic fields with noncyclic ideal class groups

ANNALES MATHÉMATIQUES BLAISE PASCAL

Pacific Journal of Mathematics

EFFICIENT COMPUTATION OF GALOIS GROUPS OF EVEN SEXTIC POLYNOMIALS

CLASS GROUPS, TOTALLY POSITIVE UNITS, AND SQUARES

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Rank-one Twists of a Certain Elliptic Curve

COMPOSITIO MATHEMATICA

A CLASS GROUP HEURISTIC BASED ON THE DISTRIBUTION OF 1-EIGENSPACES IN MATRIX GROUPS

Numération : mathématiques et informatique

TAMAGAWA NUMBERS OF ELLIPTIC CURVES WITH C 13 TORSION OVER QUADRATIC FIELDS

DIOPHANTINE APPROXIMATION AND CONTINUED FRACTIONS IN POWER SERIES FIELDS

Rendiconti del Seminario Matematico della Università di Padova, tome 92 (1994), p

IDENTITIES FOR FIELD EXTENSIONS GENERALIZING THE OHNO NAKAGAWA RELATIONS

Transcription:

Henri COHEN, Francisco DIAZ Y DIAZ et Michel OLIVIER Counting discriminants of number fields Tome 18, n o 3 006), p. 573-593. <http://jtnb.cedram.org/item?id=jtnb_006 18_3_573_0> Université Bordeaux 1, 006, tous droits réservés. L accès aux articles de la revue «Journal de Théorie des Nombres de Bordeaux» http://jtnb.cedram.org/), implique l accord avec les conditions générales d utilisation http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l utilisation à fin strictement personnelle du copiste est constitutive d une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

Journal de Théorie des Nombres de Bordeaux 18 006), 573-593 Counting discriminants of number fields par Henri COHEN, Francisco DIAZ Y DIAZ et Michel OLIVIER Dedicated to Michael Pohst for his 60th birthday Résumé. Pour tout groupe de permutations transitif sur n lettres G avec n 4 nous donnons sans démonstration des résultats, des conjectures et des calculs numériques sur le nombre de discriminants de corps de nombres L de degré n sur Q tels que le groupe de Galois de la clôture galoisienne de L soit isomorphe à G. Abstract. For each transitive permutation group G on n letters with n 4, we give without proof results, conjectures, and numerical computations on discriminants of number fields L of degree n over Q such that the Galois group of the Galois closure of L is isomorphic to G. 1. Introduction The aim of this paper is to regroup results and conjectures on discriminant counts of number fields of degree less than or equal to 4, from a theoretical, practical, and numerical point of view. Proofs are given elsewhere, see the bibliography. We only consider absolute number fields. If G is a permutation group on n letters, we write Φ n G, s) = 1 dl) s and N n G, X) = 1, L/Q L/Q, dl) X where in both cases the summation is over isomorphism classes of number fields L of degree n over Q such that the Galois group of the Galois closure of L is isomorphic to G and dl) denotes the absolute discriminant of L. When we specify the signature r 1, r ), we will instead write Φ r1,r G, s) and N r1,r G, X). We denote by C n the cyclic group of order n, by S n the symmetric group on n letters, by A n the alternating group on n letters, and by D n the dihedral group with n elements. We note that certain authors, in particular Datskovsky, Wright and Yukie see [0], [3], [34]) count number fields in a fixed algebraic closure of Q. This is the same as N n G, X) when G is of cardinality equal to n, i.e., when Manuscrit reçu le 19 décembre 005.

574 Henri Cohen, Francisco Diaz y Diaz, Michel Olivier the extensions L are Galois. Otherwise, in the range of our study n 4), their count is equal to mg)n n G, X) with ms 3 ) = 3, md 4 ) =, and ma 4 ) = ms 4 ) = 4. For each group G, we give the results in the following form. Whenever possible, we first give expressions for Φ n G, s) and Φ r1,r G, s) which are as explicit as possible. Then we give asymptotic formulas for N n G, X) and N r1,r G, X) which are usually directly deduced from the formula for Φ n G, s) and Φ r1,r G, s), in the form N n G, X) = P n G, X) + R n G, X) and N r1,r G, X) = P r1,r G, X) + R r1,r G, X), where the P G, X) are main terms, and the quantities RG, X) which denote any one of R n G, X) or R r1,r G, X)) are error terms. We then give conjectural estimates of the form RG, X) = ÕXα ) for some exponent α, where we use the convenient soft O notation: fx) = ÕXα ) means that fx) = OX α+ε ) for any ε > 0. note that this does not necessarily mean fx) = OX α logx) β ) for some β). In most cases, a suitable value for α can be rigorously obtained by complex integration methods, but we have not made any attempt in this direction, citing existing references when possible. Note that those among the explicit constants occurring in the main terms which occur as products or sums over primes are all given numerically to at least 30 decimal digits. This is computed using a now rather standard method which can be found for example in [10]. Finally, we give tables of N r1,r G, 10 k ) for all possible signatures r 1, r ) and increasing values of k, as well as a comment on the comparison between this data with the most refined result or conjecture on the asymptotic behavior. To save space, we do not give NG, 10 k ) which is of course trivially obtained by summing over all possible signatures. The upper bound chosen for k depends on the time and space necessary to compute the data: usually a few weeks of CPU time and 1GB of RAM. We have noticed that in most of the tables that we give, the error term which we do not indicate explicitly) changes sign and is rather small, indicating both that there is no systematic bias, in other words no additional main term, and that the conjectured exponent in the error term is close to the correct value. Whenever there seems to be such a systematic bias, a least squares method has been used to find a conjectured additional main term, and these terms have been used in the tables. When appropriate, this is indicated in the corresponding sections. It should be stressed that although we only give the number of suitable fields, the same methods can also be used to compute explicitly a defining equation for these number fields, but the storage problem makes this impractical for more than a few million fields. See [14] and [15] for details.

Counting discriminants of number fields 575 General references. Outside from specific references which will be given in each section, the following papers give general results and/or conjectures. The paper of Wright [3] gives a general formula for N n G, X) for abelian groups G and even for general abelian extensions of number fields). The exponents of X and log X are easily computable, however the multiplicative constant is only given as an adelic integral which is in principle computable, but in practice very difficult to compute. In fact, for general base fields these constants have been computed only in very few cases, and by quite different methods, in particular by the authors see [16], [17], and [18]). The thesis and paper of Mäki [5] and [6] give Φ n G, X) and estimates for N n G, X) with error terms easily deduced from Φ n G, X) by contour integration) again in the case of abelian groups G, but only for absolute extensions, i.e., when the base field is Q, as we do here. This nicely complements the results of Wright, but is limited to the base field Q. She does not give results with signatures, although they could probably be obtained using her methods. The papers of Malle [7] and [8] give very general and quite precise conjectures on N n G, X) for arbitrary transitive subgroups G of S n, up to an unknown multiplicative constant, as well as results and heuristics supporting these conjectures. Although the conjectures must be corrected as stated see [4] for a counter-example), the general form is believed to be correct. Finally, the ICM talk [1] can be considered as a summary of the present paper.. Degree fields with G C.1. Dirichlet series and asymptotic formulas. The results are elementary. Dirichlet series: Φ C, s) = 1 + 1 s + ) 3s = 1 1 s + ) s p 1 mod ) p 1 + 1 p s ) 1 = 1 1 s + ) ζs) s ζs) 1 Φ,0 C, s) = 1 Φ C, s) + 1 1 1 ) s Φ 0,1 C, s) = Φ C, s) Φ,0 C, s). 1 + 1 p s ) 1 p 1 mod ) 1 + 1)p 1)/ p s ) 1

576 Henri Cohen, Francisco Diaz y Diaz, Michel Olivier with Asymptotic formulas: N C, X) = cc ) X + R C, X) N,0 C, X) = cc ) N 0,1 C, X) = cc ) X + R,0 C, X) X + R 0,1 C, X), cc ) = 1 ζ) = 6 π and RC, X) = OX 1/ exp c log X) 3/5 log log X) 1/5 )) for some positive constant c, and under the Riemann Hypothesis RC, X) = ÕX8/5 ) see for example [31], Notes du Chapitre I.3). It is conjectured, and this is strongly confirmed by the data, that RC, X) = ÕX1/4 ), hence to compare with the data we use α = 1/4... Tables. These tables have been computed using the methods explained in [8]. X N,0 C, X) N 0,1 C, X) 10 1 4 10 30 31 10 3 30 305 10 4 3043 3043 10 5 30394 3039 10 6 303957 303968 10 7 3039653 303963 10 8 3039634 30396385 10 9 303963559 303963510 10 10 3039635379 3039635443 10 11 30396355148 3039635505 10 1 303963551039 30396355071 10 13 3039635509103 3039635509360 10 14 3039635509346 3039635509880 10 15 30396355096173 30396355096479

Counting discriminants of number fields 577 X N,0 C, X) N 0,1 C, X) 10 16 303963550971389 30396355097305 10 17 30396355096973 3039635509696593 10 18 30396355097008744 30396355097017751 10 19 303963550970131961 303963550970110507 10 0 3039635509701313737 303963550970191066 10 1 303963550970134017 3039635509701331649 10 303963550970133130535 30396355097013309175 10 3 303963550970133145633 3039635509701331531457 10 4 30396355097013314010676 30396355097013314554179 10 5 30396355097013314344815 303963550970133143069580 The relative error between the actual data and the predictions varies between 0.57% and 0.57%. 3. Degree 3 fields with G C 3 3.1. Dirichlet series and asymptotic formulas. The results are due to Cohn [19], and can easily be obtained from the much older characterization of cyclic cubic fields due to Hasse [3], see for example [6], Section 6.4.. Dirichlet series: Φ 3 C 3, s) = 1 1 + ) 3 4s Φ 3,0 C 3, s) = Φ 3 C 3, s) Φ 1,1 C 3, s) = 0. Asymptotic formulas: p 1 mod 6) 1 + ) p s 1 N 3 C 3, X) = cc 3 ) X 1/ + R 3 C 3, X) N 3,0 C 3, X) = N 3 C 3, X) N 1,1 C 3, X) = 0, with cc 3 ) = 11 3 36π p 1 mod 6) ) 1 pp + 1) = 0.15858583961406083507803575... and R 3 C 3, X) = ÕX1/3 ). It is reasonable to conjecture that we should have R 3 C 3, X) = ÕX1/6 ), hence to compare with the numerical data we use α = 1/6.

578 Henri Cohen, Francisco Diaz y Diaz, Michel Olivier 3.. Table. This table has been computed using the methods explained in [8]. X N 3 C 3, X) X N 3 C 3, X) X N 3 C 3, X) 10 1 0 10 14 158549 10 7 5013103697105 10 10 15 501306 10 8 158585840369 10 3 5 10 16 1585618 10 9 50131036986701 10 4 16 10 17 50131008 10 30 1585858396671 10 5 51 10 18 15858150 10 31 50131037000343 10 6 159 10 19 501309943 10 3 1585858393681 10 7 501 10 0 15858684 10 33 5013103700345884 10 8 159 10 1 501310391 10 34 158585839615504 10 9 5008 10 15858651 10 35 50131037003076114 10 10 15851 10 3 5013103638 10 36 158585839605064 10 11 5015 10 4 1585855967 10 37 5013103700318916 10 1 15854 10 5 501310368157 10 13 501306 10 6 15858578080 The relative error between the actual data and the predictions varies between 0.68% and 0.33%. 4. Degree 3 fields with G S 3 D 3 4.1. Dirichlet series and asymptotic formulas. The main terms in the asymptotic formulas are due to Davenport and Heilbronn [1], []. The other terms are conjectural and can be attributed to Datskovsky Wright [0] and Roberts [30]. Dirichlet series: In this case, the Dirichlet series do not seem to have any nice form. Asymptotic formulas: N 3 S 3, X) = cs 3 ) X + c S 3 ) X 5/6 cc 3) X 1/ + R 3 S 3, X) 3 N 3,0 S 3, X) = cs 3) X + c S 3 ) X 5/6 cc 3) X 1/ + R 3,0 S 3, X) 4 3 + 1 3 N 1,1 S 3, X) = 3 3 4 cs 3) X + c S 3 ) X 5/6 + R 1,1 S 3, X), 3 + 1

Counting discriminants of number fields 579 with and cs 3 ) = 1 3ζ3) = 0.77304575690489561040994... c S 3 ) = 4 3 + 1) ζ1/3) 5Γ/3) 3 ζ5/3) = 0.4034836366639467986336405671534... RS 3, X) = ÕX19/0 ). This remainder term is due to Belabas Bhargava Pomerance [4], and evidently, in these estimates the remainder term is of larger order than the additional main term. The reason that we have given this additional term is that much more is conjectured to be true. From heuristics of Roberts and Wright see [33] and [30]), it is believed that RS 3, X) is negligible compared to the additional main term, in other words that RS 3, X) = ox 1/ ). Thus, to compare with the numerical data we use these additional main terms and choose α = 1/, although the tables would seem to indicate that even α = 5/1 could be possible. 4.. Tables. These tables have been computed by Belabas in [] using his methods, based on the Davenport Heilbronn theory, and also explained in detail in [7], Chapter 8. It should not be too difficult to extend them to X = 10 13, say, using the improved methods given in [3]. X N 3,0 S 3, X) N 1,1 S 3, X) 10 1 0 0 10 0 7 10 3 17 10 4 366 150 10 5 4753 17041 10 6 54441 18417 10 7 5941 1905514 10 8 646698 19609185 10 9 64654353 199884780 10 10 6614330 04660098 10 11 6715773873 0430540 The relative error between the actual data and the predictions varies between 0.% and 0.04%.

580 Henri Cohen, Francisco Diaz y Diaz, Michel Olivier 5. Degree 4 fields with G C 4 5.1. Dirichlet series and asymptotic formulas. The results are not difficult. The paper which is cited in this context is [1], which unfortunately contains several misprints. These are corrected in the papers of Mäki [5] and ours, in particular here. Dirichlet series: Φ 4 C 4, s) = ζs) ζ4s) 1 1 s + ) 4s + 4 11s + 9s p 1 1 1 s + )) 4s ) Φ 4,0 C 4, s) = 1 Φ 4C 4, s) + Ls, 4 ) 4ζ4s) Φ,1 C 4, s) = 0 Φ 0, C 4, s) = Φ 4 C 4, s) Φ 4,0 C 4, s). with Asymptotic formulas: p 1 mod 4) mod 4) 1 + ) p 3s + p s ) 1 + 1)p 1)/4 p 3s + p s 1 N 4 C 4, X) = cc 4 ) X 1/ + c C 4 ) X 1/3 + R 4 C 4, X) N 4,0 C 4, X) = cc 4) N,1 C 4, X) = 0 N 0, C 4, X) = cc 4) cc 4 ) = 3 π 1 + ) 4 p 1 mod 4) X 1/ + c C 4 ) X 1/ + c C 4 ) X 1/3 + R 4,0 C 4, X) X 1/3 + R 0, C 4, X), ) ) 1 + p 3/ + p 1/ 1 = 0.105673513967609608058965... c C 4 ) = 3 + 1/3 + /3 1 + /3 ζ/3) 4πζ4/3) p 1 mod 4) = 0.1156751993947878830185483678... 1 + p + p 1/3 ) ) 1 1/p 1 + 1/p Although easy to obtain by contour integration, we have not found the additional X 1/3 main term in the literature. It is reasonable to conjecture that we should have RC 4, X) = ÕX1/6 ), hence to compare with the numerical data we use α = 1/6, although the tables seem to indicate that even α = 1/8 could be possible.

Counting discriminants of number fields 581 5.. Tables. These tables have been computed using the methods explained in [8]. X N 4,0 C 4, X) N 0, C 4, X) 10 1 0 0 10 0 0 10 3 0 1 10 4 6 4 10 5 15 17 10 6 59 54 10 7 18 181 10 8 586 58 10 9 1867 1865 10 10 5966 5964 10 11 19017 1908 10 1 60456 60469 10 13 191736 191764 10 14 607589 607609 10 15 194160 194059 10 16 6090130 6090110 10 17 1971385 197131 10 18 6096855 60968399 10 19 19857593 19857870 10 0 609994937 609994964 10 1 19944391 19943674 10 6101387381 6101387860 10 3 1995537531 1995537010 10 4 610055533 610055938 10 5 1996976398 199697583 10 6 6103650653 61036519548 10 7 199764373961 199764373161 10 8 61050905857 610509054460 10 9 1997953643936 1997953644691 10 30 610575844048 610575848309 10 31 19980974911603 1998097493193 10 3 61060681684841 61060681669563 The relative error between the actual data and the predictions varies between 0.64% and 0.45%, and seems clearly to tend to 0 as k.

58 Henri Cohen, Francisco Diaz y Diaz, Michel Olivier 6. Degree 4 fields with G V 4 = C C 6.1. Dirichlet series and asymptotic formulas. The results are not difficult. Once again the paper which is cited in this context is [1], which contains several misprints which are corrected in the papers of Mäki [5] and in ours. Dirichlet series: Φ 4 V 4, s) = 1 6 1 + 3 4s + 6 6s + 6 8s 1 Φ C, s) 1 6 ) p 1 mod ) 1 + 3 ) p s Φ 4,0 V 4, s) = 1 4 Φ 4V 4, s) 1 Φ,0C, s) + 1 8 Φ C, s) 1 8 + 1 1 1 8 4s + 6s ) 1 8s + 1 + ) 1)p 1)/ p p 1 s mod ) Φ,1 V 4, s) = 0 Φ 0, V 4, s) = Φ 4 V 4, s) Φ 4,0 V 4, s). Asymptotic formulas: N 4 V 4, X) = cv 4 ) log X + c V 4 ) log X + c V 4 )) X 1/ + R 4 V 4, X) ) cv4 ) N 4,0 V 4, X) = log X + c V 4 ) log X + c V 4 ) X 1/ + R 4,0 V 4, X) 4 4 4 N,1 V 4, X) = 0 3 N 0, V 4, X) = 4 cv 4) log X + 3 )) 4 c V 4 ) log X + c V 4 ) c V 4 ) X 1/ 4 + R 0, V 4, X), with cv 4 ) = 3 960 c V 4 ) = 1cV 4 ) 1 + 3 p p c V 4 ) = c V 4 ) 4cV 4 ) 3 π + 4cV 4 ) ) 1 1 ) 3 ) p γ 1 3 + 9 log 3 + 4 p 3 log p p 1)p + 3) 1 6 γ 1 γ 340 59 log 4 p 3 pp + 1) log p p 1) p + 3)

Counting discriminants of number fields 583 c V 4 ) = c V 4 ) 3 π + 7 8π where γ is Euler s constant and γ 1 = lim n n k=1 log k k Numerically, we have p 1 mod 4) 1 + 3/p)1 1/p) 1 + 1/p), ) log n = 0.07815845483676748605863758... n cv 4 ) = 0.00754307554813966383118376... c V 4 ) = 0.051379576104353770883347445... c V 4 ) = 0.1485834488117511836061... c V 4 ) = 0.443864780054696910866419885... Although not difficult to compute, we have not found the additional main terms in the literature. It is reasonable to conjecture that we should have RV 4, X) = ÕX1/4 ), hence to compare with the numerical data we use α = 1/4. 6.. Tables. These tables have been computed using the methods explained in [8]. X N 4,0 V 4, X) N 0, V 4, X) 10 1 0 0 10 0 0 10 3 0 8 10 4 6 41 10 5 4 01 10 6 196 818 10 7 876 3331 10 8 3603 13076 10 9 1449 50067 10 10 54940 187770 10 11 0795 6946 10 1 76984 536801 10 13 814497 9167570 10 14 1018180 3835581 10 15 36478693 116677591

584 Henri Cohen, Francisco Diaz y Diaz, Michel Olivier X N 4,0 V 4, X) N 0, V 4, X) 10 16 1960531 41176457 10 17 45731963 1444383361 10 18 1603453447 5039360330 10 19 5590953378 17497040934 10 0 19398735478 604866777 10 1 67009600870 087061830 10 3054814363 714545063480 10 3 7903608314 44339643699 10 4 70075901104 8398341755 10 5 9197857451663 8317754338743 10 6 314564815515 96017758881843 10 7 105847491463943 347849374359 10 8 357743840950 1096176138756 10 9 106393568766650 3691598900680670 10 30 405977618601670 1408334995379417 10 31 136354171154103 4163043388940969 10 3 45713153519958996 13949549395448 10 33 1599193439559136 46617660803817 10 34 511040768178878 1556518618644589 10 35 170556466144745140 518899759667511054 10 36 5681953108834455 177486337046418169 The relative error between the actual data and the predictions varies between 0.73% and 0.51%, and once again seems clearly to tend to 0 as k. 7. Degree 4 fields with G D 4 7.1. Dirichlet series and asymptotic formulas. The results of this section are due to the authors, see [9] and [13]. In the totally complex case signature 0, )) we will distinguish between fields having a real quadratic subfield using the superscript + ) and those having a complex quadratic subfield using the superscript ), which gives important extra information the behavior of the Frobenius at infinity ). Furthermore, it is convenient both in theory and in practice to introduce the set of imprimitive quartic number fields but now in a fixed algebraic closure of Q, and to denote by ΦI, s) and NI, X) the corresponding Φ and N functions, possibly with signatures. We then have

Counting discriminants of number fields 585 Φ 4 I, s) = Φ 4 D 4, s) + 3Φ 4 V 4, s) + Φ 4 C 4, s) Φ 4,0 I, s) = Φ 4,0 D 4, s) + 3Φ 4,0 V 4, s) + Φ 4,0 C 4, s) Φ,1 I, s) = Φ,1 D 4, s) Φ 0, I, s) = Φ 0, D 4, s) + 3Φ 0, V 4, s) + Φ 0, C 4, s) Φ + 0, I, s) = Φ+ 0, D 4, s) + Φ 0, V 4, s) + Φ 0, C 4, s) Φ 0, I, s) = Φ 0, D 4, s) + Φ 0, V 4, s), and the same linear combinations for the N functions. The last two formulas come from the fact that the quadratic subfield of a C 4 field is always real and that a complex V 4 field always contains two complex and one real quadratic subfield. Thus we will give the formulas only for I the above combinations allowing to easily get back to D 4 ), but the tables only for D 4. Note the important fact that, as a consequence, the asymptotic constants for D 4 are one half of the ones for I. Denote by D the set of all fundamental discriminants, in other words 1 and discriminants of quadratic fields. For any d D, denote by Ls, d) the Dirichlet L-series for the quadratic character d n). Dirichlet series: Φ 4 I, s) = 1 r D) ζs) D s Ls, D) F Ds) Φ C, s), D D {1} where r D) = 0 if D > 0, r D) = 1 if D < 0, with F D s) = f D,d s)ls, d)ls, D/d) where d D, d D, gcdd,d/d)=1 d>0 if D>0 + g D s) d D, d D, gcdd,d/d)=1 kd)d>0 if D>0 ) f D,d s) = 1 d s + 5 Ls, kd)d)ls, kd)d/d), 1 1 s + 4 4s if D 5 mod 8) 1 d1 ) s 4 d 3s + 4 4s if D 1 mod 8) ) ) s + s d1 3s + 4 4s if D 0 mod 4),

586 Henri Cohen, Francisco Diaz y Diaz, Michel Olivier where d 1 = d if d 1 mod 4), d 1 = D/d if d 0 mod 4), { 4 if D 4 mod 16) kd) = 8 if D 4 mod 16), 1 if D 8 mod 16) g D s) = 1 + s if D 8 mod 16). The Dirichlet series for Φ r1,r I, s) are of a similar nature but are too complicated to be given here see [9]). Asymptotic formulas: N 4 I, X) = cd 4 ) X + R 4 D 4, X) N 4,0 I, X) = c+ D 4 ) X + R 4,0 I, X) N,1 I, X) = c + D 4 ) X + R,1 I, X) N 0, I, X) = c+ D 4 ) + c D 4 ) X + R 0, I, X) N 0, + I, X) = c+ D 4 ) X + R 0, + I, X) N0, I, X) = c D 4 ) X + R0, I, X), with c ± D 4 ) = 3 π signd)=± cd 4 ) = c + D 4 ) + c D 4 ) 1 L1, D) D L, D), and where the sum is over discriminants D of quadratic fields of given sign. Numerically, we have c + D 4 ) = 0.01971137577, c D 4 ) = 0.06597087, cd 4 ) = 0.053601119, where in each case the mean deviation seems to be less than 100 in the last given digit i.e., ±10 9 ). It is possible that these constants can be expressed as finite linear combinations of simple Euler products, but we have not been able to find such expressions. It can be shown see [13]) that RI, X) = ÕX3/4 ), and it is reasonable to conjecture that we should have RI, X) = ÕX1/ ). However, the tables

Counting discriminants of number fields 587 seem to show that there are additional main terms, so that RI, X) = c D 4 ) log X + c D 4 ))X 1/ + OX α ) for suitable constants c R 1,R D 4 ) and c R 1,R D 4 ) depending on the signature), and some α < 1/ we include an extra factor above so that it disappears in the formulas for D 4 ). A least squares computation gives c D 4 ) = 0.034067 c D 4 ) = 0.8199 c 4,0D 4 ) = 0.00931 c 4,0D 4 ) = 0.6410 c,1d 4 ) = 0.0030683 c,1d 4 ) = 0.07401 c 0,D 4 ) = 0.07904 c 0,D 4 ) = 0.584 c + 0,D 4 ) = 0.009644 c + 0,D 4 ) = 0.13795 c 0,D 4 ) = 0.01860 c 0,D 4 ) = 0.39047 Here, even though we give the values with 5 digits, they are probably accurate only to within a factor of or so. Nevertheless, the least square fit is very good, hence we use these values to compare with the actual data. This seems to show that the functions ΦI, s) have a double pole at s = 1/, but we do not know how to prove this or how to compute the polar parts at s = 1/, although heuristically it is easy to guess why they have at least a simple pole. Thus, to compare with the data we use these refined estimates, and we choose α = /5, which seems to give reasonable results. 7.. Tables. See [13] and [9] for the methods used to compute these tables. X N 4,0 D 4, X) N,1 D 4, X) N 0, D 4, X) 10 1 0 0 0 10 0 0 0 10 3 1 6 17 10 4 5 93 95 10 5 379 968 3417 10 6 4486 977 3638 10 7 4756 98413 37044 10 8 486314 984708 373486 10 9 4903607 98544 37469573 10 10 49188349 98546786 37515405

588 Henri Cohen, Francisco Diaz y Diaz, Michel Olivier X N 4,0 D 4, X) N,1 D 4, X) N 0, D 4, X) 10 11 4945443 985536549 37535877 10 1 496654580 98555718 37538880690 10 13 4974156836 98556488881 37541190118 10 14 49769145545 985567509497 37540033198 10 15 497790007755 985568366056 375431717650 10 16 49784967160 98556864596086 375443055946 10 17 49783730187748 985568739794773 37544594005159 X N + 0, D 4, X) N 0, D 4, X) 10 1 0 0 10 0 0 10 3 0 17 10 4 7 68 10 5 395 30 10 6 451 3176 10 7 47708 3716 10 8 486531 34895 10 9 490476 356597 10 10 49190647 35963378 10 11 49464630 360793647 10 1 496673909 36106781 10 13 497435813 36137665405 10 14 49769387400 36143645798 10 15 4977908970 361456394680 10 16 497855484 3614597083046 10 17 497837381177 361460193898 The relative error between the actual data and the predictions varies between 0.3% and 0.76%. 8. Degree 4 fields with G A 4 8.1. Dirichlet series and asymptotic formulas. Using Kummer theory, it is possible to obtain an explicit expression for the Dirichlet series Φ 4 A 4, k, s) where the additional parameter k indicates that we fix the resolvent cubic field see [11]), hence an asymptotic formula for N 4 A 4, k, s). However, as indicated in loc. cit., it does not seem possible to sum naively on k to obtain an asymptotic estimate for N 4 A 4, X). Thus we must be content with experimental data. According to general conjectures, including that of Malle, it is reasonable to conjecture that we have an asymptotic

Counting discriminants of number fields 589 formula of the form N 4 A 4, X) ca 4 ) X 1/ log X for some constant ca 4 ) > 0. As for the case G D 4, it is possible that the constant ca 4 ) can be expressed as a finite linear combination of Euler products with explicit coefficients. In view of the numerical data, it is possible that we have a sharper formula of the form N 4 A 4, X) = ca 4 ) log X + c A 4 )) X 1/ + OX α ) for some α < 1/, perhaps for any α > 1/4. We obtain an excellent least squares fit by using ca 4 ) = 0.018634 and c A 4 ) = 0.14049. We obtain similar fits for the tables with signatures c 4,0 A 4 ) = 0.0049903, c 4,0 A 4) = 0.0373357, c 0, A 4 ) = 0.0136441, c 0, A 4) = 0.103157 with evident notations). All these values should be correct to within 5%. To compare with the numerical data we use the values obtained above with the least squares fit and we choose α = 1/4, which gives reasonable results. 8.. Numerical computation. We have generated A 4 extensions using Kummer theory of quadratic extensions over cyclic cubic fields, keeping only those extensions whose discriminant is less than the required bound see [14] for details). The computations without signatures being simpler than with signatures have been pushed to X = 10 16, while those with signatures have only been pushed to X = 10 13, although it should be easy to push them further. Thus, exceptionally we also give separately the data without signature distinction. 8.3. Tables. See [14] for the methods used to compute these tables. X N 4 A 4, X) X N 4 A 4, X) 10 1 0 10 9 7699 10 0 10 10 8759 10 3 0 10 11 104766 10 4 4 10 1 374470 10 5 7 10 13 1319606 10 6 11 10 14 460909 10 7 514 10 15 15915694 10 8 010 10 16 5459313

590 Henri Cohen, Francisco Diaz y Diaz, Michel Olivier X N 4,0 A 4, X) N 0, A 4, X) 10 1 0 0 10 0 0 10 3 0 0 10 4 0 4 10 5 4 3 10 6 31 90 10 7 19 385 10 8 57 1483 10 9 037 566 10 10 766 1097 10 11 818 76584 10 1 100576 73894 10 13 35430 965304 The relative error between the actual data and the predictions varies between 1.01% and 1.03%. 9. Degree 4 fields with G S 4 9.1. Dirichlet series and asymptotic formulas. By using similar methods to the A 4 case but this time with Kummer theory over noncyclic cubic fields, we can also compute explicitly the Dirichlet series Φ 4 S 4, k, s), which is quite similar in form to Φ 4 A 4, k, s), where k is a fixed cubic resolvent, see once again [11], hence also obtain an asymptotic formula for N 4 S 4, k, X), with evident notation. Contrary to the A 4 case, however, it seems that it is now possible to sum the contributions coming from the different cubic resolvents and obtain an asymptotic formula for N 4 S 4, X). However this does not give a very useful formula, neither in theory nor for numerical computation, and in any case is completely superseded by the work of Bhargava. Indeed, in a series of groundbreaking papers [5], Bhargava gives a wide generalization of the methods of Davenport Heilbronn and as a consequence obtains an asymptotic formula for NS 4, X), including a simple expression for cs 4 ), and also with signatures. Asymptotic formulas: N 4 S 4, X) = r 4 S 4 )zs 4 )X + c S 4 )X 5/6 + c S 4 ) log X + c S 4 ))X 3/4 + R 4 S 4, X) N r1,r S 4, X) = r r1,r S 4 )zs 4 ) + c r 1,r S 4 )X 5/6 + c r 1,r S 4 ) log X + c r 1,r S 4 ))X 3/4 + R r1,r S 4, X)

Counting discriminants of number fields 591 with zs 4 ) = 1 + 1 p p 1 p 3 1 ) p 4 = 1.16690869063309337694390868... and r 4 S 4 ) = 5 4, r 4,0S 4 ) = 1 48, r,1s 4 ) = 1 8, r 0,S 4 ) = 1 16. The additional main terms given above have been suggested to the authors in a personal communication of Yukie. Bhargava proves only that RS 4, X) = ox), but conjecturally we should have RS 4, X) = OX α ) for some α < 3/4, perhaps for any α > 1/. We will use α = 1/ for comparisons with the actual data. As in the D 4 and A 4 cases, we can try using a least squares method to find the additional main terms. However, note first that, using our Kummertheoretic method, it is very costly to compute NS 4, 10 7 ) since it involves in particular computing the class group and units of.5 million exactly N 3 S 3, 10 7 )) cubic fields see below, however). Second, note that in the range X 10 7 the functions X, X 5/6, X 3/4 log X, and X 3/4 are quite close to one another for instance the function X 3/4 log X which is asymptotically negligible with respect to X 5/6 is still more than 4 times larger for X = 10 7 ), hence it will be almost impossible to distinguish between their coefficients using a least squares method. Nonetheless we have done so and found c S 4 ) =.17561, c S 4 ) = 0.08417, c S 4 ) = 1.91916 c 4,0S 4 ) = 0.479, c 4,0S 4 ) = 0.034743, c 4,0S 4 ) = 0.33335 c,1s 4 ) = 1.8495, c,1s 4 ) = 0.05101, c,1s 4 ) = 1.11068 c 0,S 4 ) = 0.4674, c 0,S 4 ) = 0.001590, c 0,S 4 ) = 0.47514. These values are only given to indicate how the tables have been computed, but are certainly very far from the correct ones. 9.. Numerical computation. As for A 4 extensions, we use Kummer theory of quadratic extensions, this time over noncyclic cubic fields and we keep only those extensions whose discriminant is less than the required bound. See [14] for details. The reason that we cannot easily go above 10 7 is that we need to compute units and class groups for all noncyclic) cubic fields of discriminant up to that bound, and this is very time-consuming. It is possible that in the same way that Belabas adapted the methods of Davenport Heilbronn to compute rapidly tables of S 3 -cubic fields by enumerating reduced cubic forms, one can adapt the method of Bhargava to efficiently compute S 4 -quartic fields by enumerating reduced pairs of ternary quadratic forms, thus enabling computations to much larger discriminant bounds.

59 Henri Cohen, Francisco Diaz y Diaz, Michel Olivier 9.3. Tables. It should be emphasized that contrary to the other Galois groups, our numerical predictions should here be only considered as guesses. X N 4,0 S 4, X) N,1 S 4, X) N 0, S 4, X) 10 1 0 0 0 10 0 0 0 10 3 0 10 8 10 4 13 351 06 10 5 449 5916 3374 10 6 8301 80899 441 10 7 106 989587 55099 The relative error between the actual data and the predictions varies between 0.18% and 0.8%. For instance, our estimates give P 4 S 4, 10 8 ) = 1871918, P 4,0 S 4, 10 8 ) = 151877, P,1 S 4, 10 8 ) = 1194945, P 0, S 4, 10 8 ) = 590307. It would be interesting to see how close to the truth are these estimates. Note added: we have just learnt that in a large computation using Hunter s method instead of Kummer theory, G. Malle has computed N 4,0 S 4, 10 8 ) = 159634 and N 4,0 S 4, 10 9 ) = 1789570, so our above prediction for 10 8 was within 0.5% of the correct value. References [1] A. Baily, On the density of discriminants of quartic fields. J. reine angew. Math. 315 1980), 190 10. [] K. Belabas, A fast algorithm to compute cubic fields. Math. Comp. 66 1997), 113 137. [3] K. Belabas, On quadratic fields with large 3-rank. Math. Comp. 73 004), 061 074. [4] K. Belabas, M. Bhargava, C. Pomerance, Error estimates for the Davenport Heilbronn theorems. Preprint available at http://www.math.u-bordeaux1.fr/~belabas/pub/ [5] M. Bhargava, Higher Composition Laws I, II, III, IV. [6] H. Cohen, A course in computational algebraic number theory fourth printing). GTM 138, Springer-Verlag, 000. [7] H. Cohen, Advanced topics in computational number theory. GTM 193, Springer-Verlag, 000. [8] H. Cohen, Comptage exact de discriminants d extensions abéliennes. J. Th. Nombres Bordeaux 1 000), 379 397. [9] H. Cohen, Enumerating quartic dihedral extensions of Q with signatures. Ann. Institut Fourier 53 003) 339 377. [10] H. Cohen, High precision computation of Hardy-Littlewood constants. Preprint available on the author s web page at the URL http://www.math.u-bordeaux.fr/~cohen. [11] H. Cohen, Counting A 4 and S 4 extensions of number fields with given resolvent cubic, in High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams. Fields Institute Comm. 41 004), 159 168. [1] H. Cohen, Constructing and counting number fields. Proceedings ICM 00 Beijing vol II, Higher Education Press, China 00), 19 138.

Counting discriminants of number fields 593 [13] H. Cohen, F. Diaz y Diaz, M. Olivier, Enumerating quartic dihedral extensions of Q. Compositio Math. 133 00), 65 93. [14] H. Cohen, F. Diaz y Diaz, M. Olivier, Construction of tables of quartic fields using Kummer theory. Proceedings ANTS IV, Leiden 000), Lecture Notes in Computer Science 1838, Springer-Verlag, 57 68. [15] H. Cohen, F. Diaz y Diaz, M. Olivier, Constructing complete tables of quartic fields using Kummer theory. Math. Comp. 7 003) 941 951. [16] H. Cohen, F. Diaz y Diaz, M. Olivier, Densité des discriminants des extensions cycliques de degré premier. C. R. Acad. Sci. Paris 330 000), 61 66. [17] H. Cohen, F. Diaz y Diaz, M. Olivier, On the density of discriminants of cyclic extensions of prime degree. J. reine angew. Math. 550 00), 169 09. [18] H. Cohen, F. Diaz y Diaz, M. Olivier, Cyclotomic extensions of number fields. Indag. Math. N.S.) 14 003), 183 196. [19] H. Cohn, The density of abelian cubic fields. Proc. Amer. Math. Soc. 5 1954), 476 477. [0] B. Datskovsky, D. J. Wright, Density of discriminants of cubic extensions. J. reine angew. Math. 386 1988), 116 138. [1] H. Davenport, H. Heilbronn, On the density of discriminants of cubic fields I. Bull. London Math. Soc. 1 1969), 345 348. [] H. Davenport, H. Heilbronn, On the density of discriminants of cubic fields II. Proc. Royal. Soc. A 3 1971), 405 40. [3] H. Hasse, Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage. Math. Zeitschrift 31 1930), 565 58. [4] J. Klüners, A counter-example to Malle s conjecture on the asymptotics of discriminants. C. R. Acad. Sci. Paris 340 005), 411 414. [5] S. Mäki, On the density of abelian number fields. Thesis, Helsinki, 1985. [6] S. Mäki, The conductor density of abelian number fields. J. London Math. Soc. ) 47 1993), 18 30. [7] G. Malle, On the distribution of Galois groups. J. Number Th. 9 00), 315 39. [8] G. Malle, On the distribution of Galois groups II, Exp. Math. 13 004), 19 135. [9] G. Malle, The totally real primitive number fields of discriminant at most 10 9. Proceedings ANTS VII Berlin), 006, Springer Lecture Notes in Computer Science XXX. [30] D. Roberts, Density of cubic field discriminants. Math. Comp. 70 001), 1699 1705. [31] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres. Cours Spécialisés SMF 1, Société Mathématique de France, 1995. [3] D. J. Wright, Distribution of discriminants of Abelian extensions. Proc. London Math. Soc. 3) 58 1989), 17 50. [33] D. J. Wright, personal communication. [34] D. J. Wright, A. Yukie, Prehomogeneous vector spaces and field extensions. Invent. Math. 110 199), 83 314. Henri Cohen, Francisco Diaz y Diaz, Michel Olivier Laboratoire AX, U.M.R. 5465 du C.N.R.S., Université Bordeaux I, 351 Cours de la Libération, 33405 TALENCE Cedex, FRANCE E-mail: cohen@math.u-bordeaux1.fr E-mail: diaz@math.u-bordeaux1.fr E-mail: olivier@math.u-bordeaux1.fr