Physics Beyond the Standard. Model with IceCube. Alex Olivas. University of Maryland. (for the IceCube Collaboration)

Similar documents
Catching Neutrinos with an IceCube

Neutrino Astronomy at the South Pole AMANDA and IceCube

Search for neutralino dark matter with the AMANDA neutrino telescope

A search for extremely high energy neutrino flux with the 6 years of IceCube data

Kurt Woschnagg UC Berkeley

Mariola Lesiak-Bzdak. Results of the extraterrestrial and atmospheric neutrino-induced cascade searches with IceCube

Cosmic Ray Physics with the IceTop Air Shower Array. Hermann Kolanoski Humboldt-Universität zu Berlin

A M A N DA Antarctic Muon And Neutrino Detector Array Status and Results

for the IceCube Collaboration

RESULTS FROM AMANDA. Carlos de los Heros Division of High Energy Physics Uppsala University. CRIS04 Catania, Italy, May 31-June 4

Neutrino Astronomy at the South Pole

Cosmic Ray Physics with the IceTop Air Shower Array. Hermann Kolanoski Humboldt-Universität zu Berlin

Astronomy with neutrinos: AMANDA and IceCube

The IceCube Experiment. K. Mase, Chiba univ.

High Energy Neutrino Astronomy

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Neutrino Astronomy with AMANDA

Miami Conference December 15-20, 2011 Fort Lauderdale, FL. A.R. Fazely Southern University, Baton Rouge, LA

Carlos de los Heros Uppsala University. RICAP09, Roma, May 2009

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

Particle Physics Beyond Laboratory Energies

Neutrinos as astronomical messengers

IceCube: Ultra-high Energy Neutrinos

Exploring the high-energy universe with the AMANDA and IceCube detectors

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

Searching for Physics Beyond the Standard Model. IceCube Neutrino Observatory. with the. John Kelley for the IceCube Collaboration

neutrino astronomy francis halzen University of Wisconsin

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Ultra High Energy Cosmic Rays I

IceCube - Status & First Results

arxiv: v1 [astro-ph.he] 28 Jan 2013

Gustav Wikström. for the IceCube collaboration

Neutrino Astronomy. Ph 135 Scott Wilbur

IceCube & DeepCore Overview and Dark Matter Searches. Matthias Danninger for the IceCube collaboration

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration)

neutrino astronomy francis halzen university of wisconsin

The real voyage is not to travel to new landscapes, but to see with new eyes... Marcel Proust

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Mass Composition Study at the Pierre Auger Observatory

Supernova Neutrino Detection with IceCube

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Looking Beyond the Standard Model with Energetic Cosmic Particles

Carsten Rott. mps. ohio-state. edu. (for the IceCube Collaboration)

Muon Reconstruction in IceCube

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

Possible Interpretations of IceCube High Energy Neutrinos

Searches for Dark Matter Annihilations in the Sun and Earth with IceCube and DeepCore. Matthias Danninger for the IceCube collaboration

IceCube: Dawn of Multi-Messenger Astronomy

NEUTRINO ASTRONOMY AT THE SOUTH POLE

High Energy Neutrino Astrophysics with IceCube

Origin of Cosmic Rays

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

High-energy cosmic rays

IceCube: Physics, status and future

Indirect Dark Matter Detection

Implications of recent cosmic ray results for ultrahigh energy neutrinos

Astroparticle Physics with IceCube

TeV Particle Physics and Physics Beyond the Standard Model

Ultra High Energy Cosmic Rays: Observations and Analysis

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

Multi-messenger studies of point sources using AMANDA/IceCube data and strategies

IceCube Results & PINGU Perspectives

Cosmic Rays. M. Swartz. Tuesday, August 2, 2011

Ultra- high energy cosmic rays

an introduction What is it? Where do the lectures fit in?

Recent results from the Pierre Auger Observatory

A Maximum-Likelihood Search for Neutrino Point Sources with the AMANDA-II Detector

Neutrino Physics: an Introduction

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

The Pierre Auger Observatory Status - First Results - Plans

P. Tinyakov 1 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. Spectrum.

Combined Search for Neutrinos from Dark Matter Annihilation in the Galactic Center using IceCube and ANTARES

astronomy requires kilometer-scale detectors Super- EeV detectors: RICE, ANITA, EUSO IceCube/NEMO: kilometer-scale neutrino observatories

Gamma-ray Astrophysics

Probing New Physics at the Highest Energies

Ultra-High-Energy Cosmic Rays: A Tale of Two Observatories

Lake Baikal: from Megaton to Gigaton. Bair Shaybonov, JINR, Dubna on behalf of the Baikal Collaboration

A Search for Point Sources of High Energy Neutrinos with AMANDA-B10

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche

EeV Neutrinos in UHECR Surface Detector Arrays:

The Pierre Auger Observatory and ultra-high energy neutrinos: upper limits to the diffuse and point source fluxes

Mediterranean Neutrino Telescopes

RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY

Publications of Francesco Arneodo: journal articles

THE EHE EVENT AND PROSPECTS FROM THE ICECUBE NEUTRINO OBSERVATORY. Lu Lu 千葉大

OVERVIEW OF THE RESULTS

TeV Gravity at Neutrino Telescopes

PeV Neutrinos from Star-forming Regions. Hajime Takami KEK, JSPS Fellow

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

High Energy Neutrino Astrophysics Latest results and future prospects

Air Shower Measurements from PeV to EeV

Identifying Cosmic Ray induced Cascade events with IceTop

Cosmogenic neutrinos II

Lessons from Neutrinos in the IceCube Deep Core Array

Multi-Messenger Astonomy with Cen A?

Windows on the Cosmos

PoS(ICRC2017)945. In-ice self-veto techniques for IceCube-Gen2. The IceCube-Gen2 Collaboration

Experimental Constraints to high energy hadronic interaction models using the Pierre Auger Observatory part-i

Dr. John Kelley Radboud Universiteit, Nijmegen

Transcription:

Physics Beyond the Standard Motivation Main Physics Goals Detector Design/Construction Beyond the SM Searches Model with IceCube Alex Olivas University of Maryland (for the IceCube Collaboration)

Why a km 3 observatory? Cosmic Ray Spectrum follows broken power law Where does the high energy component come from? 1. Unknown p + accelerators? 2. Decay of cosmological relics? Recent AUGER results hint that perhaps the source might be AGN E 2.7 F(E) [GeV 1.7 m 2 s 1 sr 1 ] 10 5 10 4 10 3 Cosmic Ray Flux x E 2.7 Grigorov JACEE MGU TienShan Tibet07 Akeno CASA/MIA Hegra Flys Eye Agasa HiRes1 HiRes2 Auger SD Auger hybrid Kascade Knee Spectrum hardens at very high energies LHC 2nd Knee r p > Rgalaxy (E p > EeV) Extragalactic origin Ankle 10 13 10 14 10 15 10 16 10 17 10 18 10 19 10 20 E [ev] Plot from PDG 2007 Fig 24.9 ~1 event km -2 yr -1 arxiv:0709.2712v1

Why a km 3 observatory? Advantages of neutrinos 1. Point back to source 2. Universe transparent to 3. Not GZK suppressed GZK Suppression p + + CMB p + + 0 n + + E 3 dn/de [m 2 sr 1 s 1 ev 2 ] 10 26 10 25 10 24 AGASA HiRes 1,2, monocular Auger 2007 GZK cutoff 5x10 19 ev 10 23 10 18 10 19 10 20 10 21 Energy (ev) Plot from PDG 2007 Fig 24.10

Overview of Physics with IceCube cosmic p + accelerator GRB Point Sources Diffuse Energy Spectrum SUSY WIMPs (Sun and Earth) 1 0 + 1 0 + - μ μ Supernovae Cosmic Ray Composition GZK/EHE Extreme High Energy

IceCube Backgrounds* p Up-going atm He up-going down-going Fe p Simulated with CORSIKA (COsmic Ray SImulations for KAscade) Down-going muons and muon bundles (*Cosmic Ray Composition Signal)

The IceCube Collaboration Oxford University Uppsala University Stockholm University Lausanne Bartol Research Institute Penn State University UC Berkeley UC Irvine Clark-Atlanta University U. Maryland U. Wisconsin - Madison U. Wisconsin - River Falls LBNL - Berkeley Southern University U. Anchorage Utrecht University U. Libre de Bruxelles U. Brussel U. Gent U. de Mons-Hainaut U. Mainz DESY-Zeuthen U. Dortmund U. Wuppertal Humboldt U. U. Aachen MPK-K Heidelberg Chiba University U. Canterbury

IceTop Surface array of 80 stations 2 ~2.3m 3 surface ice tanks per string 2 optical modules per tank (high and low gain) IceCube Design Goal 80 Strings, 125 m apart on hexagonal grid 60 optical modules per string (~17m spacing) Cubic kilometer of instrumented ice AMANDA 19 Strings 677 Optical Modules (10-20m spacing)

Simple case of incoming μ 1. Incoming interacts with N 2. Muons generate Cherenkov light 3. Cherenkov photons detected in DOM 4. Reconstruct μ from photon arrival times Simulation - 80 strings

IceCube sensitive to all flavors Low energy EM and hadronic cascades roughly spherical (neglecting dusty ice and LPM effect) e : Classic Double-Bang One among several tau signatures : lollipop, inverted lollipop, etc...

DOM Digital Optical Module Measures arrival time of photons 2 ATWD Analog Transient Waveform Digitizers 300MHz for 400ns 3 gain channels each(low, medium, high) ping-pong to minimize deadtime fadc fast Analog to Digital Converter 40MHz for 6.4μs Local Coincidence triggering Hard Local Coincidence Soft Local Coincidence (isolated hits) Improvements over AMANDA OMs Digitize waveforms in-ice surface Lower noise ~ 400Hz 33cm

Hose Reel for Hot Water Drill Drilling IceTop Tanks

Drilling Animation

Deployment

DL Signal (A.U.) The Dust Logger Designed to map out dust layers 404nm laser as light source Dusty layers due to volcanic ash Three Dust Logger runs so far (strings 21, 50, and 66) Can measure tilt of dust layers 42k years BP 60k years BP depth(m)

Photon Propagation Model in Antarctic Ice Optical Ice Properties 300nm sc ~(10-40m) abs ~ (30-120m) 400nm sc ~(10-50m) abs ~ (50-140m) 500nm sc ~(15-65m) abs ~ (30-50m) 600nm sc ~(20-80m) abs ~ 10m Maybe up to 250m for deep ice (>2200m)

Maximum Attainable Velocity (MAV) states not necessarily flavor eigenstates 180 o Exotic oscillations Violation of Lorentz Invariance (VLI) in atm conventional atm oscillations Atmospheric Survival Probability VLI Oscillations 90 o Results Survey (90% CL on c/c) AMANDA* < 5.3x10-27 MACRO < 25x10-27 SuperK+K2K < 2.0x10-27 *J.Ahrens, Ph.D. thesis, U. Mainz Battistoni et. al., hep-ex/0503015 Gonázlez-Garcia & Maltoni, PRD 70 033010 (2004) Sensitivity Projections AMANDA (7 yrs) c/c < 10-27 IceCube (10 yrs) c/c < 10-28 Ideal Case (i.e. neglects energy and angular resolutions) S.Coleman and S.L. Glashow, PRD 59, 116008 (1999)

IceCube vs. LHC New Physics Potential from Cosmic Rays 10 5 Knee Cosmic Ray Event Rate LCR ~ 10-13 cm -2 s -1 E>10 8 GeV NN ~ 10 5 s -1 E 2.7 F(E) [GeV 1.7 m 2 s 1 sr 1 ] 10 4 10 3 Grigorov JACEE MGU TienShan Tibet07 Akeno CASA/MIA Hegra Flys Eye Agasa HiRes1 HiRes2 Auger SD Auger hybrid Kascade 2nd Knee Ankle LHC Event Rate L ~ 10 34 cm -2 s -1 s =14TeV pp ~ 10 9 s -1 10 13 10 14 10 15 10 16 10 17 10 18 10 19 10 20 Plot from PDG 2007 E [ev] 1 event km -2 hr -1 s p-p > 14TeV 1 event km -2 yr -1 s p-p > 140TeV 17

SUSY in Cosmic Rays MSSM w/ conserved R parity Weakly interacting LSP Charged meta-stable NLSP NLSP LSP How they are produced? 1.UHE CR produce SUSY particles 2.SUSY particles cascade to NLSP 3.Meta-stable NLSP travels to IceCube stau ( ) ~ will look very similar to a muon in IceCube M.Ahlers, J.I. Illana, M. Masip, D. Meloni 18 arxiv:0705.3782v1 [hep-ph]

SUSY in Cosmic Rays ~ ~ p Signature Two nearly parallel -like tracks near the horizon separated by more than 100m Above the horizon dominated by SM + - background Other stau sources via -N Cosmic HE (unknown diffuse flux) Atmospheric prompt charm decay SM + - background <80 o No background >80 o Signal 80 o < <90 o O(1 yr -1 ) M.Ahlers, J.I. Illana, M. Masip, D. Meloni arxiv:0705.3782v1 [hep-ph] I.F.M.Albuquerque, G. Burdman, Z. Chacko arxiv:0711.2908v1 [hep-ph] S.Ando, J.F. Beacom, S. Profumo, D. Rainwater 19 arxiv:0711.2908v1 [hep-ph] 6-0.1 yr -1 @ WB limit 20-1 yr -1 @ MPR limit <1 yr -1 & dominates over cosmic

Heavy Exotics with IceCube Monopoles, Q-balls, Nuclearites, Preons, etc... GUT Monopole Light (m<10 12 GeV) & Relativistic ( >0.5) Basic E&M Cherenkov Radiation e ( knock-on ) production SUSY Q-balls SENS SECS Heavy (m~10 16 GeV) & Slow (10-4 < <10-2 ) Nucleon catalyzed decay Magnetic Monopole : MP ~ QCD SUSY Q-ball : SENS >> QCD SQM nuclearites, preons, etc. Heavy (m<10 16 GeV) & Large (R~Å) DeRujula-Glashow Mechanism plasma shock wave emits blackbody radiation

Monopole Acceleration Only light Monopoles expected to be relativistic Heavy (MMP ~10 16 GeV) can t be accelerated to relativistic speeds by known sources

Relativistic Monopole Photon Production Cherenkov Radiation e ( knock-on ) electrons ionization electrons above the Cherenkov threshold ~10 4 x bare Quantum corrections and Monopole structure play a small role at these speeds

Monopoles on IceCube - > 0.8

Monopoles on IceCube - ~ 0.6

t Hooft-Polyakov SU(5) GUT Monopoles Rubakov-Callan Mech. Catalyzed Nucleon Decay cat ~ QCD F( ) Decay Modes p,n e + (90%) p,n + K (10%) cat= 0-2 cat= 0-1 Assume only proton decay of H in H2O Model as a series of 1GeV EM showers (~4x10 4 ) bare Vary mean free path in simulation (0.1m-10m) Relativistic events only a few s long MP=10-2 Work in progress for IceCube MC (signal and background) Trigger/Filtering estimates for 2008 A.Pohl - AMANDA simulation

Monopoles at ICRC 2007 (International Cosmic Ray Conference - Merida, Mexico) Relativistic Monopoles A. Pohl (Uppsala University) 113 days AMANDA 2001 D. Hardtke (U.C. Berkeley) for IceCube Slow Monopoles H. Wissing (Aachen University) 154 days AMANDA 2000 Brian Christy (UMD), A. Olivas (UMD), and D. Hardtke (U.C. Berkeley) for IceCube

Conclusion IceCube currently the largest neutrino observatory 25 IceCube strings + 19 AMANDA + 26 stations on surface : Point Sources, Diffuse flux, Exotic atm Oscillations Cosmic Ray Composition Supernovae Detection Gamma Ray Bursts WIMPs (Dark Matter) Monopoles, Q-balls, etc.. SUSY sleptons w/ N-N and -N TeV Gravity in cosmogenic -N String Deployment Plan Deployment season has begun 07-08 - 14 strings (36 IceCube strings) 23rd string deployed Dec. 8th 08-09 - 14 strings (50 IceCube strings) 24th string deployed Dec. 13th 09-10 - 14 strings (64 IceCube strings) 25th string deployed Dec. 15th 10-11 - 11+ strings (75+ IceCube strings)