From cavity optomechanics to the Dicke quantum phase transition

Similar documents
Quantum structures of photons and atoms

arxiv: v1 [physics.atom-ph] 9 Nov 2013

Towards new states of matter with atoms and photons

BEC meets Cavity QED

Self organization of a Bose Einstein Condensate in an optical cavity

Quantum optics of many-body systems

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Optomechanics and spin dynamics of cold atoms in a cavity

Non-equilibrium quantum phase transition with ultracold atoms in optical cavity

Optically detecting the quantization of collective atomic motion

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

Quantum optics of many-body systems

arxiv: v1 [quant-ph] 29 Oct 2015

Elements of Quantum Optics

arxiv: v2 [quant-ph] 6 Nov 2007

Spontaneous crystallization of light and ultracold atoms

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University

Lecture 4: Superfluidity

6. Interference of BECs

INO-CNR BEC Center

Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime

Nonequilibrium dynamics of interacting systems of cold atoms

Multi-normal mode-splitting for an optical cavity with electromagnetically induced transparency medium

Bose-Einstein condensates in optical lattices

Cooperative Phenomena

Prospects for a superradiant laser

Day 3: Ultracold atoms from a qubit perspective

OIST, April 16, 2014

5. Gross-Pitaevskii theory

Reference for most of this talk:

MESOSCOPIC QUANTUM OPTICS

Beyond Heisenberg uncertainty principle in the negative mass reference frame. Eugene Polzik Niels Bohr Institute Copenhagen

Bistability of Feshbach resonance in optical cavity

NanoKelvin Quantum Engineering

Hong-Ou-Mandel effect with matter waves

Cavity QED with Ultracold Gases

Lecture 3. Bose-Einstein condensation Ultracold molecules

Vacuum-Induced Transparency

UNIVERSITY OF SOUTHAMPTON

Quantum Optomechanical Heat Engine

Introduction to Modern Quantum Optics

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Quantum Reservoir Engineering

SUPA. Quantum Many-Body Physics with Multimode Cavity QED. Jonathan Keeling FOUNDED. University of St Andrews

Collective Dynamics of a Generalized Dicke Model

Matter wave interferometry beyond classical limits

Superconducting Resonators and Their Applications in Quantum Engineering

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın

Non-Equilibrium Physics with Quantum Gases

Controlling the Interaction of Light and Matter...

Interference experiments with ultracold atoms

Cavity optomechanics: interactions between light and nanomechanical motion

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates

Raman-Induced Oscillation Between an Atomic and Molecular Gas

A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard regime Optical Lattice

LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS

Cavity optomechanics in new regimes and with new devices

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

Quantum simulation with superconducting circuits

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

Supplementary information

C.W. Gardiner. P. Zoller. Quantum Nois e. A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics

Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator

Distributing Quantum Information with Microwave Resonators in Circuit QED

Raman Amplification of Matter Waves

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

Quantum Information Storage with Slow and Stopped Light

Quântica Oscilador Paramétrico

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

Bose-Bose mixtures in confined dimensions

OPTI 511R: OPTICAL PHYSICS & LASERS

Dynamic properties of interacting bosons and magnons

Theory for strongly coupled quantum dot cavity quantum electrodynamics

Quantum droplets of a dysprosium BEC

Continuous quantum measurement process in stochastic phase-methods of quantum dynamics: Classicality from quantum measurement

Imaging the Mott Insulator Shells using Atomic Clock Shifts

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

NON-EQUILIBRIUM DYNAMICS IN

Nonlinear and chaotic dynamics of a Bose-Einstein condensate in an optical cavity

in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany

III.3 Transport mésoscopique et effets thermoélectriques dans les gaz atomiques ultra-froids

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

Vortices and superfluidity

arxiv: v2 [cond-mat.quant-gas] 25 Jul 2017

Ultracold atoms and molecules

Inauguration Meeting & Celebration of Lev Pitaevskii s 70 th Birthday. Bogoliubov excitations. with and without an optical lattice.

Susana F. Huelga. Dephasing Assisted Transport: Quantum Networks and Biomolecules. University of Hertfordshire. Collaboration: Imperial College London

le LPTMS en Bretagne... photo extraite du site

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Superconducting Qubits Lecture 4

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

Atom lasers. FOMO summer school 2016 Florian Schreck, University of Amsterdam MIT 1997 NIST Munich Yale 1998

Dynamical Casimir effect in superconducting circuits

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Polariton Condensation

Supplementary Figure 3: Interaction effects in the proposed state preparation with Bloch oscillations. The numerical results are obtained by

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases

Transcription:

From cavity optomechanics to the Dicke quantum phase transition (~k; ~k)! p Rafael Mottl Esslinger Group, ETH Zurich Cavity Optomechanics Conference 2013, Innsbruck

Motivation & Overview Engineer optomechanical interactions between ultracold atoms and the light of an optical cavity generic optomechanical coupling H int = Ga y ax Dicke-type optomechanical coupling H int = g(a y + a)x mechanical mode softening leading to the Dicke phase transition influence of dissipation on the fluctuations driving the phase transition

1cm The Experiment high-finesse optical cavity length = 178 m Finesse = 340.000 Bose-Einstein condensate harmonic trap 10 5 Rb atoms T 100 nk 150 μm Related Experiments: A. Hemmerich, J. Reichel, D. Stamper-Kurn, V. Vuletic, C. Zimmermann

Optomechanically coupling atoms and light generic optomechanical coupling H int = Ga y ax Nature of the drive field: dispersive limit:! p! a À close to the cavity resonance:! p! c» Dicke-type optomechanical coupling H int = g(a y + a)x Dispersively coupling the cavity light field and collective atomic momentum states special starting point in the field of optomechanics: - mechanical oscillator is naturally prepared in its ground state

Generic optomechanical coupling Atoms -> Light: dispersive cavity resonance shift Light -> Atoms: AC-Stark shift per photon as a dynamical dipole potential ^H a c / cos 2 (x)^a y^a 4! rec j 2~ki ^ª = p Nj0i + ^c j 2~ki j0i creates a collective momentum excitation ^H int = Z ^ª y (~r) ^H a c ^ª(~r)d 3 r ^H int / ^a y^a(^c y + ^c) / ^a y^a ^X Gupta et al. PRL 99 (21), 213601 (2007), Brennecke et al. Science 322, 235 (2008), Murch et al. Nat. Phys. 4 (7), 561 (2008)

Effects of the generic optomechanical coupling Optomechanical bistability H int = Ga y ax Squeezed light generation Single photon optical bistability Quantum measurement induced backaction Gupta et al. PRL 99 (21), 213601 (2007), S. Ritter et al. Appl. Phys. B 95, 213 (2009), Murch et al. Nat. Phys. 4 (7), 561 (2008)

Dicke-type optomechanical coupling (~k; ~k) Dynamical dipole potential of the interference field between scattered light and transverse pump ^H int / cos(kx) cos(ky)(^a + ^a y )! p j ~k; ~ki 2! rec J + = c y 1 c 0 j0; 0i collective atomic operators ^H int = Z ^ª y (~r) ^H a c ^ª(~r)d 3 r ^H int / (^a + ^a y )( ^J + + ^J ) K. Baumann et al., Nature 464, 1301 (2010), D. Nagy et al. Phys. Rev. Lett. 104, 130401 (2010)

Dicke-type coupling in the thermodynamic limit (~k; ~k) ^H int / (^a + ^a y )( ^J + + ^J )! p Almost all atoms in the ground state Thermodynamic limit: N À 1 describe collective atomic operators in a single bosonic mode around the ground state ^J+ + ; ^J ; ^J z! ^b;^b y ^H int / (^a + ^a y )(^b + ^b y ) / (^a + ^a y ) ^X Coupling strength / pump power position operator of the bosonic excitation mode K. Baumann et al., Nature 464, 1301 (2010), D. Nagy et al. Phys. Rev. Lett. 104, 130401 (2010)

Consequence of the Dicke-type OM interaction mode softening of the momentum mode H int = g(a y + a)x Critical behavior of the drivendissipative system Dicke quantum phase transition

energy Effect of the Dicke-type OM coupling! p ^H = ~!^a y^a + ~! 0^by^b + ~ (^a + ^a y )(^b + ^b y )! c! =! p! c! À! 0! 0 = 2! rec j ~k; ~ki Energy spectrum: ² ph =! ² at =! 0 p 1 2= 2cr! 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2

energy Detection: Bragg spectroscopy! 0 probe beam! p + ± 0.0 0.2 0.4 0.6 0.8 1.0 1.2! p Ballistic expansion J. Stenger et al. PRL 82, 4569 (1999), J. Steinhauer et al. PRL 88, 120407 (2002), R. Mottl et al. Science 336, 1570 (2012)

Mode softening of the excited momentum state shading: ab-initio calculation including collisions and trapping R. Mottl et al. Science 336, 1570 (2012)

Dicke quantum phase transition normal phase superradiant phase Transverse pump power hai = 0 ha y ai 6= 0 hai 6= 0 Theory: H. Ritsch, P. Domokos (2002); observed with thermal atoms: V. Vuletic (2003)

Observing the Dicke quantum phase transition occupation of momentum states K. Baumann et al., Nature 464, 1301 (2010)

Consequence of the Dicke-type OM interaction mode softening of the momentum mode H int = g(a y + a)x Critical behavior of a drivendissipative system Dicke quantum phase transition

Fluctuations driving the phase transition?? mode softening of the mechanical oscillator adiabatic elimination of the cavity field: ^a / (^b + ^b y ) Contains the information about the fluctuations of the mechanical mode!

Real-time observation of leaking photons Single-photon counter transition point F. Brennecke et al. PNAS 110 (29) 11763 (2013)

Fluctuations around the ground state normal-phase Hamiltonian ^H = ~!^ay^a y^a + ~! 0^by^b + ~ (^a y + ^a)(^b + ^b y ) diagonalize the Hamiltonian fluctuations around the ground state F. Brennecke et al. PNAS 110 (29) 11763 (2013)

Fluctuations around the ground state normal-phase Hamiltonian ^H = ~!^ay^a y^a + ~! 0^by^b + ~ (^a y + ^a)(^b + ^b y ) diagonalize the Hamiltonian fluctuations around the ground state F. Brennecke et al. PNAS 110 (29) 11763 (2013)

Openness of the cavity Vacuum input noise Cavity dissipation induces measurement backaction Vacuum input noise drives system into a steady state with enhanced fluctuations F. Brennecke et al. PNAS 110 (29) 11763 (2013)

Fluctuations of the steady state normal-phase Hamiltonian ^H = ~!^ay^a y^a + ~! 0^by^b + ~ (^a y + ^a)(^b + ^b y ) Quantum Langevin equations _^a = i[^a; ^H] ^a + p 2 ^a in _^b = i[^b; ^H] ^b + p 2 ^b in F. Brennecke et al. PNAS 110 (29) 11763 (2013)

Fluctuations of the steady state Damping of the mechanical mode? ^a / (^b + ^b y ) normal-phase Hamiltonian ^H = ~!^ay^a y^a + ~! 0^by^b + ~ (^a y + ^a)(^b + ^b y ) Quantum Langevin equations _^a = i[^a; ^H] ^a + p 2 ^a in _^b = i[^b; ^H] ^b + p 2 ^b in F. Brennecke et al. PNAS 110 (29) 11763 (2013)

Correlation analysis of the cavity output field g (2) ( ) / h^a y ( )^a y (0)^a(0)^a( )i i ^a / (^b + ^b y ) ( i) F. Brennecke et al. PNAS 110 (29) 11763 (2013)

Determination of the atomic damping rate! s =2¼ B. Öztop et al. NJP 14, 085011 (2012), F. Brennecke et al. PNAS 110 (29) 11763 (2013)

Effective quantum Langevin description Contributions to intracavity field: coherent cavity component cavity backaction fluctuations thermal fluctuations normal-phase Hamiltonian ^H = ~!^a y^a + ~! 0^by^b + ~ (^a y + ^a)(^b + ^b y ) Quantum Langevin equations _^a = i[^a; ^H] ^a + p 2 ^a in _^b = i[^b; ^H] ^b + p 2 ^b in D. Nagy et al, PRA 84, 043637 (2011), B. Öztop et al, NJP 14, 085011 (2012), D. Torre et al, PRA 87, 023831 (2013), F. Brennecke et al. PNAS 110 (29) 11763 (2013)

Effective quantum Langevin description normal-phase Hamiltonian ^H = ~!^a y^a + ~! 0^by^b + ~ (^a y + ^a)(^b + ^b y ) Quantum Langevin equations _^a = i[^a; ^H] ^a + p 2 ^a in _^b = i[^b; ^H] ^b + p 2 ^b in D. Nagy et al, PRA 84, 043637 (2011), B. Öztop et al, NJP 14, 085011 (2012), D. Torre et al, PRA 87, 023831 (2013), F. Brennecke et al. PNAS 110 (29) 11763 (2013)

Effective quantum Langevin description Scaling of the fluctuations h(^b + ^b y ) 2 i Steady state: exponent -0.9 Closed system: exponent -0.5 normal-phase Hamiltonian ^H = ~!^a y^a + ~! 0^by^b + ~ (^a y + ^a)(^b + ^b y ) Quantum Langevin equations _^a = i[^a; ^H] ^a + p 2 ^a in _^b = i[^b; ^H] ^b + p 2 ^b in D. Nagy et al, PRA 84, 043637 (2011), B. Öztop et al, NJP 14, 085011 (2012), D. Torre et al, PRA 87, 023831 (2013), F. Brennecke et al. PNAS 110 (29) 11763 (2013)

Cavity team Tilman Esslinger Renate Landig Lorenz Hruby Tobias Donner Ferdinand Brennecke Rafael Mottl Kristian Baumann (Stanford) Thank you very much for your attention!

Summary realizing a Dicke-type optomechanical interaction with ultracold atoms in an optical cavity H int = g(a y + a)x mode softening induced by Dicketype optomechanical interactions changed fluctuations at a drivendissipative phase transition R. Mottl et al. Science 336, 1570 (2012) F. Brennecke et al. PNAS 110 (29) 11763 (2013)