Origin of Basaltic Magma. Geology 346- Petrology

Similar documents
Worked Example of Batch Melting: Rb and Sr

Rare Earth Elements in some representative arc lavas

Trace Elements. Today s lecture

Effect of tectonic setting on chemistry of mantle-derived melts

Chapter 9: Trace Elements

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10

Chapter 9: Trace Elements

GEOL 2312 Igneous and Metamorphic Petrology Spring 2009 Sc ore / 40

The mantle metasomatism: diversity and impact What the mantle xenoliths tell us?

Tectonic-Igneous Associations

C = 3: Ternary Systems: Example 1: Ternary Eutectic

Lecture 25 Subduction Related Magmatism

Sphene (Titanite) Plane polarized light. Honey brown/orange Wedge-shaped crystals

Florida Atlantic University PETROLOGY -- MIDTERM TWO KEY

Lecture 38. Igneous geochemistry. Read White Chapter 7 if you haven t already

THE MONTE MAGGIORE PERIDOTITE (CORSICA)

Ultramafic rocks. Types of Ultramafic Rocks. Spinel lherzolite xenolith

Igneous & Metamorphic Petrology I LECTURE 11

Geochemical evolution of the Earth mantel and crust Part 1: Mantle geochemistry

Lecture 8: Igneous Petrogenesis. Igneous rock classification Phase relations Mantle melting Trace element geochemistry

Basaltic and Gabbroic Rocks

High-T heating stage: application for igneous petrogenesis and mantle processes - melt inclusions as key tools -

High-T T heating stage: : application for igneous petrogenesis and mantle processes - melt inclusions as key tools -

SEA-FLOOR SPREADING. In the 1950 s and early 1960 s detailed study of the oceans revealed the following surprising information:-

GEOL 3313 Petrology of Igneous and Metamorphic Rocks Study Guide for Final Examination Glen Mattioli

Ocean islands and seamounts Commonly associated with hot spots. After Crough (1983) Ann. Rev. Earth Planet. Sci., 11,

Structure of the Earth and the Origin of Magmas

Evidences for geochemically distinct mantle components

Geochemical and mineralogical technics to investigate the lithosphere and the asthenosphere. 07/11/2017 GEO-DEEP 9300 Claire Aupart

Pyroxenes (Mg, Fe 2+ ) 2 Si 2 O 6 (monoclinic) and. MgSiO 3 FeSiO 3 (orthorhombic) Structure (Figure 2 of handout)

Petrology: Igneous and Metamorphic (with a few sedimentary rocks)

Igneous Rocks of the Convergent Margins

Partial melting of mantle peridotite

LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES

EMMR25 Mineralogy: Ol + opx + chlorite + cpx + amphibole + serpentine + opaque

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg

Composition of the Earth and its reservoirs: Geochemical observables

HP and UHP garnet peridotites and pyroxenites

Continental Alkaline Magmatism. The East African Rift

INTRODUCTION RESULTS METHODS. ANGELA EKSTRAND Beloit College Sponsor: Jim Rougvie TAMIR ENKHBAATAR Mongolian University of Science and Technology

12. Data from Ito et al. (1987) Chemical Geology, 62, ; Figure ; and LeRoex et al. (1983) J. Petrol., 24,

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013

Chapter 18: Granitoid Rocks. Chapter 18: Granitoid Rocks. Melting of crustal materials at high pressure

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Anderson RN, Uyeda S, Miyashiro A. (1976) Geophysical and geochemical constraints

Lecture 36. Igneous geochemistry

Supplementary Figure 1 Map of the study area Sample locations and main physiographic features of the study area. Contour interval is 200m (a) and 40m

GY303 Igneous & Metamorphic Petrology. Lecture 7: Magma Sources and Tectonic Environments

Fundamental Importance of Returned Samples to Understanding the Martian Interior

doi: /nature09369

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Associated fields include:

Advanced Igneous petrology EOSC 530 Laboratory 1: Mantle Xenoliths

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

SUPPLEMENTARY INFORMATION

Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth s upper mantle

Chapter 4 Rocks & Igneous Rocks

Chapter 21: Metamorphism. Fresh basalt and weathered basalt

The Nature of Igneous Rocks

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition

Igneous petrology EOSC 321 Laboratory 1: Ultramafic plutonic and volcanic rocks

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Classification:

Constitution of Magmas. Magmas. Gas Law. Composition. Atomic Structure of Magma. Structural Model. PV = nrt H 2 O + O -2 = 2(OH) -

NADIA MALASPINA. PLINIUS n. 32, 2006

GSA Data Repository

Copyright transferred to the author September 2, 1998.

Geodiversity Research Centre, Australian Museum, Sydney, NSW 2010, Australia.

Lecture 12 COMPLEX MELTING MODELS. (see books by Shaw, Trace Elements in Magmas (2006) and Zou, Quantitative Geochemistry (2007))

Essentials of Geology, 11e

PETROGENESIS OF EARLY SKAGI-SNAEFELLSNES RIFT BASALTS AT GRUNNAVIK, ICELAND

Imagine the first rock and the cycles that it has been through.

How 2 nd half labs will work

PUBLICATIONS. Geochemistry, Geophysics, Geosystems

Chemical Systems. Introduction to Metamorphism. Definition of Metamorphism. Lower Limit of Metamorphism. Upper Limit of Metamorphism

Petrogenetic Constraints at Mount Rainier Volcano, Washington

N = N 0 e -λt D* = N 0 -N D* = N 0 (1-e -λt ) or N(e λt -1) where N is number of parent atoms at time t, N 0

Radiogenic Isotopes. W. F. McDonough 1 1 Department of Earth Sciences and Research Center for

Engineering Geology ECIV 2204

INTRODUCTION PART 1: EVALUATION OF SINGLE-CLINOPYROXENE GEOBAROMETRY

Primary magmas and mantle temperatures

Classification of Igneous Rocks

Igneous petrology EOSC 321

Earth Science 232 Petrography

The subduction factory: Its role in the evolution of the Earth s mantle

Ancient recycled mantle lithosphere in the Hawaiian plume: Osmium Hafnium isotopic evidence from peridotite mantle xenoliths

Occurrence of mafic-ultramafic rocks

Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks

Name Petrology Spring 2006

Petrology and Geochronology of Iran Tepe volcano, Eastern Rhodopes, Bulgaria: Age relationship with the Ada Tepe gold deposit. (preliminary data)

Isotope Geochem Notes (U,Th-Pb; Sm-Nd; Re-Os; Lu-Hf)

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

Silica enrichment in the continental upper mantle via melt=rock reaction

Figure 2.2a. A classification of the phaneritic igneous rocks: Phaneritic rocks with more than 10% (quartz +

Stop the Presses! New discovery about the origin of tetrapods!

IGNEOUS ROCKS. SECTION 5.1 What are igneous rocks?

Mantle-Derived Magmas II

Geochemistry of xenolithic eclogites from West Africa, part 2: Origins of the high MgO eclogites

Lecture 24 Hawaii. Hawaii

amphibole PART 3 Pyroxene: augite CHAIN SILICATES

Chapter 25. Crystallization of the mantle. Components vs. reservoirs revisited

IV. Governador Valadares clinopyroxenite, 158 grams find

Transcription:

Origin of Basaltic Magma Geology 346- Petrology

2 principal types of basalt in the ocean basins Tholeiitic Basalt and Alkaline Basalt Table 10-1 Common petrographic differences between tholeiitic and alkaline basalts Tholeiitic Basalt Alkaline Basalt Usually fine-grained, intergranular Usually fairly coarse, intergranular to ophitic Groundmass No olivine Olivine common Clinopyroxene = augite (plus possibly pigeonite) Titaniferous augite (reddish) Orthopyroxene (hypersthene) common, may rim ol. Orthopyroxene absent No alkali feldspar Interstitial alkali feldspar or feldspathoid may occur Interstitial glass and/or quartz common Interstitial glass rare, and quartz absent Olivine rare, unzoned, and may be partially resorbed Olivine common and zoned Phenocrysts or show reaction rims of orthopyroxene Orthopyroxene uncommon Orthopyroxene absent Early plagioclase common Plagioclase less common, and later in sequence Clinopyroxene is pale brown augite Clinopyroxene is titaniferous augite, reddish rims after Hughes (1982) and McBirney (1993).

Each is chemically distinct Evolve via FX as separate series along different paths Tholeiites are generated at mid-ocean ridges Also generated at oceanic islands, subduction zones Alkaline basalts generated at ocean islands Also at subduction zones

Sources of mantle material Ophiolites Slabs of oceanic crust and upper mantle Thrust at subduction zones onto edge of continent Dredge samples from oceanic fracture zones Nodules and xenoliths in some basalts Kimberlite xenoliths Diamond-bearing pipes blasted up from the mantle carrying numerous xenoliths from depth

Lherzolite is probably fertile unaltered mantle Dunite and harzburgite are refractory residuum after basalt has been extracted by partial melting 15 Tholeiitic basalt 10 Figure 10-1 Brown and Mussett, A. E. (1993), The Inaccessible Earth: An Integrated View of Its Structure and Composition. Chapman & Hall/Kluwer. 5 Lherzolite Harzburgite Residuum 0 Dunite 0.0 0.2 0.4 0.6 0.8 Wt.% TiO 2

Lherzolite: A type of peridotite with Olivine > Opx + Cpx Olivine 90 Dunite Peridotites Lherzolite 40 Orthopyroxenite Olivine Websterite 10 Pyroxenites 10 Orthopyroxene Websterite Clinopyroxenite Figure 2-2 C After IUGS Clinopyroxene

Phase diagram for aluminous 4-phase lherzolite: Al-phase = Plagioclase shallow (< 50 km) Spinel 50-80 km Garnet 80-400 km Si VI coord. > 400 km Figure 10-2 Phase diagram of aluminous lherzolite with melting interval (gray), sub-solidus reactions, and geothermal gradient. After Wyllie, P. J. (1981). Geol. Rundsch. 70, 128-153.

How does the mantle melt?? 1) Increase the temperature Figure 10-3. Melting by raising the temperature.

2) Lower the pressure Adiabatic rise of mantle with no conductive heat loss Decompression melting could melt at least 30% Figure 10-4. Melting by (adiabatic) pressure reduction. Melting begins when the adiabat crosses the solidus and traverses the shaded melting interval. Dashed lines represent approximate % melting.

3) Add volatiles (especially H 2 O) Figure 10-4. Dry peridotite solidus compared to several experiments on H2O-saturated peridotites.

15% 20% 50% 100% Fraction melted is limited by availability of water Figure 7-22. Pressure-temperature projection of the melting relationships in the system albite-h 2 O. From Burnham and Davis (1974). A J Sci., 274, 902-940.

Heating of amphibole-bearing peridotite 1) Ocean geotherm 2) Shield geotherm Figure 10-6 Phase diagram (partly schematic) for a hydrous mantle system, including the H2O-saturated lherzolite solidus of Kushiro et al. (1968), the dehydration breakdown curves for amphibole (Millhollen et al., 1974) and phlogopite (Modreski and Boettcher, 1973), plus the ocean and shield geotherms of Clark and Ringwood (1964) and Ringwood (1966). After Wyllie (1979). In H. S. Yoder (ed.), The Evolution of the Igneous Rocks. Fiftieth Anniversary Perspectives. Princeton University Press, Princeton, N. J, pp. 483-520.

Melts can be created under realistic circumstances Plates separate and mantle rises at midocean ridges Adibatic rise decompression melting Hot spots localized plumes of melt Fluid fluxing may give LVL Also important in subduction zones and other settings

Generation of tholeiitic and alkaline basalts from a chemically uniform mantle Variables (other than X) Temperature Pressure Figure 10-2 Phase diagram of aluminous lherzolite with melting interval (gray), sub-solidus reactions, and geothermal gradient. After Wyllie, P. J. (1981). Geol. Rundsch. 70, 128-153.

Pressure effects: Figure 10-8 Change in the eutectic (first melt) composition with increasing pressure from 1 to 3 GPa projected onto the base of the basalt tetrahedron. After Kushiro (1968), J. Geophys. Res., 73, 619-634.

Liquids and residuum of melted pyrolite Figure 10-9 After Green and Ringwood (1967). Earth Planet. Sci. Lett. 2, 151-160.

Initial Conclusions: Tholeiites favored by shallower melting 25% melting at <30 km tholeiite 25% melting at 60 km olivine basalt Tholeiites favored by greater % partial melting 20 % melting at 60 km alkaline basalt incompatibles (alkalis) initial melts 30 % melting at 60 km tholeiite

Crystal Fractionation of magmas as they rise Tholeiite alkaline by FX at med to high P Not at low P Thermal divide Al in pyroxenes at Hi P Low-P FX hi-al shallow magmas ( hi-al basalt) Figure 10-10 Schematic representation of the fractional crystallization scheme of Green and Ringwood (1967) and Green (1969). After Wyllie (1971). The Dynamic Earth: Textbook in Geosciences. John Wiley & Sons.

Primary magmas Formed at depth and not subsequently modified by FX or Assimilation Criteria Highest Mg# (100Mg/(Mg+Fe)) really parental magma Experimental results of lherzolite melts Mg# = 66-75 Cr > 1000 ppm Ni > 400-500 ppm Multiply saturated

Multiple saturation Low P Ol then Plag then Cpx as cool ~70 o C T range Figure 10-12 Anhydrous P-T phase relationships for a mid-ocean ridge basalt suspected of being a primary magma. After Fujii and Kushiro (1977). Carnegie Inst. Wash. Yearb., 76, 461-465.

Multiple saturation Low P Ol then Plag then Cpx as cool 70 o C T range High P Cpx then Plag then Ol Figure 10-12 Anhydrous P-T phase relationships for a mid-ocean ridge basalt suspected of being a primary magma. After Fujii and Kushiro (1977). Carnegie Inst. Wash. Yearb., 76, 461-465.

Multiple saturation Low P Ol then Plag then Cpx as cool 70 o C T range High P Cpx then Plag then Ol 25 km get all at once = Multiple saturation Suggests that 25 km is the depth of last eq m with the mantle

Summary A chemically homogeneous mantle can yield a variety of basalt types Alkaline basalts are favored over tholeiites by deeper melting and by low % PM Fractionation at moderate to high depths can also create alkaline basalts from tholeiites At low P there is a thermal divide that separates the two series

sample/chondrite Review of REE 10.00 8.00 6.00 4.00 2.00 0.00 La Ce Nd Sm Eu Tb Er Yb Lu atomic number increasing incompatibility

Review of REE Figure 9-4. Rare Earth concentrations (normalized to chondrite) for melts produced at various values of F via melting of a hypothetical garnet lherzolite using the batch melting model (equation 9-5). From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. increasing incompatibility

REE data for oceanic basalts increasing incompatibility Figure 10-13a. REE diagram for a typical alkaline ocean island basalt (OIB) and tholeiitic mid-ocean ridge basalt (MORB). From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. Data from Sun and McDonough (1989).

Spider diagram for oceanic basalts increasing incompatibility Figure 10-13b. Spider diagram for a typical alkaline ocean island basalt (OIB) and tholeiitic mid-ocean ridge basalt (MORB). From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. Data from Sun and McDonough (1989).

LREE depleted or unfractionated LREE enriched REE data for UM xenoliths LREE depleted or unfractionated Figure 10-14 Chondrite-normalized REE diagrams for spinel (a) and garnet (b) lherzolites. After Basaltic Volcanism Study Project (1981). Lunar and Planetary Institute. LREE enriched

Review of Sr isotopes 87 Rb 87 Sr l = 1.42 x 10-11 a Rb (parent) conc. in enriched reservoir (incompatible) Enriched reservoir develops more 87 Sr over time Depleted reservoir (less Rb) develops less 87 Sr over time Figure 9-13. After Wilson (1989). Igneous Petrogenesis. Unwin Hyman/Kluwer.

Review of Nd isotopes 147 Sm 143 Nd l = 6.54 x 10-13 a Nd (daughter) enriched reservoir > Sm Enriched res. develops less 143 Nd over time Depleted res. (higher Sm/Nd) develops higher 143 Nd/ 144 Nd over time Nd REE diagram Sm Figure 9-15. After Wilson (1989). Igneous Petrogenesis. Unwin Hyman/Kluwer.

Nd and Sr isotopes of Ocean Basalts Mantle Array Figure 10-15 (a) Initial 143 Nd/ 144 Nd vs. 87 Sr/ 86 Sr for oceanic basalts. From Wilson (1989). Igneous Petrogenesis. Unwin Hyman/Kluwer. Data from Zindler et al. (1982) and Menzies (1983).

Nd and Sr isotopes of Kimberlite Xenoliths Figure 10-15 (b) Initial 143 Nd/ 144 Nd vs. 87 Sr/ 86 Sr for mantle xenoliths. From Wilson (1989). Igneous Petrogenesis. Unwin Hyman/Kluwer. Data from Zindler et al. (1982) and Menzies (1983).

Mantle model circa 1975 Figure 10-16a After Basaltic Volcanism Study Project (1981). Lunar and Planetary Institute.

Newer mantle model Upper depleted mantle = MORB source Lower undepleted & enriched OIB source Figure 10-16b After Basaltic Volcanism Study Project (1981). Lunar and Planetary Institute.

Experiments on melting enriched vs. depleted mantle samples: 1. Depleted Mantle Tholeiite easily created by 10-30% PM More silica saturated at lower P Grades toward alkalic at higher P Figure 10-17a. Results of partial melting experiments on depleted lherzolites. Dashed lines are contours representing percent partial melt produced. Strongly curved lines are contours of the normative olivine content of the melt. Opx out and Cpx out represent the degree of melting at which these phases are completely consumed in the melt. After Jaques and Green (1980). Contrib. Mineral. Petrol., 73, 287-310.

Experiments on melting enriched vs. depleted mantle samples: 2. Enriched Mantle Tholeiites extend to higher P than for DM Alkaline basalt field at higher P yet And lower % PM Figure 10-17b. Results of partial melting experiments on fertile lherzolites. Dashed lines are contours representing percent partial melt produced. Strongly curved lines are contours of the normative olivine content of the melt. Opx out and Cpx out represent the degree of melting at which these phases are completely consumed in the melt. The shaded area represents the conditions required for the generation of alkaline basaltic magmas. After Jaques and Green (1980). Contrib. Mineral. Petrol., 73, 287-310.