First-Order Low-Pass Filter!

Similar documents
First-Order Low-Pass Filter

Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2015

Time-Invariant Linear Quadratic Regulators!

Control Systems! Copyright 2017 by Robert Stengel. All rights reserved. For educational use only.

Linear-Quadratic Control System Design!

Dynamic Optimal Control!

Stochastic Optimal Control!

Stochastic and Adaptive Optimal Control

Linear-Quadratic-Gaussian Controllers!

Return Difference Function and Closed-Loop Roots Single-Input/Single-Output Control Systems

Time Response of Dynamic Systems! Multi-Dimensional Trajectories Position, velocity, and acceleration are vectors

Extensions and applications of LQ

Introduction to Optimization!

EE Experiment 11 The Laplace Transform and Control System Characteristics

Optimal Control. Quadratic Functions. Single variable quadratic function: Multi-variable quadratic function:

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.

Optimal Control and Estimation MAE 546, Princeton University Robert Stengel, Preliminaries!

ECE317 : Feedback and Control

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries

Exam. 135 minutes, 15 minutes reading time

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

MAS107 Control Theory Exam Solutions 2008

Laplace Transform Analysis of Signals and Systems

Controls Problems for Qualifying Exam - Spring 2014

Topic # Feedback Control Systems

EE C128 / ME C134 Final Exam Fall 2014

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)

Chapter 6: The Laplace Transform. Chih-Wei Liu

INTRODUCTION TO DIGITAL CONTROL

Feedback Control of Linear SISO systems. Process Dynamics and Control

Homework Solution # 3

Differential Equations 2280 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 2015 at 12:50pm

Exam. 135 minutes + 15 minutes reading time

EECS C128/ ME C134 Final Wed. Dec. 14, am. Closed book. One page, 2 sides of formula sheets. No calculators.

Linear State Feedback Controller Design

Linearized Equations of Motion!

Suppose that we have a specific single stage dynamic system governed by the following equation:

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin

Learn2Control Laboratory

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Optimal Control and Estimation MAE 546, Princeton University Robert Stengel, Preliminaries!

AMME3500: System Dynamics & Control

Robotics. Control Theory. Marc Toussaint U Stuttgart

Topic # Feedback Control

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback

Time Response Analysis (Part II)

CDS 101/110a: Lecture 8-1 Frequency Domain Design

Frequency Response Analysis

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

Dr Ian R. Manchester

6.241 Dynamic Systems and Control

Pitch Rate CAS Design Project

Linear-Quadratic Control System Design

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7)

University of Alberta ENGM 541: Modeling and Simulation of Engineering Systems Laboratory #7. M.G. Lipsett & M. Mashkournia 2011

Alternative Expressions for the Velocity Vector Velocity restricted to the vertical plane. Longitudinal Equations of Motion

Singular Value Analysis of Linear- Quadratic Systems!

Differential equations

Chap 4. State-Space Solutions and

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control

EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions

D(s) G(s) A control system design definition

Lecture 1: Feedback Control Loop

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

Analysis and Design of Control Systems in the Time Domain

Table of Laplacetransform

State will have dimension 5. One possible choice is given by y and its derivatives up to y (4)

The loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2)

MATH 251 Final Examination May 3, 2017 FORM A. Name: Student Number: Section:

APPLICATIONS FOR ROBOTICS

Solutions to Skill-Assessment Exercises

Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

Control Systems Design

Active Control? Contact : Website : Teaching

LINEAR QUADRATIC GAUSSIAN

LECTURE NOTES ON CONTROL

Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design.

Contents lecture 5. Automatic Control III. Summary of lecture 4 (II/II) Summary of lecture 4 (I/II) u y F r. Lecture 5 H 2 and H loop shaping

Systems Analysis and Control

Chapter 9: Controller design

Root Locus Methods. The root locus procedure

Translational and Rotational Dynamics!

JUST THE MATHS UNIT NUMBER LAPLACE TRANSFORMS 3 (Differential equations) A.J.Hobson

Automatic Control (TSRT15): Lecture 7

Time Response of Systems

Minimization of Static! Cost Functions!

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section:

Topic # Feedback Control Systems

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section:

6 OUTPUT FEEDBACK DESIGN

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Lecture 9: Discrete-Time Linear Quadratic Regulator Finite-Horizon Case

Lecture 25: Tue Nov 27, 2018

EE Control Systems LECTURE 9

Optimal Polynomial Control for Discrete-Time Systems

5. Observer-based Controller Design

Last week: analysis of pinion-rack w velocity feedback

ECE557 Systems Control

Transcription:

Filters, Cost Functions, and Controller Structures! Robert Stengel! Optimal Control and Estimation MAE 546! Princeton University, 217!! Dynamic systems as low-pass filters!! Frequency response of dynamic systems!! Shaping system response!! LQ regulators with output vector cost functions!! Implicit model-following!! Cost functions with augmented state vector min J = min 1!u!u 2 "!x T t)q!xt) +!u T t)r!ut) dt subject to!!xt) = F!xt) + G!ut) Copyright 217 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/mae546.html http://www.princeton.edu/~stengel/optconest.html 1 First-Order Low-Pass Filter! 2

Low-Pass Filter Low-pass filter passes low-frequency signals and attenuates high-frequency signals!!x t) = "a!x t) + a!u t) a =.1, 1, or 1 Laplace transform, x) =!x s) = a s + a)!u s) Frequency response, s = j!!x j" ) = a!u j" j" + a) 3 Response of 1 st -Order Low-Pass Filters to Step Input and Initial Condition!!x t) = "a!x t) + a!u t) a =.1, 1, or 1 Smoothing effect on sharp changes 4

Frequency Response of Dynamic Systems! 5 Response of 1 st -Order Low-Pass Filters to Sine-Wave Inputs Input Output!u t) = " sin t sin 2t sin 4t!x t) =!1x t) + 1u t)!x t) =!x t) + u t)!x t) =!.1x t) +.1u t) 6

Response of 1 st -Order Low- Pass Filters to White Noise!!x t) = "a!x t) + a!u t) a =.1, 1, or 1 7 Relationship of Input Frequencies to Filter Bandwidth!u t) = sin "t sin 2"t sin 4"t BANDWIDTH Input frequency at which magnitude = 3dB How do we calculate frequency response? 8

Bode Plot Asymptotes, Departures, and Phase Angles for 1 st -Order Lags H red j! ) = 1 j! +1! General shape of amplitude ratio governed by asymptotes! Slope of asymptotes changes by multiples of ±2 db/dec at poles or zeros! Actual AR departs from asymptotes! AR asymptotes of a real pole! When! =, slope = db/ dec! When!, slope = 2 db/ dec H blue j! ) = 1 j! +1 H green j! ) = 1 j! +1! Phase angle of a real, negative pole! When! =, " =! When! =, " = 45! When! -> ", " -> 9 9 2 nd -Order Low-Pass Filter!!!x t) = "2 n!!x t) " 2 n!x t) + 2 n!u t) Laplace transform, I.C. =!x s) = " n 2 s 2 + 2" n s + " n 2!u s Frequency response, s = j!!x j" ) = " n 2 j" ) 2 + 2" n j"! H j" )!u j" 2 + " n!u j" ) 1

2 nd -Order Step Response Increased damping decreases oscillatory over/undershoot Further increase eliminates oscillation 11 Amplitude Ratio Asymptotes and Departures of Second-Order Bode Plots No Zeros)! AR asymptotes of a pair of complex poles! When! =, slope = db/dec! When!! n, slope = 4 db/ dec! Height of resonant peak depends on damping ratio 12

Phase Angles of Second-Order Bode Plots No Zeros)! Phase angle of a pair of complex negative poles! When! =, " =! When! =! n, " = 9! When! -> ", " -> 18! Abruptness of phase shift depends on damping ratio 13 Transformation of the System Equations Time-Domain System Equations!!xt) = F!xt) + G!ut)!yt) = H x!xt) + H u!ut) Laplace Transforms of System Equations s!xs) "!x) = F!xs) + G!us) [ ]!xs) = [ si " F] "1!x) + G! us)!ys) = H x!xs) + H u!us) 14

Transfer Function Matrix Laplace Transform of Output Vector!ys) = H x!xs) + H u!us) = H x [ si " F] "1 [!x) + G!us)]+ H u!us) "1 G + H u = H x si " F!us) + H si " F x = Control Effect + Initial Condition Effect Transfer Function Matrix relates control input to system output with H u = and neglecting initial condition H s) = H x [ ] "1!x) [ si! F]!1 G r x m) 15 Scalar Frequency Response from Transfer Function Matrix Transfer function matrix with s = j! H j! ) = H x!y i s!u j s [ j!i " F] "1 G r x m) = H ij j" ) = H xi [ j"i F] 1 G j r x m) H xi = i th row of H x G j = j th column of G 16

Second-Order Transfer Function Second-order dynamic system!!x t) = "!!x 1 t)!!x 2 t) = " f 11 f 12 f 21 f 22!y t) = "!y 1 t!y 2 t "!x 1 t!x 2 t = " h 11 h 12 h 21 h 22 + " g 11 g 12 g 21 f 22 "!x 1 t!x 2 t "!u 1 t!u 2 t Second-order transfer function matrix! adj! h H s) = H x A 11 h 12 s)g = " h 21 h " 22 det r! n) n! n) n! m) n = m = r = 2) = r! m) = 2! 2) s f 11 ) f 12 f 21 s f 22 s f 11 ) f 12 f 21 s f 22 + -, -! " g 11 g 12 g 21 f 22 17 Scalar Transfer Function from!u j to!y i H ij s) = k ijn ij s)!s) = k ij s q + b q"1 s q"1 +...+ b 1 s + b s n + a n"1 s n"1 +...+ a 1 s + a Just one element of the matrix, Hs) Denominator polynomial contains n roots Each numerator term is a polynomial with q zeros, where q varies from term to term and n 1 ij s! z 2 ) ij... s! z q s! " 2 )... s! " n ) = k ij s! z 1 s! " 1 ij zeros = q poles = n 18

Scalar Frequency Response Function H ij j! ) = k ij j! " z 1 j! " 1 Substitute: s = j" ij ij j! " z 2 ) ij... j! " z q j! " 2 )... j! " n ) j! ) = a!)+ jb!) " AR!) e Frequency response is a complex function of input frequency,! Real and imaginary parts, or Amplitude ratio and phase angle 19 MATLAB Bode Plot with asymp.m http://www.mathworks.com/matlabcentral/ http://www.mathworks.com/matlabcentral/fileexchange/1183-bode-plot-with-asymptotes 2 nd -Order Pitch Rate Frequency Response, with zero bode.m asymp.m 2

Desirable Open-Loop Frequency Response Characteristics Bode)! High gain amplitude) at low frequency! Desired response is slowly varying! Low gain at high frequency! Random errors vary rapidly! Crossover region is problem-specific 21 Examples of Proportional LQ Regulator Response! 22

Example: Open-Loop Stable and Unstable 2 nd -Order LTI System Response to Initial Condition " F S = " F U = 1!16!1 1!16 +.5 Stable Eigenvalues = -.5 + 3.9686i -.5-3.9686i Unstable Eigenvalues =.25 + 3.9922i.25-3.9922i 23 Example: Stabilizing Effect of Linear- Quadratic Regulators for Unstable 2 nd -Order System min!u J = min!u 1 2 "!x 2 1 +!x 2 2 + r!u 2 )dt ) For the unstable system!ut) = " c 1 c 2 r = 1 Control Gain C) =.262 1.857 Riccati Matrix S) = 2.21.291.291.126!x 1 t)!x 2 t) = "c!x t) " c!x t) 1 1 2 2 r = 1 Control Gain C) =.28.1726 Riccati Matrix S) = 3.7261.312.312 1.9183 Closed-Loop Eigenvalues = -6.461-2.8656 Closed-Loop Eigenvalues = -.5269 + 3.9683i -.5269-3.9683i 24

Example: Stabilizing/Filtering Effect of LQ Regulators for the Unstable 2 nd - Order System r = 1 Control Gain C) =.262 1.857 Riccati Matrix S) = 2.21.291.291.126 Closed-Loop Eigenvalues = -6.461-2.8656 r = 1 Control Gain C) =.28.1726 Riccati Matrix S) = 3.7261.312.312 1.9183 Closed-Loop Eigenvalues = -.5269 + 3.9683i -.5269-3.9683i 25 Example: Open-Loop Response of the Stable 2 nd -Order System to Random Disturbance Eigenvalues = -1.1459, -7.8541 26

Example: Disturbance Response of Unstable System with Two LQRs 27 LQ Regulators with Output Vector Cost Functions! 28

Quadratic Weighting of the Output!yt) = H x!xt) + H u!ut) J = 1 2 = 1 2 "!y T t)q y!yt) dt {[ H x!xt) + H u!ut)] T Q y [ H x!xt) + H u!ut)]}dt 29 Quadratic Weighting of the Output min J = min 1 / )"!u!u 2 +! min 1!u 2 / )" +!x T t)!u T t)!x T t)!u T t) " " H T x Q y H x H T x Q y H u H T u Q y H x H T u Q y H u + R o Q O M O M O T " "!xt), -dt R O + R o!ut).!xt)!ut), -dt.!ut) = " R O + R o ) "1 M T O + G T O P SS!x t) = "C!x t) 3

min!u State Rate Can Be Expressed as an Output to be Minimized J = 1 "!y T t)q y!yt) 2 dt = 1 2!!xt) = F!xt) + G!ut)!yt) = H x!xt) + H u!ut) " F!xt) + G!ut) "!!x T t)q y!!xt) dt min!u J = min!u! min!u 1 2 1 2 / / )" + )" + " F T Q!x T t)!u T t) y F G T Q y F!x T t)!u T t) "!ut) = " R SR + R o ) "1 M T SR + G T SR P SS!x t) = "C!x t) Q SR T M SR Special case of output weighting F T Q y G "!xt), -dt G T Q y G + R o!ut). M SR "!xt), -dt R SR + R o!ut). 31 Implicit Model-Following LQ Regulator Simulator aircraft dynamics!!xt) = F!xt) + G!ut) Ideal aircraft dynamics!!x M t) = F M!x M t) Feedback control law to provide dynamic similarity!ut) = "C IMF!x t) Princeton Variable- Response Research Aircraft F-16 Another special case of output weighting 32

Implicit Model-Following LQ Regulator Assume state dimensions are the same!!xt) = F!xt) + G!ut)!!x M t) = F M!x M t) If simulation is successful,!x M t) "!xt) and!!x M t) " F M!xt) 33 min!u J = min!u! min!u Implicit Model-Following LQ Regulator Cost function penalizes difference between actual and ideal model dynamics 1 2 1 2 1 1 ) + " +, ) + ",+ J = 1 2!xt)!xt) {[!!xt) "!!x M t)] T Q M [!!xt) "!!x M t)]}dt!ut) T " F F M ) T Q M F F M G T Q M T " Q!ut) IMF M IMF T M IMF R IMF + R o F F M ) T Q M G F F M ) G T Q M G + R o "!xt) - +. dt!ut) /+ Therefore, ideal model is implicit in the optimizing feedback control law "!xt) - +. dt!ut) + /!ut) = " R IMF + R o ) "1 M T IMF + G T IMF P SS!x t) = "C!x t) 34

Cost Functions with Augmented State Vector! 35 Integral Compensation Can Reduce Steady-State Errors!! Sources of Steady-State Error!! Constant disturbance!! Errors in system dynamic model!! Selector matrix, H I, can reduce or mix integrals in feedback!!xt) = F!xt) + G!ut)!"! t) = H I!xt)!!xt)!! " t = F G H I!xt)!" t + G!ut) 36

!ut) = "C B!x t! "C B!x t LQ Proportional- Integral PI) Control t " C I H I!x " C I! t) d where the integral state is!" t t! H I!x dim H I d = m n define!" t)!!x t! t ) ) 37 Integral State is Added to the Cost Function and the Dynamic Model min J = min 1!u!u 2 = min!u 1 2!x T t)q x!xt) +!" T t)q!" t "!) T t) subject to!ut) = "R "1 G T = "C B!x t +!u T t)r!ut) Q x + Q " +!)t) +!ut t)r!ut) + + dt!!)t) = F )!)t) + G )!ut) " C I! t) P SS!t) = "C!t) dt 38

Integral State is Added to the Cost Function and the Dynamic Model!ut) = "C!t) = "C B!x t!us) = "C!s) = "C B!x s = "C B!x s [ ]!us) = " C s + C H B I x s " C I! t) " C I! s) H " C x!x s) I!x s) s Controller Bode Plots: Integrator plus numerator matrix of zeros 39 Actuator Dynamics and Proportional-Filter LQ Regulators! 4

Actuator Dynamics May Impact System Response 41 Actuator Dynamics May Affect System Response!!xt) = F!xt) + G!ut) Augment state dynamics to include actuator dynamics!!ut) = "K!ut) +!vt) "!!xt) " F G =!!ut) K "!xt) " +!ut) Control variable is actuator forcing function I v!vt) 42

LQ Regulator with Actuator Dynamics 1 min J = min!v!v 2 Re-define state and control vectors 1 = min!v 2!"t)! "!x T t)q x!xt) +!u T t)r u!ut) +!v T t)r v!vt) dt " " )! T t)) ) )!xt)!ut) F! F G " )K Q x R u ;!v t) = Control ; G! " I v!t) +!vt t)r v!vt) dt subject to!!"t) = F "!"t) + G "!vt) 43 LQ Regulator with Actuator Dynamics!vt) = "C!t) = "R v "1 = "C B!x t) " C A!ut) I v T PSS!x t)!ut) ) )!vs) = "C B!x s) " C A!us) 44

LQ Regulator with Actuator Dynamics!!ut) = "K!ut) " C A!ut) " C B!x t s!us) = "K!us) " C A!us) " C B!x s Control Displacement!" si + K + C A ) us) = C B x s) 1 us) =!" si + K + C A ) CB x s) 45 LQ Regulator with Artificial Actuator Dynamics LQ control variable is derivative of actual system control "!!xt)!!ut) = " F G "!xt)!ut) + " I!vt)!vt) =!!u Int t) = "C B!x t) " C A!ut) C A introduces artificial actuator dynamics 46

Proportional-Filter PF) LQ Regulator!"t) =!xt)!ut) ; F = F G " ; G = " I Optimal LQ Regulator!vt) =!!u Integrator t) = "C!t) C A provides low-pass filtering effect on the control input!us) = "[ si + C A ] "1 C B!x s) 47 Proportional LQ Regulator: High- Frequency Control in Response to High-Frequency Disturbances 2nd-Order System Response with Perfect Actuator Good disturbance rejection, but high bandwidth may be unrealistic 48

Proportional-Filter LQ Regulator Reduces High-Frequency Control Signals 2nd-Order System Response... at the expense of decreased disturbance rejection 49 Next Time:! Linear-Quadratic Control System Design! 5

Supplemental Material 51 Princeton Variable-Response Research Aircraft VRA) 52

Aircraft That Simulate Other Aircraft!! Closed-loop control Variable-stability research aircraft, e.g., TIFS, AFTI F-16, NT-33A, and Princeton Variable-Response Research Aircraft Navion) USAF/Calspan TIFS USAF AFTI F-16 USAF/Calspan NT-33A Princeton VRA 53