v v = = Mixing chamber: = 30 or, = s6 Then, and = 52.4% Turbine Boiler process heater Condenser 7 MPa Q in 0.6 MPa Q proces 10 kpa Q out

Similar documents
Special Topic: Binary Vapor Cycles

T Turbine 8. Boiler fwh fwh I Condenser 4 3 P II P I P III. (a) From the steam tables (Tables A-4, A-5, and A-6), = = 10 MPa. = 0.

( )( ) 7 MPa q in = = 10 kpa q out. 1 h. = s. Thus, and = 38.9% (b) (c) The rate of heat rejection to the cooling water and its temperature rise are

Solutions to Homework #10

8-4 P 2. = 12 kw. AIR T = const. Therefore, Q &

Problem 1 The turbine is an open system. We identify the steam contained the turbine as the control volume. dt + + =

2b m 1b: Sat liq C, h = kj/kg tot 3a: 1 MPa, s = s 3 -> h 3a = kj/kg, T 3b

KNOWN: Air undergoes a polytropic process in a piston-cylinder assembly. The work is known.

1 = The rate at which the entropy of the high temperature reservoir changes, according to the definition of the entropy, is

Chapter 7 ENTROPY. 7-3C The entropy change will be the same for both cases since entropy is a property and it has a fixed value at a fixed state.

( ) Given: In a constant pressure combustor. C4H10 and theoretical air burns at P1 = 0.2 MPa, T1 = 600K. Products exit at P2 = 0.

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 11 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition

MAE320-HW7A. 1b). The entropy of an isolated system increases during a process. A). sometimes B). always C). never D).

SIMPLE RANKINE CYCLE. 3 expander. boiler. pump. condenser 1 W Q. cycle cycle. net. shaft

SOLUTION MANUAL CHAPTER 12

6-5. H 2 O 200 kpa 200 C Q. Entropy Changes of Pure Substances

since (Q H /T H ) = (Q L /T L ) for reversible cycles. Also, since Q diff is a positive quantity. Thus,

Given A gas turbine power plant operating with air-standard Brayton cycle

Chapter 8 EXERGY A MEASURE OF WORK POTENTIAL

Thermodynamics Lecture Series

Chapter 12 Radiation Heat Transfer. Special Topic: Heat Transfer from the Human Body

& out. R-134a 34 C

Psychrometrics. PV = N R u T (9.01) PV = N M R T (9.02) Pv = R T (9.03) PV = m R T (9.04)

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.

Lecture 38: Vapor-compression refrigeration systems

Chapter 7: 17, 20, 24, 25, 32, 35, 37, 40, 47, 66 and 79.

Unit 12 Refrigeration and air standard cycles November 30, 2010

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

Step 1: Draw a diagram to represent the system. Draw a T-s process diagram to better visualize the processes occurring during the cycle.

EVAPORATION. Robert evaporator. Balance equations Material balance (total) Component balance. Heat balance

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 26. Use of Regeneration in Vapor Power Cycles

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor

Developing Transfer Functions from Heat & Material Balances

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln

Designing scroll expanders for use in heat recovery Rankine cycles

ENGINEERING OF NUCLEAR REACTORS. Tuesday, October 9 th, 2014, 1:00 2:30 p.m.

300 kpa 77 C. (d) If we neglect kinetic energy in the calculation of energy transport by mass

Chapter 4 Total Entropy Cannot Decrease 2012/5/6

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY

ME Thermodynamics I

ENGR Thermodynamics

Carnot Factor of a Vapour Power Cycle with Regenerative Extraction

Readings for this homework assignment and upcoming lectures

Teaching schedule *15 18

m = P 1V 1 RT 1 P 2 = P 1. P 2 V 2 T 2 = P 1V 1 T 1 V 1 2 V 1 T 2 = T 1. {z} T 2 = T 1 1W 2 = PdV = P 1 (V 2 V 1 ). Z T2 (c vo + αt)dt.

ME Thermodynamics I

Delft University of Technology DEPARTMENT OF AEROSPACE ENGINEERING

Chapter 5. Mass and Energy Analysis of Control Volumes

Then the amount of water that flows through the pipe during a differential time interval dt is (1) 4

ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number:

To receive full credit all work must be clearly provided. Please use units in all answers.

MAE 113, Summer Session 1, 2009

Introduction to Laplace Transform Techniques in Circuit Analysis

(b) The heat transfer can be determined from an energy balance on the system

This appendix derives Equations (16) and (17) from Equations (12) and (13).

1 year n0tes chemistry new st CHAPTER 7 THERMOCHEMISTRY MCQs Q.1 Which of the following statements is contrary to the first law of thermodynamics?

Exergy and the Dead State

Velocity or 60 km/h. a labelled vector arrow, v 1

MAE 101A. Homework 3 Solutions 2/5/2018

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

one primary direction in which heat transfers (generally the smallest dimension) simple model good representation for solving engineering problems

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Calculation of Entropy Changes. Lecture 19

Nonisothermal Chemical Reactors

MAE 320 HW 7B. 1e. For an isolated system, please circle the parameter which will change with time. (a) Total energy;

SENSITIVITY ANALYSIS FOR COUNTER FLOW COOLING TOWER- PART I, EXIT COLD WATER TEMPERATURE

Chapter 9: Controller design. Controller design. Controller design

the first derivative with respect to time is obtained by carefully applying the chain rule ( surf init ) T Tinit

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

Lecture 12 - Non-isolated DC-DC Buck Converter

(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process:

MAE 11. Homework 8: Solutions 11/30/2018

ME 200 Thermodynamics 1 Fall 2017 Exam 3

Physics 41 Homework Set 3 Chapter 17 Serway 7 th Edition

Number of extra papers used if any

4-93 RT RT. He PV n = C = = Then the boundary work for this polytropic process can be determined from. n =

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE

External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets

Thermodynamics Lecture Series

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December ISSN

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points)

Chapters 19 & 20 Heat and the First Law of Thermodynamics

ME Thermodynamics I

SIMPLE LINEAR REGRESSION

ME 322 Worksheet Winter 2007 Introduction to Compressible Flow

Brown Hills College of Engineering & Technology

Design of Robust PI Controller for Counter-Current Tubular Heat Exchangers

Chapter 10. Closed-Loop Control Systems

Figure 1 Siemens PSSE Web Site

Series Sytem of Pipes Parallel Sytem of Pipes

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m.

Department of Civil Engineering & Applied Mechanics McGill University, Montreal, Quebec Canada

Kelvin Planck Statement of the Second Law. Clausius Statement of the Second Law

Entropy Minimization in Design of Extractive Distillation System with Internal Heat Exchangers

J.P. Holman: 3.09) T sur := Use table 3-1 to determine the shape factor for this problem. 4π r S := T sphere := 30K r 1. S = m k := 1.

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

Transcription:

0-0- A cogeneration plant i to generate poer and proce eat. art o te team extracted rom te turbe at a relatively ig preure i ued or proce eatg. e poer produced and te utilization actor o te plant are to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Analyi From te team table (able A-, A-, and A-, v v pi, v ( ( 0.000 m /kg( 00 0 ka 0.0 kj/kg @ 0 ka @ 0 ka + pi, @ 0. Ma Mixg camber: E E E or,. kj/kg 0.000 m /kg.+ 0.0. kj/kg 0. kj/kg 0 (teady ytem 0 en, i i pii, e e + v v E @.0 kj/kg kj ka m E + Boiler (.0(. + (.0( 0. v ( ( 0.000 m /kg( 000 00 ka. kj/kg + pii, 0 0.000 m /kg.0 +.. kj/kg kj ka m Ma. kj/kg 00 C.000 kj/kg K 0. Ma. kj/kg.000 0. 0 ka x 0.0 g. + x.+ 0.0. W W, W p, g II roce eater.0 kj/kg Q ( (. kj/kg Ma Q 0. Ma Q proce ( + ( ( 0 kg/(.. kj/kg + (. kg/(.. kj/kg + (. kg/( 0.0 kj/kg + ( 0 kg/(. kj/kg W, pi, W p, pii,,0 0., Alo, Q m ( (. kg/(. 0. kj/kg, kw and Q kw proce ε u W ( ( 0 kg/(.. + Q Q proce, +,.%,, kw I 0 ka urbe,0 kw 0. kw Condener

0-0-E A large ood-proceg plant require team at a relatively ig preure, ic i extracted rom te turbe o a cogeneration plant. e rate o eat traner to te boiler and te poer put o te cogeneration plant are to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Analyi (a From te team table (able A-E, A-E, and A-E, v v pi, v (.0 Btu/lbm 0.0 t /lbm / η (0.0 t /lbm(0 pia 0. Btu.0 pia t 0. Btu/lbm @ pia @ pia + pi, @ 0 pia p.0 + 0.. Btu/lbm. Btu/lbm Mixg camber: E E E 0 (teady 0 or, ytem pii, E E m m + m i i e e + v v @ ((. + ((. Boiler II v ( / η p Btu ( 0.0 t /lbm( 000 0 pia /( 0.. Btu/lbm +. Btu/lbm pii, 000 pia 000 F 0 pia pia x 0.0 /lbm. +.. Btu/lbm t 0. Btu/lbm. Btu/lbm R 0.0 Btu/lbm g + x. Btu/lbm.0 pia t. 0. 0...0 + g roce eater 000 pia 0 pia Q proce pia ( 0.( 0.. Btu/lbm I Q urbe en, Q m ( ( lbm/( 0.. Btu/lbm Btu/ (b W, η W, η [ ( + ( ] ( 0.( [ lbm/( 0. 0.0 Btu/lbm + ( lbm/( 0.0. Btu/lbm] Btu/ 0 kw Condener

0-0- A cogeneration plant a to mode o operation. In te irt mode, all te team leavg te turbe at a relatively ig preure i red to te proce eater. In te econd mode, 0 percent o te team i red to te proce eater and remag i expanded to te condener preure. e poer produced and te rate at ic proce eat i upplied te irt mode, and te poer produced and te rate o proce eat upplied te econd mode are to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Analyi (a From te team table (able A-, A-, and A-, v v pi, pii, v ( ( 0.000 m /kg( 0,000 0 ka 0. kj/kg v ( ( 0.000 m /kg( 0,000 00 ka 0. kj/kg v v @ 0 ka @ 0 ka + pi, @ 0. Ma @ 0. Ma + pii,. kj/kg 0.000. + 0.. kj/kg 0.0 0.000 m kj/kg m /kg /kg kj ka m kj ka m 0.0 + 0. 0. kj/kg Boiler II roce eater I urbe Conden. Mixg camber: 0 (teady E E E 0 E E or, ytem m m m m + m i i e e + ( (. + ( ( 0. 0 Ma 0 C 0 ka x 0. Ma x. kj/kg. kj/kg K g + x. kj/kg..0 0..0 0.0 + ( 0.( 0.0. 0.0 0.0 g.0 + x. + g g ( ( (. kj/kg ( 0.0(..0 kj/kg Wen te entire team i red to te proce eater, W kg/.. kj/kg kw Q, proce ( ( kg/(. 0.0 kj/kg kw (b Wen only 0% o te team i red to te proce eater, W, ( + ( ( kg/(.. kj/kg + ( kg/(..0 kj/kg kw Q proce ( ( kg/(. 0.0 kj/kg kw

0-0-0 A cogeneration plant modiied it regeneration i to generate poer and proce eat. e ma lo rate o team troug te boiler or a poer put o MW i to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Analyi From te team table (able A-, A-, and A-, v v pi, pii, v( ( 0.000 m /kg( 00 0 ka 0. kj/kg v v v ( ( 0.000 m /kg( 000 00 ka.0 kj/kg @ 0 ka @ 0 ka + pi, @ 0. Ma + Ma 0 C 0 ka x pii, 0. Ma x. kj/kg 0.000 m /kg. + 0..0 kj/kg @ 0. Ma 0. kj/kg 0.000 m /kg kj ka m kj ka m 0. +.0 0. kj/kg 0. kj/kg. kj/kg K g + x.. 0.. 0. + Boiler ( 0.(.. 0. 0.0 g. + x. + g g II ( 0.0(.. kj/kg en, per kg o team log troug te boiler, e ave u,, p, W ( + 0.( ( 0.. kj/kg + ( 0.(.0 kj/kg 0.pI, +. kj/kg ( 0.( 0. kj/kg + (.0 kj/kg, p, pii,...0.. kj/kg,000 kj/. kg/. kj/kg,,. kj/kg kj/kg Ma 0. Ma 0 ka roce eater I urbe Condener

0-0- EES roblem 0-0 i reconidered. e eect o te extraction preure or removg team rom te turbe to be ued or te proce eater and open eedater eater on te required ma lo rate i to be vetigated. Analyi e problem i olved ug EES, and te olution i given belo. "Input Data" y 0. "raction o team extracted rom turbe or eedater eater and proce eater" [] 000 [ka] [] 0 [C] _extract00 [ka] [] _extract _cond0 [ka] [] _cond W_dot_ [MW]*Convert(MW, kw Eta_turb 00/00 "urbe ientropic eiciency" Eta_pump 00/00 "ump ientropic eiciency" [] [] [][] [][] [] [] [][] [] [] "Condener exit pump or ump analyi" Fluid$'Steam_IAWS' []entalpy(fluid$,[],x0 {Sat'd liquid} vvolume(fluid$,[],x0 []entropy(fluid$,[],x0 []temperature(fluid$,[],x0 _pump_v*([]-[]"sssf ientropic pump ork aumg contant peciic volume" _pump_pump_/eta_pump "Deition o pump eiciency" []+_pump [] "Steady-lo conervation o energy" []entropy(fluid$,[],[] []temperature(fluid$,[],[] "Open Feedater Heater analyi:" z*[] + (- y*[] (- y + z*[] "Steady-lo conervation o energy" []entalpy(fluid$,[],x0 []temperature(fluid$,[],x0 "Condenate leave eater a at. liquid at []" []entropy(fluid$,[],x0 "roce eater analyi:" (y - z*[] q_proce + (y - z*[] "Steady-lo conervation o energy" Q_dot_proce m_dot*(y - z*q_proce"[kw]" []entalpy(fluid$,[],x0 []temperature(fluid$,[],x0 "Condenate leave eater a at. liquid at []" []entropy(fluid$,[],x0 "Mixg camber at,, and :" (y-z*[] + (-y+z*[] *[] "Steady-lo conervation o energy" []temperature(fluid$,[],[] "Condenate leave eater a at. liquid at []"

0- []entropy(fluid$,[],[] "Boiler condenate pump or ump analyi" vvolume(fluid$,[],x0 _pump_v*([]-[]"sssf ientropic pump ork aumg contant peciic volume" _pump_pump_/eta_pump "Deition o pump eiciency" []+_pump [] "Steady-lo conervation o energy" []entropy(fluid$,[],[] []temperature(fluid$,[],[] "Boiler analyi" q_ + [][]"SSSF conervation o energy or te Boiler" []entalpy(fluid$, [], [] []entropy(fluid$, [], [] "urbe analyi" [][] []entalpy(fluid$,[],[] []temperature(fluid$,[],[] [][]-Eta_turb*([]-[]"Deition o turbe eiciency or ig preure tage" []temperature(fluid$,[],[] []entropy(fluid$,[],[] [][] []entalpy(fluid$,[],[] []temperature(fluid$,[],[] [][]-Eta_turb*([]-[]"Deition o turbe eiciency or lo preure tage" []temperature(fluid$,[],[] []entropy(fluid$,[],[] [] y*[] + (- y*[] + _turb "SSSF conervation o energy or turbe" "Condener analyi" (- y*[]q_+(- y*[]"sssf Firt La or te Condener" "Cycle Statitic" turb - ((- y*_pump+ _pump Eta_t_/q_ W_dot_ m_dot * _ extract [ka] η t m [kg/] Q proce [kw] 00 0.. 0 00 0.. 00 0.0. 0 00 0.. 00 0.0. 00 0.0. [ C] Steam 00 00 00 00 00 000 ka 00,, 00 ka 00 0 ka 0 0 0 [kj/kg-k]

0- m [kg/].... 00 00 00 00 00 00 extract [ka] 0000 00 Q proce [kw] 00 00 00 00 00 00 00 00 00 00 extract [ka] 0. 0. 0. 0. 0. η t 0. 0. 0. 0.0 00 00 00 00 00 00 extract [ka]

0-0-E A cogeneration plant i to generate poer ile meetg te proce team requirement or a certa dutrial application. e poer produced, te rate o proce eat upply, and te utilization actor o ti plant are to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Analyi (a From te team table (able A-E, A-E, and A-E, @ 0 F 0. Btu/lbm 00 pia 0.0 Btu/lbm 00 F. Btu/lbm R 0 pia W (b Q. Btu/lbm ( ( lbm/( 0.0. Btu/ 0 kw Q proce ii ee + proce Btu/lbm ( ( 0.0 + ( (. ( ( 0.,0 Btu/ e e ii ( ( 0. ( ( 0.0 ( (.,0 Btu/ (c ε u ce all te energy i utilized. Boiler roce eater 00 pia 0 pia,, urbe

0-0 0- A cogeneration plant i to generate poer and proce eat. art o te team extracted rom te turbe at a relatively ig preure i ued or proce eatg. e ma lo rate o team tat mut be upplied by te boiler, te poer produced, and te utilization actor o te plant are to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Boiler roce eater urbe Condener Ma Q 0. Ma Q proce II I Q 0 ka Analyi From te team table (able A-, A-, and A-, v v pi, v ( ( 0.000 m /kg( 00 0 ka 0. kj/kg Mixg camber: @ 0 ka @ 0 ka + pi, @ 0. Ma. kj/kg 0.000 m /kg.+ 0..0 kj/kg 0. kj/kg kj ka m m + ( 0.(0. kj/kg + (0.(.0 kj/kg ( v pii, v @.0 kj/kg v ( ( 0.000 m /kg( 000 00 ka. kj/kg + Ma 00 C pii, 0. Ma 0 ka 0.000 m /kg.0 +.. kj/kg. kj/kg.000 kj/kg K. kj/kg. kj/kg kj ka m.0 kj/kg

0- Q proce 00 kj/ ( (. 0..0 kg/ kj/kg i i one-ourt o te ma log troug te boiler. u, te ma lo rate o team tat mut be upplied by te boiler become m (.0 kg/. kg/ m (b Cycle analyi: (c en, and W, W Q W p, ( + ( (.0 kg/(.. kj/kg + (. -.0 kg/(..,0 kw (. -.0 kg/( 0. kj/kg + (. kg/(. kj/kg W W ε u, pi, + W p, pii,,0, kw ( (. kg/(.. + Q Q proce, + 00 0..% 0, 0, kw. kw kj/kg Combed Ga-Vapor oer Cycle 0-C e energy ource o te team i te ate energy o te exauted combution gae. 0-C Becaue te combed ga-team cycle take advantage o te deirable caracteritic o te ga cycle at ig temperature, and toe o team cycle at lo temperature, and combe tem. e reult i a cycle tat i more eicient tan eiter cycle executed operated alone.

0-0- A combed ga-team poer cycle i conidered. e toppg cycle i a ga-turbe cycle and te bottomg cycle i a imple ideal Ranke cycle. e ma lo rate o te team, te poer put, and te termal eiciency o te combed cycle are to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Air i an ideal ga it contant peciic eat. ropertie e propertie o air at room temperature are c p.00 kj/kgk and k. (able A-. Analyi (a e analyi o ga cycle yield ( k / k 0. /. ( 00 K(. K 00 K W W W Q C,ga,ga,ga air ( airc p ( ( kg/(.00 kj/kg K( 00. air ( airc p ( ( kg/(.00 kj/kg K(. 00 ( k ( 00K air ( airc p ( ( kg/(.00 kj/kg K( 00. W,ga W / k C,ga 0. /.. K,,00 kw From te team table (able A-, A-, and A-, @ ka. kj/kg v v 0.000 m /kg pi, v @ ka K, kw K 00 kw K, kw ( ( 0.000 m /kg( 0,000 ka + ka pi, 0 Ma 00 C Notg tat Q W E E E x ke pe 0 (teady ytem. + 0..0 kj/kg 0.0 kj/kg. kj/kg K. 0. 0. g. + x. + g 00 K kj ka m Q 0 Ma ( 0.(. 0. kj/kg GAS CYCLE 0 K SEAM CYCLE ka Q 0. kj/kg 00 C 0 or te eat excanger, te teady-lo energy balance equation yield 0 E E ii ee ( air ( ( c p (.00 kj/kg K(. 0 air air ( 0.0.0 kj/kg (b W,team ( (. kg/( 0.0 0. kj/kg W (. kg/( 0. kj/kg. kw and W W p,team,team W p,team W p,team. kw W + W + kw,team,ga W kw (c η t.% Q, kw K kw ( kg/. kg/

0-0- [Alo olved by EES on encloed CD] A 0-MW combed ga-team poer plant i conidered. e toppg cycle i a ga-turbe cycle and te bottomg cycle i an ideal Ranke cycle it an open eedater eater. e ma lo rate o air to team, te required rate o eat put te combution camber, and te termal eiciency o te combed cycle are to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Air i an ideal ga it variable peciic eat. Analyi (a e analyi o ga cycle yield (able A- r 0 r 00 K 00 K 0 r r 0 0 K r ( (. 00. kj/kg. 0 r 0. kj/kg 0. ( 0.. 0.. 0 kj/kg From te team table (able A-, A-, A-, v v pi, pii,. kj/kg v ( ( 0.000 m /kg( 00 0 ka 0. kj/kg v v @ 0 ka @ 0 ka + pi,. kj/kg 0.000 m /kg. kj/kg kj ka m. + 0..0 kj/kg v( ( 0.000 m /kg(,000 00 ka. kj/kg @ 0. Ma @ 0. Ma + pi, 0. kj/kg 0.000 m /kg 0. +.. kj/kg kj ka m 00 K 00 K Q Ma GAS CYCLE Q 0 0 K SEAM CYCLE 0. Ma 0 ka 00 C Ma 00 C. kj/kg. kj/kg K 0. Ma x 0 ka x..0 0. g. + x 0. + ( 0.( 0.. 0.0 0. g.0 + x. + g g. kj/kg ( 0.(. 0. kj/kg Notg tat Q W ke pe 0 or te eat excanger, te teady-lo energy balance equation yield

0- E E E i air i E E 0 (teady ytem e e 0 ( (...0.0 air. kg air / kg team (b Notg tat Q W ke pe 0 or te open FWH, te teady-lo energy balance equation yield u, E E E y E E 0 (teady ytem 0 ( y ( i i mee m + m m y + +.,team,ga 0..0 0...0.. e ork put per unit ma o ga i and ( te raction o team extracted ( y(.+ ( 0.(. 0.. kj/kg p, ( y p, I p, II ( 0.( 0... kj/kg C, ( 0 (. (. 00.. kj/kg..,ga +,team. + Q air W (.. kj/kg 0,000 kj/. kg/. kj/kg ( (. kg/(.. kj/kg 0, kw 0 W 0,000 kw (c ηt.% Q 0, kw air

0-0- EES roblem 0- i reconidered. e eect o te ga cycle preure ratio on te ratio o ga lo rate to team lo rate and cycle termal eiciency i to be vetigated. Analyi e problem i olved ug EES, and te olution i given belo. "Input data" [] 00 [K] "Ga compreor let" []. [ka] "Aumed air let preure" "ratio " "reure ratio or ga compreor" [0] 00 [K] "Ga turbe let" [] 0 [K] "Ga exit temperature rom Ga-to-team eat excanger " [] [] "Aumed air exit preure" W_dot_0 [MW] Eta_comp.0 Eta_ga_turb.0 Eta_pump.0 Eta_team_turb.0 [] 000 [ka] "Steam turbe let" [] (00+ "[K]" "Steam turbe let" [] 00 [ka] "Extraction preure or team open eedater eater" [] 0 [ka] "Steam condener preure" "GAS OWER CYCLE ANALYSIS" "Ga Compreor anayi" []ENROY(Air,[],[] [] "For te ideal cae te entropie are contant acro te compreor" [] ratio*[] temperature(air,,[]" i te ientropic value o [] at compreor exit" Eta_comp _ga_comp_ien/_ga_comp "compreor adiabatic eiciency, _comp > _comp_ien" [] + _ga_comp_ien "SSSF conervation o energy or te ientropic compreor, aumg: adiabatic, kepe0 per unit ga ma lo rate kg/" []ENHALY(Air,[] ENHALY(Air, [] + _ga_comp []"SSSF conervation o energy or te actual compreor, aumg: adiabatic, kepe0" []temperature(air,[] []ENROY(Air,[],[] "Ga Cycle External eat excanger analyi" [] + q_ [0]"SSSF conervation o energy or te external eat excanger, aumg W0, kepe0" [0]ENHALY(Air,[0] [0][] "Aume proce -0 i SSSF contant preure" Q_dot_"MW"*000"kW/MW"m_dot_ga*q_ "Ga urbe analyi" [0]ENROY(Air,[0],[0] [0] "For te ideal cae te entropie are contant acro te turbe" [] [0] /ratio temperature(air,,[]" i te ientropic value o [] at ga turbe exit" Eta_ga_turb _ga_turb /_ga_turb_ien "ga turbe adiabatic eiciency, _ga_turb_ien > _ga_turb" [0] _ga_turb_ien + "SSSF conervation o energy or te ientropic ga turbe, aumg: adiabatic, kepe0"

0- ENHALY(Air, [0] _ga_turb + []"SSSF conervation o energy or te actual ga turbe, aumg: adiabatic, kepe0" []temperature(air,[] []ENROY(Air,[],[] "Ga-to-Steam Heat Excanger" "SSSF conervation o energy or te ga-to-team eat excanger, aumg: adiabatic, W0, kepe0" m_dot_ga*[] + m_dot_team*[] m_dot_ga*[] + m_dot_team*[] []ENHALY(Air, [] []ENROY(Air,[],[] "SEAM CYCLE ANALYSIS" "Steam Condener exit pump or ump analyi" Fluid$'Steam_IAWS' [] [] [][] []entalpy(fluid$,[],x0 {Saturated liquid} vvolume(fluid$,[],x0 []entropy(fluid$,[],x0 []temperature(fluid$,[],x0 _pump_v*([]-[]"sssf ientropic pump ork aumg contant peciic volume" _pump_pump_/eta_pump "Deition o pump eiciency" []+_pump [] "Steady-lo conervation o energy" []entropy(fluid$,[],[] []temperature(fluid$,[],[] "Open Feedater Heater analyi" y*[] + (-y*[] *[] "Steady-lo conervation o energy" [][] []entalpy(fluid$,[],x0 "Condenate leave eater a at. liquid at []" []temperature(fluid$,[],x0 []entropy(fluid$,[],x0 "Boiler condenate pump or ump analyi" [] [] vvolume(fluid$,[],x0 _pump_v*([]-[]"sssf ientropic pump ork aumg contant peciic volume" _pump_pump_/eta_pump "Deition o pump eiciency" []+_pump [] "Steady-lo conervation o energy" []entropy(fluid$,[],[] []temperature(fluid$,[],[] _team_pump (-y*_pump+ _pump "otal team pump ork put/ ma team" "Steam urbe analyi" []entalpy(fluid$,[],[] []entropy(fluid$,[],[] [] entalpy(fluid$,,[] temperature(fluid$,,[] [][]-Eta_team_turb*([]-"Deition o team turbe eiciency" []temperature(fluid$,[],[] []entropy(fluid$,[],[] [] entalpy(fluid$,,[] temperature(fluid$,,[] [][]-Eta_team_turb*([]-"Deition o team turbe eiciency" []temperature(fluid$,[],[]

0- []entropy(fluid$,[],[] "SSSF conervation o energy or te team turbe: adiabatic, neglect ke and pe" [] _team_turb + y*[] +(-y*[] "Steam Condener analyi" (-y*[]q_+(-y*[]"sssf conervation o energy or te Condener per unit ma" Q_dot_*Convert(MW, kwm_dot_team*q_ "Cycle Statitic" MaRatio_gatoteam m_dot_ga/m_dot_team W_dot_*Convert(MW, kwm_dot_ga*(_ga_turb-_ga_comp+ m_dot_team*(_team_turb - _team_pump"deition o te cycle ork" Eta_tW_dot_/Q_dot_*Convert(, % "Cycle termal eiciency, percent" Br(m_dot_ga*_ga_comp + m_dot_team*_team_pump/(m_dot_ga*_ga_turb + m_dot_team*_team_turb "Back ork ratio" W_dot team m_dot_team*(_team_turb - _team_pump W_dot ga m_dot_ga*(_ga_turb - _ga_comp NetWorkRatio_gatoteam W_dot ga/w_dot team ratio MaRatio gatoteam W ga [kw] W team [kw] η t [%] NetWorkRatio gatoteam 0.0 00..0. 0 00 0...0..0. 0 00...00 0...... 0.. 0....0... 00.. 0... [K] 00 00 00 00 00 00 Combed Ga and Steam oer Cycle Ga Cycle 000 Steam Cycle 00 00 00 00 000 ka 00, 00 ka 00, 0 ka 00 00 0.0..........0 0 [kj/kg-k]

0-.. η t [%].. ratio. W dot,ga / W dot,team v Ga reure Ratio.0 NetWorkRatio gatoteam..0..0..0..0 ratio Ratio o Ga Flo Rate to Steam Flo Rate v Ga reure Ratio.0.0.0 MaRatio gatoteam.0 0.0.0.0.0.0.0 ratio

0-0- A 0-MW combed ga-team poer plant i conidered. e toppg cycle i a ga-turbe cycle and te bottomg cycle i a nonideal Ranke cycle it an open eedater eater. e ma lo rate o air to team, te required rate o eat put te combution camber, and te termal eiciency o te combed cycle are to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Air i an ideal ga it variable peciic eat. Analyi (a Ug te propertie o air rom able A-, te analyi o ga cycle yield η 0 r η r C 00 K 00 K 0 0 0 r r 0 ( (. r 00. kj/kg. 0 0 ( 0.. 0 + 00. 0. kj/kg r ( / ηc + (. 00. / (. kj/kg 0.. 0 η.. kj/kg ( 0 ( 0. (. kj/kg 0.. kj/kg.. Q GAS CYCLE 0 SEAM CYCLE Q 0 K. 0 kj/kg From te team table (able A-, A-, and A-, v v pi, v ( ( 0.000 m /kg( 00 0 ka 0. kj/kg @ 0 ka @ 0 ka + pi,. kj/kg 0.000 m /kg kj ka m. + 0..0 kj/kg v pii, v v ( ( 0.000 m /kg(,000 00 ka. kj/kg @ 0. Ma @ 0. Ma + pi, 0. kj/kg 0.000 m /kg kj ka m 0. +.. kj/kg Ma 00 C. kj/kg. kj/kg K

0-0 0. Ma x η 0 ka η x g + x g + x..0 0.. 0. + ( 0.( 0. (. ( 0.(... 0.0 0.0.0. + η g η g ( 0.0(.. kj/kg 0. kj/kg. kj/kg (. ( 0.(. 0.. kj/kg Notg tat Q W ke pe 0 or te eat excanger, te teady-lo energy balance equation yield E E E i air i E E 0 (teady ytem e e 0 ( ( air.....0 kg air / kg team (b Notg tat Q W ke pe 0 or te open FWH, te teady-lo energy balance equation yield u, E E y η E 0 (teady ytem 0 E E ( y ( i i mee m + m m y +,team 0..0 0...0 ( te raction o team extracted [ + ( y( ] ( 0. [.. + ( 0.(.. ]. kj/kg p, ( y p,i p,ii. ( 0.( 0... kj/kg C, ( 0 (.. ( 0. 00.. kj/kg,ga e ork put per unit ma o ga i.,ga +.,team +. W 0,000 kj/. kj/kg air. kg/ (.. kj/kg and Q m ( (. kg/(. 0. kj/kg,0 kw air 0 W 0,000 kw (c η t.% Q,0 kw

0-0-0 EES roblem 0- i reconidered. e eect o te ga cycle preure ratio on te ratio o ga lo rate to team lo rate and cycle termal eiciency i to be vetigated. Analyi e problem i olved ug EES, and te olution i given belo. "Input data" [] 00 [K] "Ga compreor let" []. [ka] "Aumed air let preure" "ratio " "reure ratio or ga compreor" [0] 00 [K] "Ga turbe let" [] 0 [K] "Ga exit temperature rom Ga-to-team eat excanger " [] [] "Aumed air exit preure" W_dot_0 [MW] Eta_comp 0. Eta_ga_turb 0. Eta_pump.0 Eta_team_turb 0. [] 000 [ka] "Steam turbe let" [] (00+ "K" "Steam turbe let" [] 00 [ka] "Extraction preure or team open eedater eater" [] 0 [ka] "Steam condener preure" "GAS OWER CYCLE ANALYSIS" "Ga Compreor anayi" []ENROY(Air,[],[] [] "For te ideal cae te entropie are contant acro te compreor" [] ratio*[] temperature(air,,[]" i te ientropic value o [] at compreor exit" Eta_comp _ga_comp_ien/_ga_comp "compreor adiabatic eiciency, _comp > _comp_ien" [] + _ga_comp_ien "SSSF conervation o energy or te ientropic compreor, aumg: adiabatic, kepe0 per unit ga ma lo rate kg/" []ENHALY(Air,[] ENHALY(Air, [] + _ga_comp []"SSSF conervation o energy or te actual compreor, aumg: adiabatic, kepe0" []temperature(air,[] []ENROY(Air,[],[] "Ga Cycle External eat excanger analyi" [] + q_ [0]"SSSF conervation o energy or te external eat excanger, aumg W0, kepe0" [0]ENHALY(Air,[0] [0][] "Aume proce -0 i SSSF contant preure" Q_dot_"MW"*000"kW/MW"m_dot_ga*q_ "Ga urbe analyi" [0]ENROY(Air,[0],[0] [0] "For te ideal cae te entropie are contant acro te turbe" [] [0] /ratio temperature(air,,[]" i te ientropic value o [] at ga turbe exit" Eta_ga_turb _ga_turb /_ga_turb_ien "ga turbe adiabatic eiciency, _ga_turb_ien > _ga_turb" [0] _ga_turb_ien + "SSSF conervation o energy or te ientropic ga turbe, aumg: adiabatic, kepe0"

0- ENHALY(Air, [0] _ga_turb + []"SSSF conervation o energy or te actual ga turbe, aumg: adiabatic, kepe0" []temperature(air,[] []ENROY(Air,[],[] "Ga-to-Steam Heat Excanger" "SSSF conervation o energy or te ga-to-team eat excanger, aumg: adiabatic, W0, kepe0" m_dot_ga*[] + m_dot_team*[] m_dot_ga*[] + m_dot_team*[] []ENHALY(Air, [] []ENROY(Air,[],[] "SEAM CYCLE ANALYSIS" "Steam Condener exit pump or ump analyi" Fluid$'Steam_IAWS' [] [] [][] []entalpy(fluid$,[],x0 {Saturated liquid} vvolume(fluid$,[],x0 []entropy(fluid$,[],x0 []temperature(fluid$,[],x0 _pump_v*([]-[]"sssf ientropic pump ork aumg contant peciic volume" _pump_pump_/eta_pump "Deition o pump eiciency" []+_pump [] "Steady-lo conervation o energy" []entropy(fluid$,[],[] []temperature(fluid$,[],[] "Open Feedater Heater analyi" y*[] + (-y*[] *[] "Steady-lo conervation o energy" [][] []entalpy(fluid$,[],x0 "Condenate leave eater a at. liquid at []" []temperature(fluid$,[],x0 []entropy(fluid$,[],x0 "Boiler condenate pump or ump analyi" [] [] vvolume(fluid$,[],x0 _pump_v*([]-[]"sssf ientropic pump ork aumg contant peciic volume" _pump_pump_/eta_pump "Deition o pump eiciency" []+_pump [] "Steady-lo conervation o energy" []entropy(fluid$,[],[] []temperature(fluid$,[],[] _team_pump (-y*_pump+ _pump "otal team pump ork put/ ma team" "Steam urbe analyi" []entalpy(fluid$,[],[] []entropy(fluid$,[],[] [] entalpy(fluid$,,[] temperature(fluid$,,[] [][]-Eta_team_turb*([]-"Deition o team turbe eiciency" []temperature(fluid$,[],[] []entropy(fluid$,[],[] [] entalpy(fluid$,,[] temperature(fluid$,,[] [][]-Eta_team_turb*([]-"Deition o team turbe eiciency" []temperature(fluid$,[],[]

0- []entropy(fluid$,[],[] "SSSF conervation o energy or te team turbe: adiabatic, neglect ke and pe" [] _team_turb + y*[] +(-y*[] "Steam Condener analyi" (-y*[]q_+(-y*[]"sssf conervation o energy or te Condener per unit ma" Q_dot_*Convert(MW, kwm_dot_team*q_ "Cycle Statitic" MaRatio_gatoteam m_dot_ga/m_dot_team W_dot_*Convert(MW, kwm_dot_ga*(_ga_turb-_ga_comp+ m_dot_team*(_team_turb - _team_pump"deition o te cycle ork" Eta_tW_dot_/Q_dot_*Convert(, % "Cycle termal eiciency, percent" Br(m_dot_ga*_ga_comp + m_dot_team*_team_pump/(m_dot_ga*_ga_turb + m_dot_team*_team_turb "Back ork ratio" W_dot team m_dot_team*(_team_turb - _team_pump W_dot ga m_dot_ga*(_ga_turb - _ga_comp NetWorkRatio_gatoteam W_dot ga/w_dot team ratio MaRatio gatoteam W ga [kw] W team [kw] η t [%] NetWorkRatio gatoteam. 0..0.0 0.. 0. 0..0. 0 0... 00..0. 00 0.0.0. 0... 00 0.. 0. 00 000...0.. [K] 00 00 00 00 00 00 Combed Ga and Steam oer Cycle Ga Cycle 000 Steam Cycle 00 00 00 00 000 ka 00, 00 ka 00, 0 ka 00 00 0.0..........0 0 [kj/kg-k]

0- Cycle ermal Eiciency v Ga Cycle reure Ratio..0. η t [%].0..0..0 ratio. W dot,ga / W dot,team v Ga reure Ratio. NetWorkRatio gatoteam..0...... ratio Ratio o Ga Flo Rate to Steam Flo Rate v Ga reure Ratio..0. MaRatio gatoteam.0..0..0..0 ratio

0-0- A combed ga-team poer plant i conidered. e toppg cycle i a ga-turbe cycle and te bottomg cycle i a nonideal reeat Ranke cycle. e moiture percentage at te exit o te lo-preure turbe, te team temperature at te let o te ig-preure turbe, and te termal eiciency o te combed cycle are to be determed. Aumption Steady operatg condition exit. Ketic and potential energy cange are negligible. Air i an ideal ga it variable peciic eat. Analyi (a We obta te air propertie rom EES. e analyi o ga cycle i a ollo C C 00 ka 00 ka ηc 0 C.0 kj/kg. kj/kg 0. kj/kg 0. kj/kg 0 C. kj/kg 00 ka 0 00 ka 0. kj/kg 0 0 η 0 η 0 0.. kj/kg ( / ηc + ( 0. 0. /( 0.0 + 0.. kj/kg ( 0 ( 0.0( 0.. Combution camber Compreor Heat excanger pump Ga turbe Condener 0 Steam turbe 00 C. kj/kg From te team table (able A-, A-, and A- or rom EES, v v pi, v( / η p ( 0.000 m /kg( 000 0 ka. kj/kg @ 0 ka @ 0 ka + Ma 00 C 0 ka pi, x. kj/kg 0.000 m /kg. +.. kj/kg. kj/kg.0 kj/kg K g + x kj / 0.0 ka m.0 0. 0.0..+ g ( 0.0(.. kj/kg 0 C C Q Ma GAS CYCLE 0 0 Ma SEAM CYCLE 0 ka Q

0- η η..0 kj/kg 0 ka. kj/kg x 0. Moiture ercentage x ( ( 0.0(.. 0. 0.0.% (b Notg tat Q W ke pe 0 or te eat excanger, te teady-lo energy balance equation yield Alo, E ( + ( air ( 0 [(.. + (. ] (0(...0 kj/kg (. i i E ( Ma Ma? η η e temperature at te let o te ig-preure turbe may be obtaed by a trial-error approac or ug EES rom te above relation. e aner i.0ºc. en, te entalpy at tate become:. kj/kg (c W m ( ( 0 kg/( 0.. kj/kg kw W W, ga air 0 ( ( 0 kg/(..0 kj/kg kw C, ga mair W, ga W,ga W C,ga kw ( + (. kg/(..0 +..0 kj/kg kw, team m W e e (. kg/(. kj/kg. kw, team m pump W, team W,team W,team. kw W, plant W + W + kw,ga,team (d Q m ( ( 0 kg/( 0.. kj/kg kw air W,plant kw η t 0..% Q kw