quantum error-rejection

Similar documents
Jian-Wei Pan

Multi-Particle Entanglement & It s Application in Quantum Networks

Single-photon quantum error rejection and correction with linear optics

The information content of a quantum

Playing Games with Quantum Information: Experiments with Photons and Laser-Cooled Atoms

Exploring finite-dimensional Hilbert spaces by Quantum Optics. PhD Candidate: Andrea Chiuri PhD Supervisor: Prof. Paolo Mataloni

Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state

Problem Set: TT Quantum Information

Quantum non-demolition measurements:

Quantum Dense Coding and Quantum Teleportation

Quantum Memory with Atomic Ensembles

. Here we are using the standard inner-product over C k to define orthogonality. Recall that the inner-product of two vectors φ = i α i.

Quantum Teleportation with Photons. Bouwmeester, D; Pan, J-W; Mattle, K; et al. "Experimental quantum teleportation". Nature 390, 575 (1997).

Quantum Information Processing and Diagrams of States

Quantum communications

Quantum Teleportation Pt. 1

What is possible to do with noisy quantum computers?

Multipath and polarization entanglement of photons

A Superluminal communication solution based on Four-photon entanglement

Quantum information processing using linear optics

Quantum Networks with Atomic Ensembles

SUPPLEMENTARY INFORMATION

Introduction to Quantum Information Hermann Kampermann

IBM quantum experience: Experimental implementations, scope, and limitations

Experimental demonstrations of teleportation of photons. Manuel Chinotti and Nikola Đorđević

Introduction to Quantum Error Correction

An entangled LED driven quantum relay over 1km

Bell s inequality Experimental exercise

Toward the Generation of Bell Certified Randomness Using Photons

Quantum Gates, Circuits & Teleportation

Quantum key distribution for the lazy and careless

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters)

Unitary evolution: this axiom governs how the state of the quantum system evolves in time.

SUPPLEMENTARY INFORMATION

Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation

Quantum key distribution with 2-bit quantum codes

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding.

arxiv:quant-ph/ v1 2 Oct 1997

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino

All Optical Quantum Gates

Quantum Error Correction Codes - From Qubit to Qudit

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139

Entanglement. arnoldzwicky.org. Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen

Lecture 6: Quantum error correction and quantum capacity

EXPERIMENTAL DEMONSTRATION OF QUANTUM KEY

LECTURE NOTES ON Quantum Cryptography

One-Way Quantum Computing Andrew Lopez. A commonly used model in the field of quantum computing is the Quantum

Other Topics in Quantum Information

Quantum Optical Implementation of Quantum Communication

Quantum secret sharing based on quantum error-correcting codes

arxiv:quant-ph/ v1 13 Jan 2003

Memory-built-in quantum teleportation with photonic and

Ping Pong Protocol & Auto-compensation

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

AP/P387 Note2 Single- and entangled-photon sources

Experimental generalized contextuality with single-photon qubits: supplementary material

Asymptotic Analysis of a Three State Quantum Cryptographic Protocol

Entanglement and Quantum Teleportation

Example: sending one bit of information across noisy channel. Effects of the noise: flip the bit with probability p.

Detection of Eavesdropping in Quantum Key Distribution using Bell s Theorem and Error Rate Calculations

Principles of Quantum Mechanics Pt. 2

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing. Two become one

High rate quantum cryptography with untrusted relay: Theory and experiment

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Entanglement. Michelle Victora Advisor: Paul G. Kwiat. Physics 403 talk: March 13, 2017

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations.

Lecture: Quantum Information

Quantum Entanglement, Quantum Cryptography, Beyond Quantum Mechanics, and Why Quantum Mechanics Brad Christensen Advisor: Paul G.

Schemes to generate entangled photon pairs via spontaneous parametric down conversion

Remote State Preparation: Arbitrary remote control of photon polarizations for quantum communication

ION TRAPS STATE OF THE ART QUANTUM GATES

A central problem in cryptography: the key distribution problem.

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto

Experimental quantum teleportation. Dirk Bouwmeester, Jian Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter & Anton Zeilinger

Lecture 3: Hilbert spaces, tensor products

Quantum Hadamard channels (I)

Quantum Error Correction and Fault Tolerance. Classical Repetition Code. Quantum Errors. Barriers to Quantum Error Correction

Title Experimental long-distance quantum secure direct communication

Experimental Quantum Teleportation of a Two-Qubit

5. Communication resources

Linear-optical quantum information processing: A few experiments

ROBUST PROBABILISTIC QUANTUM INFORMATION PROCESSING WITH ATOMS, PHOTONS, AND ATOMIC ENSEMBLES

d 2 2 A = [A, d 2 A = 1 2 [[A, H ], dt 2 Visualizing IVR. [Chem. Phys. Lett. 320, 553 (2000)] 5.74 RWF Lecture #

MP 472 Quantum Information and Computation

Quantum non-demolition measurements: a new resource for making linear logic scalable

Quantum Cryptography. Areas for Discussion. Quantum Cryptography. Photons. Photons. Photons. MSc Distributed Systems and Security

Differential Phase Shift Quantum Key Distribution and Beyond

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

Homework 3 - Solutions

ISSN Review. Quantum Entanglement Concentration Based on Nonlinear Optics for Quantum Communications

Photon Pair Production using non-linear waveguides

arxiv:quant-ph/ v3 18 Jan 2004

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Logical error rate in the Pauli twirling approximation

arxiv:quant-ph/ v2 25 May 2005

Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel

Transcription:

Lecture Note 7 Decoherence-free sub-space space and quantum error-rejection rejection.06.006

open system dynamics ψ = α 0 + α 0 Decoherence System Environment 0 E 0 U ( t) ( t) 0 E ( t) E U E ( t) U() t ( ) α 0 + α E α 0 E ( t) + α E ( t) 0 0 0 * α0 α0α E E 0 ρq() t = TrEρq+ E = * αα 0 E0 E α The off-diagonal element of the qubit density matrix will drop down with the rate depends on the coupling between qubit and environment. More generally... How to guide the dynamics of system-environment coupling?

Possible solutions to overcome decoherence in long-distance quantum communication (QC) Quantum Error Correction for QC Active (Error correction): deal well with independent errors on qubits Quantum Entanglement Purification for QC Entanglement Purification (any unknown mixed state) Local Filtering (known state) Entanglement Concentration (unknown state) QC based on Decoherence-free Subspace Passive (error avoidance): find a subspace of the system space over which evolution stays unitary, unperturbed, correlated noise Error-free Transfer in QC Active (error rejection): reject the contaminated information

QC based on Decoherencefree Subspace Error-free Transfer in QC

Decoherence-free subspace (DFS) U() t iω t iωgt e + g e e e + e g e g + g e U() t iω t iω t iω t iω t + e e e e g g e g g e e e = i( ω ) e+ ωg t e e g + g e ( )

Decoherence Free Subspace General Definitions, Collective Decoherence Use of DF subspace for concatenation into a Quantum Error Correcting Code (QECC) Relationship between DF subspace and QECC Existential universality results on DF subspaces/symmetrization methods Subsystem Generalization 997 [Phys. Rev. Lett. 79, 953 (997); Phys. Rev. Lett. 79, 3306 (997); Phys. Rev. Lett. 8, 594 (998)] Symmetrization/Bang-bang methods [Phys. Rev. A 58, 733 (998); 998 Phys.Lett. A 58, 77 (999) ] Robustness to perturbing error processes 000 999 DFS History [Phys. Rev. Lett. 8, 594 (998); Phys. Rev. A 60, 944 (999)] [Phys. Rev. Lett. 8, 4556 (999)] [Phys. Rev. A 60 79(R) (999)] [Phys. Rev. Lett. 84, 55(000)] How do we perform quantum communication in a DFS?

DFS under Collective Noise Collective Rotation Noise:Noise can be seen as some unitary transformation as U(θ,Φ), if for all the channel, the unitary is the same, then it is called collective noise. If Φ is 0, i.e., U= U(θ), it is called collective rotation noise iφ U( θφ, ) : H Cosθ H + e SinθV iφ ψ = ( H V V H ) V e Sinθ H + Cosθ V ( iφ )( iφ Cosθ H + e Sinθ V e Sinθ H + Cosθ V ) ( iφ )( iφ e Sinθ H Cosθ V Cosθ H e Sinθ V ) + + (( ) ( Cos θ + Sin θ H V Cos θ + Sin θ) V H ) = ( H V V H )

+ φ ( ) : DFS under Collective Rotation Noise U θ H Cosθ H + Sinθ V V Sinθ H + Cosθ V = ( H H + V V ) ( Cosθ H + Sinθ V )( Cosθ H + Sinθ V ) + ( Cosθ V Sinθ H )( Cosθ V Sinθ H ) + + + = ( H H + V V ) (( ) ( Cos θ Sin θ H H Cos θ Sin θ) V V ) [P. G. Kwiat et al., Science 90, 498(000); J. B. Altepeter, et al., Phys. Rev. Lett. 9, 4790(004)]

DFS for Collective Rotation Noise ψ + φ = = ( H V ( H H + V V H V ) ) The two state are invariant under the collective rotation noise. All the linear superposition of the two states constitute a subspace that is decoherence free to the noise. [P. G. Kwiat et al., Science 90, 498(000);

Similar to BB84, +,- respect the diagonal state and anti-diagonal state respectively. The four state can be used to encode key and the security bound is the same as BB84 protocol. Application in quantum key distribution using a DFS H + = φ = ( H H + V V ) V = ψ = ( H V V H ) + = ( H + V ) = ( H + V = ( H V ) = ( H + V [X.B.Wang, Phys. Rev. A 7, 050304(R) (005)] + ) )

Experimental Setup [Q. Zhang, PRA 73, 0030 (R) 006]

Experimental Result QBER of DFS and traditional BB84 under the collective rotation noise. θ > π/8, QBER BB84 >%

Drawback DFS only for Collective Rotation Noise Other noise Free space phase drifting caused by temperature difference Long distance in optical fibers will cause a redoubtable obstacle Noise not only in H/V basis!

( ) iφ U θφ, : H Cosθ H + e SinθV iφ V e Sinθ H + Cosθ V Collective Noise ψ + = + ( H V V H ) iφ iφ ( Cosθ H + e Sinθ V )( e Sinθ H + Cosθ V ) + iφ iφ ( e Sinθ H + Cosθ V )( Cosθ H + e Sinθ V ) iφ iφ ( Cos θ Sin θ)( H V + V H ) + CosθSinθ( e e )( H H + V V ) iφ iφ CosθSinθ( e + e )( H H V V ) = δ( HV + VH ) + δ( HH + VV ) + δ3 ( HH VV ) ( δ + δ + δ = ) 3

A new protocol First apply a time delay between H and V, the state will be α HV + β VH α HV + β V H T T After a collective noise α HV T + β V H T ( ) + β + ( ) ( ) α α HV + β VH = ψ + ψ + ψ + ψ α HV T VH T + δ HV T + VH T + + δ ( ) ( ) HHT VVT δ3 HHT VV + + T β VH ( ) T HV T + δ VH T + HV T + δ ( ) ( ) H TH + V TV + δ3 H TH V TV Bob can measure in any direction (H /V ) which also can be considered as part of the collective noise.

A new protocol Then again, Bob apply a time delay between H and V, the state will be ( ) α HV T T VH TT + δ HV T T + VH TT + δ T TT T 3 T TT T β VH ( ) T T H TTV + δ VH T T + H TTV + + δ TT T T 3 TT T T ( H H + VV ) + δ ( H H VV ) ( H H + V V ) + δ ( H H V V ) The last operation is to project the state onto the subspace in which the photons arrive exactly at the same time + δ δ ( ) α HV ( ) T T + β VH T T + α V H TT + β H TTV + δ + δ3 δ δ3 T TT TT T T T ( α H H + β H H ) + ( α VV + β V V )

A new protocol We will get probability α H V + β V H T T T T ( + δ ) / with a /3 by a random unitary transformation

Experimental Setup [T.-Y Chen et al., Phys. Rev. Lett. 96 50504 (006)]

4m fiber Experimental Result without random rotations with random rotations average QBER

km fiber without random rotations Experimental Result with random rotations average QBER [T.-Y Chen et al., Phys. Rev. Lett. 96 50504 (006)]

QC based on Decoherencefree Subspace Error-free Transfer in QC

Bit-flip Error Correction α 0 + β CNot ψ3 = α 3 + β 3 3 0 0 α 0 + β α 000 + β ( 000 ) with a probability poccurs a bit-flip error ( α β ) U ( α β ) ( ) ( ) α00 + β 0 + 0 0 + CNot α 00 + β 0 α 0+ β 0 α 00 β0 + α 0 + β 0 two bits flipping (p ) can t be corrected CNot Operation Required!!! [D. Bouwmeester, PRA 63, 04030(R) (00).]

Error-free transfer ψ = α + β + ( 0 ) ( 000 ) 34 34 34 Bell Measurement Between & ( α 00 34 β 34 ) ( ) ( ) + α 00 34 + β 34 + α 0 + β + α 0 β α 0 34 + β 0 34 No coincedence α 0 34 + β 0 34 α 34 β 00 34 α β + + ( 0 + ) + ( α 0 β )

Problem in Experimental Realization Possibility of two pair emission is in the same order and will cause four-fold coincidence!

Error-free transfer [X.-B. Wang, PRA 69, 030 (004)]

ψ ( ) ( ) 3 = HH + VV α H3 + β V3 each photonin ( α HHH ) the two arms of PBS ' ' 3' + βvvv ' ' 3' = ( α H H + βvv ) + + ( α H H βvv ) ( α HH βvv ) Coincedence between "and3" ' ' ' ' 3' ' ' ' ' 3' + + ' ' ' ' 3' ( α HH βvv ) + + ( α H βv ) + + + " " " 3' " " " " 3' Through a noisy channel with bit-flip error rate pnew the remaining QBER will be ( ) p ( ) p + p 3 ~ o ( p )

Experimental Set-up Trigged by D 4 possibility of two pair emission will be much lower [Y.-A. Chen et al., PRL 96, 0504 (006)]

Bit-flip-error simulation HWP : QWP : cos( β) sin( β) i sin( β) cos( β) π + i 4 sin( α) cos( α) e 0 sin( α) cos( α) π cos( α) sin( α) = i cos( α) sin( α) 4 0 e + i cos( α) i cos( α)sin( α) i cos( α) i cos( α)sin( α) By one HWP inside two QWP, any U-transmit can be implemented!

= u u + v v v = u ρ cos ( β) sin ( β) if u ρ = γ cos = we can get γ iϕ sin e π π cos( β) i sin( β) QWP( ) HWP( β ) QWP( ) = i sin( β) cos( β) Now set the angel of the HWP to β and β. γ cos π π if ψ( β) = QWP( ) HWP( β) QWP( ) γ iϕ sin e we can get ψ( β) ψ( β) + ψ( β) ψ( β) = + cos(4 β )cos( γ) sin( γ) [ cos( ϕ) i cos(4 β) ] sin( γ) sin( γ) [ cos( ϕ) i cos(4 β) ] sin( γ) cos(4 β)cos( γ) [ i β ] + cos(4 β)cos( γ) sin( γ) cos( ϕ) cos(4 ) sin( γ ) sin( γ )[ cos( ϕ) i cos(4 β) ] sin( γ) cos(4 β) cos( γ) +

Quantum Noisy Channel

Experimental Results [Y.-A. Chen et al., PRL 96, 0504 (006)]

The phase-shift error rejection can be realized. 0 ( 0 + ), ( 0 ) phase shift error can be changed to bit flip error α H + β V = α+ β H + V + α β H V ( )( ) ( )( ) Phase shift α+ β H V + α β H + V = α H β V ( )( ) ( )( ) ( α + β)( H + V ) ( α β)( H V ) + ( α β) ( α β) + H + V ( α + β)( H + V ) ( α β)( H V ) +

The higher order bit-flip error can be rejected. encoding unknown quantum states into higher multiphoton entanglement (N), the higher order (up to N-) error can be rejected α H + β V α HH... H + β VV... V

Applied to the quantum key distribution the threshold of tolerable error rate over the quantum noisy channel can be greatly improved. [X.-B. Wang, PRL 9, 07790 (004)]