Long-period ground motion simulation in the Kinki area during the MJ 7.1 foreshock of the 2004 off the Kii peninsula earthquakes

Similar documents
Long-period Ground Motion Simulation in Kinki Area. Nobuyuki YAMADA* and Tomotaka IWATA

Disaster Prevention Research Section, Technology Center, Taisei Corporation, Yokohama, Japan 2

LETTER Earth Planets Space, 57, , 2005

LONG-PERIOD GROUND MOTION SIMULATION OF OSAKA SEDIMENTARY BASIN FOR A HYPOTHETICAL NANKAI SUBDUCTION EARTHQUAKE

Effects of Surface Geology on Seismic Motion

Source Characteristics of Large Outer Rise Earthquakes in the Pacific Plate

RISKY HIGH-RISE BUILDINGS RESONATING WITH THE LONG-PERIOD STRONG GROUND MOTIONS IN THE OSAKA BASIN, JAPAN

SOURCE MODELING OF SUBDUCTION-ZONE EARTHQUAKES AND LONG-PERIOD GROUND MOTION VALIDATION IN THE TOKYO METROPOLITAN AREA

LONG-PERIOD GROUND MOTION CHARACTERISTICS IN OSAKA BASIN, WESTERN JAPAN, FROM STRONG MOTION RECORDS OF LARGE EARTHQUAKES

Effects of Surface Geology on Seismic Motion

Long-period Ground Motion Characteristics of the Osaka Sedimentary Basin during the 2011 Great Tohoku Earthquake

THREE-DIMENSIONAL FINITE DIFFERENCE SIMULATION OF LONG-PERIOD GROUND MOTION IN THE KANTO PLAIN, JAPAN

STRONG GROUND MOTION PREDICTION FOR HUGE SUBDUCTION EARTHQUAKES USING A CHARACTERIZED SOURCE MODEL AND SEVERAL SIMULATION TECHNIQUES

Study on the effect of the oceanic water layer on strong ground motion simulations

Double-difference relocations of the 2004 off the Kii peninsula earthquakes

Scaling of characterized slip models for plate-boundary earthquakes

Effects of Surface Geology on Seismic Motion

GROUND MOTION SPECTRAL INTENSITY PREDICTION WITH STOCHASTIC GREEN S FUNCTION METHOD FOR HYPOTHETICAL GREAT EARTHQUAKES ALONG THE NANKAI TROUGH, JAPAN

THEORETICAL EVALUATION OF EFFECTS OF SEA ON SEISMIC GROUND MOTION

Urgent aftershock observation of the 2004 off the Kii Peninsula earthquake using ocean bottom seismometers

Ling Bai 1, Ichiro Kawasaki 1, Tianzhong Zhang 2, and Yuzo Ishikawa 3. Earth Planets Space, 58, , 2006

CONTROLLING FACTORS OF STRONG GROUND MOTION PREDICTION FOR SCENARIO EARTHQUAKES

Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake

Strong Ground Motion Evaluation in the Tokyo Metropolitan Area: The 1923 Kanto Earthquake and Future Subduction-Zone Earthquakes

High resolution receiver function imaging of the seismic velocity discontinuities in the crust and the uppermost mantle beneath southwest Japan

LETTER Earth Planets Space, 57, , 2005

Strong ground motions from the 2011 off-the Pacific-Coast-of-Tohoku, Japan (Mw=9.0) earthquake obtained from a dense nationwide seismic network

Long-period ground motions from a large offshore earthquake: The case of the 2004 off the Kii peninsula earthquake, Japan

Ground Motion Validation of the +3,- Kanto Earthquake Using the New Geometry of the Philippine Sea Slab and Integrated -D Velocity-Structure Model

Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms

Historical Maximum Seismic Intensity Maps in Japan from 1586 to 2004: Construction of Database and Application. Masatoshi MIYAZAWA* and Jim MORI

Long-Period Ground Motion Simulation of Tokai-Tonankai-Nankai Coupled Earthquake Based on Large-Scale 3D FEM

Pure and Applied Geophysics. TAKASHI FURUMURA, 1 TOSHIHIKO HAYAKAWA, 1 MISAO NAKAMURA, 2 KAZUKI KOKETSU, 1 and TOSHITAKA BABA 3. 1.

Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION

RECIPE FOR PREDICTING STRONG GROUND MOTIONS FROM FUTURE LARGE INTRASLAB EARTHQUAKES

3D waveform simlation in Kobe of the 1995 Hyogoken-Nanbu earthquake by FDM using with discontinuous grids

Effects of Surface Geology on Seismic Motion

REGIONAL CHARACTERISTICS OF STRESS FIELD AND ITS DYNAMICS IN AND AROUND THE NANKAI TROUGH, JAPAN

A Prototype of Strong Ground Motion Prediction Procedure for Intraslab Earthquake based on the Characterized Source Model

Comparison of Long-Period Ground Motions in the Kanto Basin during the 2004 Niigata Chuetsu and the 2011 Fukushima Hamado ri Earthquakes

Rupture process of the 2007 Chuetsu-oki, Niigata, Japan, earthquake Waveform inversion using empirical Green s functions

Crustal deformation by the Southeast-off Kii Peninsula Earthquake

Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data

Effects of Surface Geology on Seismic Motion

Amplification of Tsunami Heights by Delayed Rupture of Great Earthquakes along the Nankai Trough

PROBABILISTIC SEISMIC HAZARD MAPS AT GROUND SURFACE IN JAPAN BASED ON SITE EFFECTS ESTIMATED FROM OBSERVED STRONG-MOTION RECORDS

Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes

Source characterization of induced earthquakes by the 2011 off Tohoku, Japan, earthquake based on the strong motion simulations

Effects of Surface Geology on Seismic Motion

Rupture process of the largest aftershock of the M 9 Tohoku-oki earthquake obtained from a back-projection approach using the MeSO-net data

Effects of subsurface structures of source regions on long period ground motions observed in the Tokyo Bay area, Japan

Scenario Earthquake Shaking Maps in Japan

Inversion Analysis of Historical Interplate Earthquakes Using Seismic Intensity Data

A Study on the Prediction of Long-Period Ground Motions from Intraslab Earthquakes

Deep Seismic Surveys in the Kinki District : Shingu- Maizuru Line

Source Process and Constitutive Relations of the 2011 Tohoku Earthquake Inferred from Near-Field Strong-Motion Data

LETTER Earth Planets Space, 56, , 2004

Moment tensor inversion of near source seismograms

Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake

A study on the predominant period of long-period ground motions in the Kanto Basin, Japan

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake

The Influence of 3-D Structure on the Propagation of Seismic Waves Away from Earthquakes


Imaging of S-wave reflectors in and around the hypocentral area of the 2004 mid Niigata Prefecture Earthquake (M6.8)

(Somerville, et al., 1999) 2 (, 2001) Das and Kostrov (1986) (2002) Das and Kostrov (1986) (Fukushima and Tanaka, 1990) (, 1999) (2002) ( ) (1995

Effects of Surface Geology on Seismic Motion

Estimation of local site effects in Ojiya city using aftershock records of the 2004 Mid Niigata Prefecture earthquake and microtremors

A complex rupture image of the 2011 off the Pacific coast of Tohoku Earthquake revealed by the MeSO-net

Fault Specific, Dynamic Rupture Scenarios for Strong Ground Motion Prediction

Ground motion and rupture process of the 2004 Mid Niigata Prefecture earthquake obtained from strong motion data of K-NET and KiK-net

Precise location of the fault plane and the onset of the main rupture of the 2005 West Off Fukuoka Prefecture earthquake

Electrical Conductivity Structures around Seismically Locked Regions

by A. Nozu and K. Irikura Introduction

An intermediate deep earthquake rupturing on a dip-bending fault: Waveform analysis of the 2003 Miyagi-ken Oki earthquake

Simulation of Strong Ground Motions for a Shallow Crustal Earthquake in Japan Based on the Pseudo Point-Source Model

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation

BROADBAND SOURCE MODEL AND STRONG MOTIONS

BROADBAND STRONG MOTION SIMULATION OF THE 2004 NIIGATA- KEN CHUETSU EARTHQUAKE: SOURCE AND SITE EFFECTS

Source modeling of hypothetical Tokai-Tonankai-Nankai, Japan, earthquake and strong ground motion simulation using the empirical Green s functions

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, B08306, doi: /2004jb002980, 2004

Estimation of deep fault geometry of the Nagamachi-Rifu fault from seismic array observations

Long-Period Ground Motion Simulation and Velocity Structures

4 Associate Professor, DPRI, Kyoto University, Uji, Japan

Rapid magnitude determination from peak amplitudes at local stations

Source model of the 2005 Miyagi-Oki, Japan, earthquake estimated from broadband strong motions

Multi-planar structures in the aftershock distribution of the Mid Niigata prefecture Earthquake in 2004

Tsunami source of the 2004 off the Kii Peninsula earthquakes inferred from offshore tsunami and coastal tide gauges

ANALYTICAL STUDY ON RELIABILITY OF SEISMIC SITE-SPECIFIC CHARACTERISTICS ESTIMATED FROM MICROTREMOR MEASUREMENTS

The Japanese University Joint Seismic Observations at the Niigaka-Kobe Tectonic Zone

Effects of Surface Geology on Seismic Motion

REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE

Outline of the 2011 off the Pacific coast of Tohoku Earthquake (M w 9.0) Earthquake Early Warning and observed seismic intensity

STRONG-MOTION SEISMOGRAPH NETWORK OPERATED BY NIED: K-NET AND KiK-net

Very low frequency earthquakes excited by the 2004 off the Kii peninsula earthquakes: A dynamic deformation process in the large accretionary prism

The 2011 off the Pacific coast of Tohoku Earthquake related to a strong velocity gradient with the Pacific plate

Prediction of ground motion in the Osaka sedimentary basin associated with the hypothetical Nankai earthquake

NUMERICAL SIMULATION OF STRONG GROUND MOTION ON ADAPAZARI BASIN DURING THE 1999 KOCAELI, TURKEY, EARTHQUAKE

Characterizing Earthquake Rupture Models for the Prediction of Strong Ground Motion

Propagation Mechanism of Long-Period Ground Motions for Offshore Earthquakes along the Nankai Trough: Effects of the Accretionary Wedge

Transcription:

LETTER Earth Planets Space, 57, 197 202, 2005 Long-period ground motion simulation in the Kinki area during the MJ 7.1 foreshock of the 2004 off the Kii peninsula earthquakes Nobuyuki Yamada and Tomotaka Iwata Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan (Received December 9, 2004; Revised March 3, 2005; Accepted March 4, 2005) Long-period (5 20 s) ground motion simulations in the Kinki area during the M J 7.1 foreshock of the 2004 off the Kii peninsula earthquakes are performed. We construct a three-dimensional underground structure model that includes the source region and Osaka basin area to confirm propagation-path effects of crustal structure on long-period ground motions. Finite difference (FD) simulations by our three-dimensional underground structure model agree well with long-period observed ground motions at several rock sites in the Kinki area. We found that a sedimentary wedge structure along the Nankai trough amplifies and elongates long-period ground motions from this event. We also examine the effect of source depth for this event by comparing the observed with synthetic waveforms. These results suggest that precise modeling of the shallower parts of the underground structure, such as the sedimentary wedge, are quite important for long-period ground motion simulation of the hypothetical Nankai and Tonankai earthquakes. Key words: Long-period ground motion simulation, foreshock of the 2004 off the Kii peninsula earthquakes, Kinki area, FDM, underground structure model. 1. Introduction Two large earthquakes with M J 7.1 and 7.4 rocked Honshu from Kanto to Kyushu on 5 September 2004 (Japan Meteorological Agency, 2004). These events occurred off the Kii Peninsula in the shallower part of the subducting Philippine Sea Plate. They are located as the source region of the expected Tonankai earthquakes. During those events, many strong ground-motion records were obtained by the nationwide networks K-NET and KiK-net of NIED (The National Research Institute for Earth Science and Disaster Prevention), and local networks such as CEORKA (The Committee of Earthquake Observation and Research in the Kansai Area). Well-developed, long-period ground motions were commonly observed at the stations in large sedimentary basins such as the Osaka basin and the Kanto basin (e.g., Iwata et al., 2004; Miyake and Koketsu, 2005). The characteristics of long-period ground motion in sedimentary basins during a large earthquake are one of the most important issues for mitigating earthquake ground motion disaster. Recently, many oil tanks at Tomakomai, located in the Yufutsu sedimentary basin, were damaged by the long-period ground motions during the 2003 Tokachi-oki earthquake (Coffin and Hirata, 2003), although Tomakomai is about 200 km away from the source region. The amplification and elongation of long-period ground motions generated from this large event occurred because of propagation effects within the large sedimentary basin (e.g., Koketsu et al., 2005). The Osaka sedimentary basin is located about 150 km Copy right c The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB. away from the source regions of the hypothetical Tonankai and Nankai earthquakes. From now on, will just call these regions the source regions. The headquarters for earthquake promotion reported that a long-term evaluation of occurrence potentials of the next Nankai and Tonankai earthquakes are 50 to 60 percent within 30 years from 2005. Modern mega-cities such as Osaka and Kobe in the Osaka sedimentary basin have never experienced long-period ground motions from an M8-class earthquake. Therefore, it is very important to predict long-period ground motions in this area during hypothetical large earthquakes along the Nankai trough. To accomplish quantitative longperiod ground-motion simulations, we need to construct a three-dimensional underground structure model including the source regions and the Kinki area. The underground structure models in this area have been constructed by several researchers (e.g., Kagawa et al., 2002; Yamada and Iwata, 2004). However, it has been hard to validate them because of little ground-motion data from events in or near the source region, especially from the viewpoints of long-period ground motion (e.g., Yamada and Iwata, 2004; Hayakawa et al., 2005). Sufficient-quality ground-motion data in the wide period range from the 2004 off the Kii peninsula earthquakes enable us to confirm the validity of the underground structure model. In this paper, we simulate the long-period ground motions in the Kinki area during the M J 7.1 foreshock of a sequence of the 2004 off the Kii peninsula events. They will be used to predict long-period ground motions from the hypothetical Nankai and Tonankai earthquakes. 197

198 N. YAMADA AND T. IWATA: GROUND MOTION SIMULATION DURING THE MJ 7.1 FORESHOCK Fig. 1. Maps of the study area. (Right) Locations of the epicenters and mechanism solutions are shown. The target event is the foreshock of M J 7.1. The main shock of M J 7.4 earthquake occurred five hours after the foreshock (Japan Meteorological Agency, 2004). (Left) Detailed map of the rectangular area in the right figure. Station positions are indicated by the closed square (ERI), circles (NIED) and triangles (CEORKA), respectively. The star denotes the epicenter of the target event. The rectangular area with broken lines indicates an FD calculation area for long-period ground-motion simulation, and the area with bold curves indicate the source region of the hypothetical Nankai and Tonankai earthquakes. The A-A line shows the location of the profile in Fig. 2. KR9704 and KR9806 indicate the exploration survey lines by Nakanishi et al. (2002) and Obana et al. (2003). Fig. 2. Schematic cross-section of the underground structure along the A-A in Fig. 1. The star denotes the hypocenter of the M J 7.1 event, and the thick line indicates the source region of the hypothetical Tonankai earthquake. The layer numbers correspond to those shown in Tables 1 and 4. 2. Construction of 3D Propagation-Path Model Although the characteristics of long-period ground motion in a sedimentary basin such as the Osaka basin are controlled by not only the basin input motions but also the basin structure, we focus our attention on the former. The input motions are further controlled by the three-dimensional underground structure model between the source region and the Osaka basin, which we will call the 3D propagationpath model. As shown in Fig. 1, we construct the 3D propagation-path model in the region enclosed within the broken square. We also show rock site stations in this figure. For the 3D propagation-path model, we refer to several previous studies the depth contour map of Philippine Sea plate provided by Nakamura et al. (1997), the depth of the Conrad and Moho discontinuities obtained by Zhao et al. (1994), and the results of seismic explorations along the lines KR9704 and KR9806 in Fig. 1 (Nakanishi et al., 2002; Obana et al., 2003). We also refer to the 3D underground structure models by Furumura et al. (2003) and Yamada and Iwata (2004). In our propagation-path model, we assumed eight homogeneous layers. Figure 2 shows a schematic cross-section of the propagation-path model along the A- A line in Fig. 1. The density, P-wave velocity (Vp) and S-wave velocity (Vs) of each layer are shown in Table 1. For Vpand density we follow the previous studies, and Vs is derived assuming Vp/ Vs = 1.7. We introduce the sedimentary wedge produced by the subduction of the Philippine Sea plate to the 3D propagation-path model, as shown by layer 1 in Fig. 2. It lies parallel to the Nankai trough and its maximum thickness of the wedge is about 7 km, as reported by Nakanishi et al. (2002). The distributions of several layer boundaries of the 3D propagation-path model are shown in Fig. 3. Figure 4 shows the north-south profile of this model by the discreted data with 1 km for FD calculation along the line through the hypocenter. We don t consider seawater and surface topography in our model. 3. Ground Motion Simulation The three-dimensional FD ground motion simulations, which are mainly based on Graves (1996), are carried out with same procedure described by Yamada and Yamanaka (2001). Some parameters of this FD calculation are listed in Table 2. The period range of the calculation is 5 20 s and the time duration of synthetic waveforms is set to be 240 s.

N. YAMADA AND T. IWATA: GROUND MOTION SIMULATION DURING THE MJ 7.1 FORESHOCK 199 Table 1. Media parameters of each layer of the underground structure model. Boundary shapes of this model are shown in Figs. 3 and 4. Layer ρ Vp Vs Q No. (g/cm 3 ) (km/s) (km/s) 1 2.00 2.00 1.10 200 2 2.50 5.50 3.23 300 3 2.70 6.00 3.53 500 4 2.80 6.70 3.94 600 5 3.20 7.80 4.60 700 6 2.40 5.00 2.90 300 7 2.90 6.80 4.00 600 8 3.20 8.00 4.70 1000 Table 2. Model parameters for FD calculation. Model dimensions 299 292 75 Grid spacing 1.0 km Time step 0.061859 s Total time step 3880 (240.0 s) Table 3. Source parameters for the simulation. Fig. 3. Depth contour maps of layer boundary in the 3D propagation-path model. Each contour corresponds to the basement of the sedimentary wedge, Conrad discontinuity, Moho discontinuity, and the top of the Philippine Sea Plate, respectively. The ground motion simulation area is surrounded by a thick rectangle. The dotted line indicates the line of profile in Fig. 4. Numbers on contour lines show the depth in km. latitude 33.09 logitude 136.63 depth 18 km strike N280 E dip 42 rake 105 point source source duration 15.0 s (7.5 s 2) Fig. 4. Vertical cross-section of the 3D FD velocity model along the north-south profile crossed the hypocenter of the M J 7.1 event. The numbers correspond to the layer numbers, as shown in Table 1. Fig. 5. The source time function obtained by Yagi (2004) is the broken line (hand-digitized), and the assumed simplified source time function that consists of two continuous isosceles triangles is the solid line in this ground motion simulation. The target event is the M J 7.1 foreshock of the 2004 off the Kii peninsula earthquake on 5 September at 19:07 (JST). The epicenter and source mechanism are shown in Fig. 1 and their parameters are listed in Table 3. Referring to the source-time function obtained by Yagi (2004), we assumed a point source with a simplified source-time function consisting of two continuous isosceles triangles, with a common base time length of 7.5 s. We compare the source time function of Yagi (2004) with that we assumed in Fig. 5. The M 0 issettobe5.3 10 19 Nm. We locate the source at a depth of 18 km, which corresponds to the hypocenter depth of Yagi (2004). A comparison of the observed ground velocities with the synthetic velocities at the rock site stations are shown in Fig. 6. These observed waveforms are obtained by the broadband seismographs network (F-net) of NIED (ABU, KIS, NOK, and WTR), the strong motion seismographs network of CEORKA (CHY and HSD), and the Earthquake Research Institute, University of Tokyo (SNM). All the waveforms are band-pass filtered with a period range from 5 to 20 s. The synthetics reproduce the observations fairly well. Our 3D propagation-path model is so reasonable that

200 N. YAMADA AND T. IWATA: GROUND MOTION SIMULATION DURING THE MJ 7.1 FORESHOCK Fig. 6. Comparisons of observed ground-velocity records with simulated ones for the 3D propagation-path model. All traces are band-pass filtered from 5 to 20 s, with same amplitude scale. Top and bottom traces for each station show the observed motion and the synthetics, respectively. The peak velocity amplitude of each trace is shown at below each trace in cm/s. The epicentral distances in km are put below each station code. Station locations are indicated in Fig. 1. Fig. 7. Comparisons of observed ground velocities with synthetics at SNM and KIS for four different source depth cases. All traces are band-pass filtered from 5 to 20 s, and scaled to the same amplitude. From top to bottom, the observation and the synthetics of the four cases are shown. the long-period feature of the observed ground motions at the rock sites is recovered well. It is noted that the observed record even at SNM, which the closest station to the epicenter, has duration as long as several minutes. As the source duration is 15 s (7.5 s 2), this long duration may be caused by the very thick sedimentary wedge between the source and stations. Here we show effects of the source depth and the velocity structure on the synthetics to confirm the validity of our model. First, the synthetic waveforms for various source depths are shown in Fig. 7. We consider four source depths of 39 km (JMA), 18 km (Yagi, 2004), 13 km (F-net), and 9 km (much shallower case). The other source parameters and the 3D propagation-path model are fixed to those in Tables 1 and 3. The comparison in Fig. 7 indicates that, in the case of the depth of 9 km, the synthetic ground velocities overestimate the observations, while the amplitude of the later phase after the S-wave arrival is too small in the

N. YAMADA AND T. IWATA: GROUND MOTION SIMULATION DURING THE MJ 7.1 FORESHOCK 201 Fig. 8. Comparisons of observed ground velocities with synthetics at SNM, KIS, and WTR for five different velocity models as shown in Table 4. All traces are band-pass filtered from 5 to 20 s, and scaled to the same amplitude. From top to bottom, the observation and the synthetics of the five cases are shown. Table 4. S-wave velocity in km/s of each layer for five different underground structure models. Layer No. Model 1 Model 2 Model 3 Model 4 Model 5 (reference model) 1 3.23 1.10 3.23 1.65 1.10 2 3.23 3.23 3.23 3.23 3.23 3 3.53 3.53 3.53 3.53 3.53 4 3.94 3.94 3.94 3.94 3.94 5 4.60 4.60 4.60 4.60 4.60 6 2.90 4.70 4.70 2.90 2.90 7 4.00 4.70 4.70 4.00 4.00 8 4.70 4.70 4.70 4.70 4.70 synthetics for the depth of 39 km. On the contrary, the synthetics for the depths of 13 and 18 km reproduce the observations well. Therefore, we adopted the source depth of 18 km for the simulations in Fig. 6. Second, we test the effects of the medium velocities in the 3D propagation-path model on the synthetic waveforms. We introduce five different velocity models whose Vs are listed in Table 4. The ratio of Vp and Vs is kept at 1.7 in the whole model. We are mainly concerned with the effects of the sedimentary wedge and the oceanic crust, so that only the velocities at these parts are varied. Model 5 is a reference model, which was used for the simulation in Fig. 6. Model 1 does not include a sedimentary wedge, while Model 2 does not include the oceanic crust in the subducting slab. Model 3 is a combination of Models 1 and 2. Model 4 is almost the same as Model 5, but its sedimentary wedge has a higher velocity. Figure 8 shows the synthetic waveforms for these underground structure models and those observed at the KIS, SNM, and WTR stations. The synthetics for Model 1 have a shorter duration than that for the reference model (Model 5) and a larger amplitude of the direct S-wave part at these stations. In the comparison with the synthetics for Models 2 and 5 or those for Models 1 and 3, we confirmed that the removal of the oceanic crust from the subducting slab results in a distinct phase at about 100 s that does not appear in the

202 N. YAMADA AND T. IWATA: GROUND MOTION SIMULATION DURING THE MJ 7.1 FORESHOCK observed waveforms. Models 4 and 5 have different Vs in the sedimentary wedge. The later-phase arrivals at about 60 to 80 s for the lower Vs model (Model 5) agree better with those of the observations. 4. Conclusion We performed long-period (5 20 s) ground motion simulations during the M J 7.1 foreshock of the 2004 off the Kii peninsula earthquake in the Kinki area. We constructed a 3D propagation-path model that included the source region and Osaka basin area. It consists of the subducting Philippine Sea slab, crust, and sedimentary wedge. Our 3D propagation-path model with an appropriate source model reproduces well the observed long-period ground motions at several rock sites in the Kinki area. We also found that the sedimentary wedge amplifies and extends the duration of long-period ground motions from this event. These results suggested that the precise modeling of the shallower part in the underground structure including the sedimentary wedge is quite important for long-period ground motion simulation of hypothetical Nankai and Tonankai earthquakes. On a basis of this simulation, we are now starting to simulate ground motions using the more appropriate 3D propagation-path model including Osaka basin in order to explain observed long-period ground motion in the Osaka basin. Acknowledgments. We thank the organizations who provided some observed records: National Research Institute for Earth Science and Disaster Prevention (NIED); the Committee of Earthquake Observation and Research in the Kansai Area (CEORKA); and Earthquake Research Institute, University of Tokyo (ERI). We also thank Prof. K. Koketsu and Dr. R. W. Graves for their careful reviews of the manuscript and their useful suggestions. This study is partially supported by Special Project for Earthquake Disaster Mitigation in Urban Areas of the Ministry of Education, Science and Culture, Japan. Some figures were made using the GMT plotting package (Wessel and Smith, 1995). References Coffin, M. and N. Hirata, Large earthquake strikes Hokkaido, Japan, EOS Trans. AGU, 84, 442, 2003. Furumura, T., B. L. N. Kennett, and K. Koketsu, Visualization of 3D wave propagation from the 2000 Tottori-ken Seibu, Japan, Earthquake: Observation and numerical simulation, Bull. Seism. Soc. Am., 93, 870 881, 2003. Graves, R. W., Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bull. Seism. Soc. Am., 86, 1091 1106, 1996. Hayakawa, T., T. Furumura, and Y. Yamanaka, Simulation of strong ground motions caused by the 2004 off the Kii peninsula earthquakes, Earth Planets Space, 57, this issue, 191 196, 2005. Iwata, T., K. Asano, N. Yamada, and W. Suzuki, Long-period ground motion characteristics in Osaka basin during the 2004 Kii-Hanto-Nanto- Oki earthquake, Ann. Meeting of Seism. Soc. Japan, PK21, 2004 (in Japanese). Japan Meteorological Agency, Monthly report on earthquake and volcanoes in Japan, December 2004, 142 pp., 2004 (in Japanese). Kagawa, T., B. Zhao, K. Miyakoshi, and T. Akazawa, A procedure of modeling basin structure used for trong ground motion evaluation from any amount of given information Case study for the Osaka basin, Proc. 11th Japan Earthquake Engineering Symposium, 497 500, 2002 (in Japanese). Koketsu, K., K. Hatayama, T. Furumura, Y. Ikegami, and S. Akiyama, Damaging long-period ground motions from the 2003 Mw 8.3 Tokachioki, Japan, earthquake, Seism. Res. Lett., 76, 58 64, 2005. Miyake, H. and K. Koketsu, Long-period ground motions from a large offshore earthquake: The case of the 2004 off the Kii peninsula earthquake, Japan, Earth Planets Space, 57, this issue, 203 207, 2005. Nakamura, M., H. Watanabe, T. Konomi, S. Kimura, and K. Miura, Characteristics activities of subcrustal earthquakes along the outer zone of southwestern Japan, Annuals of Disas. Prev. Res. Inst., Kyoto Univ., 40 B1, 1 20, 1997 (in Japanese). Nakanishi, A., N. Takahashi, J. Park, S. Miura, S. Kodaira, Y. Kaneda, N. Hirata, T. Iwasaki, and M. Nakamura, Crustul structure across the coseismic rupture zone of the 1944 Tonankai earthquake, the central Nankai Trough seismogenic zone, J. Geophys. Res., 107, doi:10.1029/2001jb000424, 2002. Obana, K., S. Kodaira, Y. Kaneda, K. Mochizuki, M. Shinohara, and K. Suyehiro, Microseismicity at the seaward updip limit of the western Nanki Trough seismogenic zone, J. Geophys. Res., 108, 2459, doi: 10.1029/2002JB002370, 2003. Yagi, Y., http://iisee.kenken.go.jp/staff/yagi/eq/japan20040905/ Japan20040 905 1-j.html, 2004 (in Japanese). Yamada, N. and T. Iwata, Long-period ground motion simulation in Kinki area, Annals of Disas. Prev. Res. Inst., Kyoto Univ., 47 C, 149 155, 2004. Yamada, N. and H. Yamanaka, Comparison of performance of 3D subsurface structural models in the southern part of the Kanto plain for strong ground motion Examination using an earthquake (M JMA 4.1) in the west of Kanagawa prefecture of May 22, 1999, Zisin (J. Seism. Soc. Japan), 53, 313 324, 2001 (in Japanese). Wessel, P. and W. H. F. Smith, New version of the generic mapping tools released, EOS Trans. AGU, 76, 329, 1995. Zhao, D., A. Hasegawa, and H. Kanamori, Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events, J. Geophys. Res., 99, 22313 22329, 1994. N. Yamada (e-mail: yamada@egmdpri01.dpri.kyoto-u.ac.jp) and T. Iwata