Baryogenesis and dark matter in the nmssm

Similar documents
Electroweak baryogenesis in the MSSM. C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, /15

Supersymmetry at the LHC

Supersymmetry at the LHC

Supersymmetric Origin of Matter (both the bright and the dark)

LHC Signals of (MSSM) Electroweak Baryogenesis

Implications of a Heavy Z Gauge Boson

Probing Supersymmetric Baryogenesis: from Electric Dipole Moments to Neutrino Telescopes

Electroweak Baryogenesis after LHC8

Implications of an extra U(1) gauge symmetry

Big Bang Nucleosynthesis

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Dark Matter Direct Detection in the NMSSM

Electroweak Baryogenesis in the LHC era

Lecture 18 - Beyond the Standard Model

Higgs Signals and Implications for MSSM

THE STATUS OF NEUTRALINO DARK MATTER

PAMELA from Dark Matter Annihilations to Vector Leptons

Exceptional Supersymmetry. at the Large Hadron Collider

Supersymmetry at the ILC

The Physics of Heavy Z-prime Gauge Bosons

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

A light singlet at the LHC and DM

The Standard Model and Beyond

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

Electroweak Baryogenesis in Non-Standard Cosmology

Models as existence proofs, speculations or... peaces of physical reality

Beyond the SM: SUSY. Marina Cobal University of Udine

Search for SUperSYmmetry SUSY

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

LHC Impact on DM searches

Whither SUSY? G. Ross, Birmingham, January 2013

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Models of New Physics for Dark Matter

Astroparticle Physics and the LC

Probing the Majorana nature in radiative seesaw models at collider experiments

Kaluza-Klein Dark Matter

Probing Supersymmetric Baryogenesis: from Electric Dipole Moments to Neutrino Telescopes

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07

How high could SUSY go?

Contributions by M. Peskin, E. Baltz, B. Sadoulet, T. Wizansky

Dark Matter Implications for SUSY

SUSY with light electroweakino

A New Look at the Electroweak Baryogenesis in the post-lhc Era. Jing Shu ITP-CAS

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

Light Pseudoscalar Higgs boson in NMSSM

Chern-Simons portal Dark Matter

Electroweak baryogenesis after LHC8

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation

Cold Dark Matter beyond the MSSM

Yasunori Nomura. UC Berkeley; LBNL. hep-ph/ [PLB] hep-ph/ [PLB] hep-ph/ [PRD] Based on work with Ryuichiro Kitano (SLAC)

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Unified Dark Matter. SUSY2014 Stephen J. Lonsdale. The University of Melbourne. In collaboration with R.R. Volkas. arxiv:

Singlet Assisted Electroweak Phase Transitions and Precision Higgs Studies

Beyond the MSSM (BMSSM)

Higgs Sector in New Physics and its Collider Phenomenology

An update on scalar singlet dark matter

Abdelhak DJOUADI (LPT Orsay/Next Southampton)

Electroweak baryogenesis from a dark sector

Effective Theory for Electroweak Doublet Dark Matter

Whither SUSY? G. Ross, RAL, January 2013

Searching for sneutrinos at the bottom of the MSSM spectrum

Axino Phenomenology in the Kim-Nilles mechanism

Status of low energy SUSY models confronted with the 125 GeV Higgs data

Exploring Universal Extra-Dimensions at the LHC

Split SUSY and the LHC

Higgs Physics and Cosmology

Dark Matter motivated SUSY collider signatures

Astroparticle Physics at Colliders

Probing the charged Higgs boson at the LHC in the CP-violating type-ii 2HDM

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Nonthermal Dark Matter & Top polarization at Collider

Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Probing SUSY Dark Matter at the LHC

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING

Searches for Physics Beyond the Standard Model. Jay Wacker. APS April Meeting SLAC. A Theoretical Perspective. May 4, 2009

arxiv: v1 [hep-ph] 29 Dec 2017 SUSY (ATLAS) André Sopczak on behalf of the ATLAS Collaboration

Naturalizing SUSY with the relaxion and the inflaton

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Searches for Beyond SM Physics with ATLAS and CMS

Dark Matter Searches and Fine-Tuning in Supersymmetry. Maxim Perelstein, Cornell University PACIFIC 2011 Symposium September 9, 2011

New Physics beyond the Standard Model: from the Earth to the Sky

Axion-assisted electroweak baryogenesis

New Physics from the String Vacuum

Electroweak baryogenesis as a probe of new physics

Non-Minimal SUSY Computation of observables and fit to exp

Discovery potential for SUGRA/SUSY at CMS

Where is SUSY? Institut für Experimentelle Kernphysik

The SCTM Phase Transition

Introduction to Cosmology

Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University

Cosmology at the LHC

Inert Doublet Model:

CMS Searches for SUSY in Final States with Taus. Alfredo Gurrola (Vanderbilt) on behalf of the CMS Collaboration

Split SUSY at LHC and a 100 TeV collider

SUSY searches at the LHC * and Dark Matter

SUSY Models, Dark Matter and the LHC. Bhaskar Dutta Texas A&M University

Transcription:

Baryogenesis and dark matter in the nmssm C.Balázs, M.Carena, A. Freitas, C.Wagner Phenomenology of the nmssm from colliders to cosmology arxiv:0705431 C. Balázs, Monash U Melbourne BG & DM in the nmssm DSU, June 6, 2007 1/18

Minimal Supersymmetric Standard Model Explains the origin of è mass: radiative dynamics Ø electroweak symmetry breaking è dark matter: R-parity Ø stable, neutral WIMP LSP è baryons: lepto-, baryogenesis Ø è... baryon-antibaryon asymmetry But the Higgs sector of the MSSM is problematic C. Balázs, Monash U Melbourne BG & DM in the nmssm DSU, June 6, 2007 2/18

Problems with the Higgs sector of the SSM è the m problem: W m H` 1.H` 2 in not natural è the fine-tuning problem: tension between m h > 114 GeV and... stops è the baryogenesis problem: electroweak baryogenesis demands m h d 120 GeV è... put your own problem here...... Fortunately, it's is easy to fix these problems while keeping radiative EWSB intact C. Balázs, Monash U Melbourne BG & DM in the nmssm DSU, June 6, 2007 3/18

nmssm: nearly MSSM Discreet symmetries of super- & Kahler potentials Z 5 R, Z 7 R Õ U 1 R' where R' = 3R + "PQ" to prevent domain walls and large tadpoles è Superpotential è Scalar potential W = W MSSM + m 12 2 S` ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ +l S` H` l 1.H` 2 V = V MSSM + t S S + h.c. + m S 2 S 2 + a l SH 1.H 2 + h.c. è New parameters v S, l, a l, m 12, m S, t S C. Balázs, Monash U Melbourne BG & DM in the nmssm DSU, June 6, 2007 4/18

Positive features of the nmssm Solves m problem naturally W = W MSSM + m 12 2 S` ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ + l S` H` l 1.H` 2 è m = l S = l v S set by EW scale Alleviates fine tuning in Higgs/stop sector m h 2 m Z 2 cos 2 2 b+ 2 l2 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ g èèè 2 sin2 2 b è tree level lightest Higgs mass limit relaxed Tree level cubic term of scalar potential V = V MSSM + t S S + h.c. + m S 2 S 2 + a l SH 1.H 2 + h.c. è assists a strongly 1 st order EW phase transition C. Balázs, Monash U Melbourne BG & DM in the nmssm DSU, June 6, 2007 5/18

l Electroweak baryogenesis in the nmssm Measured h B strongly 1 st order EWPT large OP f C /T C t 1 è strength of EWPT minimum of finite T eff. potential V eff (f,t) = ( m 2 +at 2 )f 2 g T f 3 + ÅÅÅÅÅ 4 l f4 +... è V eff minimal for 0 <f if f C T C ÅÅÅÅÅÅÅ ÅÅÅÅ Ø g affects OP è g generated by l SM : bosonic loops Øg~g 3 ~ g l l MSSM : sc. loops Øg~ y 3 l nmssm : tree level Ø g~a l è MSSM: light stop induces strongly 1 st order EWPT nmssm: tree level a l SH 1.H 2 coupling does the same C. Balázs, Monash U Melbourne BG & DM in the nmssm DSU, June 6, 2007 6/18

Dark matter in nmssm Neutralinos M 1.... 0 M 2... Z é = -c b s w m Z c b s w m Z 0.. s b c w m Z -s b c w m Z l v S 0. 0 0 l v 2 l v 1 0 è unification assumption: M 2 = a 2 /a 1 M 1 è EWBG Ø low tanb & Arg(M 1 ) = Arg(M 2 ) = f M ~ 0.1 è typical lightest neutralino (Z è 1): mostly singlino m Z é 1 ~ 2lv 1v 2 v S /(v 1 2 +v 2 2 +v S 2 ) d 60 GeV C. Balázs, Monash U Melbourne BG & DM in the nmssm DSU, June 6, 2007 7/18

All matter in nmssm Neutralino relic density è Z è 1 light Ø no coannihilations dominant annihilation channel: Z è 1 Z è 1 Ø Z * Ø SM Menon, Morrissey, Wagner 2004 C. Balázs, Monash U Melbourne BG & DM in the nmssm DSU, June 6, 2007 8/18

Can we "measure" W Z è 1 at colliders? W è (m è Z 1 Z, sv ) under standard thermal assumptions 1 nmssm benchmark: point "A" tanb l v S a l m a M 2 f M 1.70 0.619 384 373 923 245 0.14 GeV GeV GeV GeV Extracting physical parameters from cross sections è generate LHC & ILC events (tree & parton level w/ BGs, jet broadening,...) è construct appropriate invariant mass distributions è reconstruct masses (couplings) from distributions è determine central values and precision è scan around the central value in a precision window C. Balázs, Monash U Melbourne BG & DM in the nmssm DSU, June 6, 2007 9/18

Mass determination at the LHC Typical production/decay chain: squarks/gluinos Ø charginos/neutralinos Ø leptons/jets è typical invariant mass spectra (lumi 300 fb -1 ) C. Balázs, Monash U Melbourne BG & DM in the nmssm DSU, June 6, 2007 10/18

Mass determination at the LHC è four kinematic (mass) edges Ø four mass parameters m ll,max = m é m é Z 2 Z = 73.5±0.6 GeV 1 2 = (m 2 é Z m 2 é 2 Z )(m 2 é 1 b1 m 2 é Z )/m 2 é 2 Z = 447.0±20.0 GeV 2 2 m jll,min,3 = f 1 (m é,m é Z 1 Z,m é 3 Z,m é 2 b )= 256.2±7.0 GeV 1 2 m jll,max,3 = f 2 (m é,m é Z 1 Z,m é 3 Z,m é 2 b )= 463.5±9.0 GeV 1 m jll,max,2 è results for individual masses m Z é m Z é = 33 +32 1-18 GeV m é Z = 181 +20 3-10 GeV m é b = 107 +33 2-18 GeV 1 = 499-17 +30 GeV è absolute precision is reasonable but Z è 1 is very light! C. Balázs, Monash U Melbourne BG & DM in the nmssm DSU, June 6, 2007 11/18

LHC "precision" C. Balázs, Monash U Melbourne BG & DM in the nmssm DSU, June 6, 2007 12/18

Mass determination at the ILC Processes utilized at ILC (lumi 500 fb -1 ) e + e - Ø W è + 1 W è - 1 e + e - Ø Z è 2 Z è 4 e + e - Ø Z è 3 Z è 4 è results for individual masses m Z é m Z é 1 = 33.3±1.1 GeV m Z é 3 = 181.5±5.2 GeV m W è = 106.6 +1.4 2-1.7 GeV += 165 ± 0.3 GeV 1 è after inclusion of e + e - Ø W è + 1 W è - 1 threshold scan m Z é 1 = 33.3-0.3 +0.4 GeV è resulting precision of W Z é 1 is comparable to WMAP! C. Balázs, Monash U Melbourne BG & DM in the nmssm DSU, June 6, 2007 13/18

ILC precision C. Balázs, Monash U Melbourne BG & DM in the nmssm DSU, June 6, 2007 14/18

ILC precision C. Balázs, Monash U Melbourne BG & DM in the nmssm DSU, June 6, 2007 15/18

Dark matter direct detection C. Balázs, Monash U Melbourne BG & DM in the nmssm DSU, June 6, 2007 16/18

Dark matter indirect detection C. Balázs, Monash U Melbourne BG & DM in the nmssm DSU, June 6, 2007 17/18

Conclusions nmssm improves on MSSM: no m problem, less fine-tuning, looser constraints on EWBG All matter in the Universe can be simultaneously generated in the nmssm Model can be discovered at LHC, direct detection, and low energy experiments (e - EDM) ILC precision is critical for determining astrophysical parameters: relic density, WIMP-nucleon scattering,... C. Balázs, Monash U Melbourne BG & DM in the nmssm DSU, June 6, 2007 18/18