BIOLOGY. An Introduction to Metabolism CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

Similar documents
An Introduction to Metabolism

9/25/2011. Outline. Overview: The Energy of Life. I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V.

An Introduction to Metabolism

An Introduction to Metabolism

An Introduction to Metabolism

An Introduction to Metabolism

BIOLOGY 10/11/2014. An Introduction to Metabolism. Outline. Overview: The Energy of Life

An Introduction to Metabolism

An Introduction to Metabolism

An Introduction to Metabolism

An Introduction to Metabolism

An Introduction to Metabolism

An Introduction to Metabolism

Metabolism and Energy. Mrs. Stahl AP Biology

General Biology. The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy in many ways

Ch. 8 Metabolism and Energy BIOL 222

Chapter 8: An Introduction to Metabolism. 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways

CHAPTER 8. An Introduction to Metabolism

An Introduction to Metabolism

BIOLOGY. An Introduction to Metabolism CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

Chapter 6 # METABOLISM PowerPoint Image Slideshow

An Introduction to Metabolism. Chapter 8

An Introduction to Metabolism

The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy in many ways.

Chapter 6 An Introduction to Metabolism

Chapter 6- An Introduction to Metabolism*

Chapter 8 Notes. An Introduction to Metabolism

Chapter 6. Ground Rules Of Metabolism

An Introduction to Metabolism

An Introduction to Metabolism

An Introduction to Metabolism

Energy, Enzymes, and Metabolism. Energy, Enzymes, and Metabolism. A. Energy and Energy Conversions. A. Energy and Energy Conversions

Energy Transformation, Cellular Energy & Enzymes (Outline)

Objectives INTRODUCTION TO METABOLISM. Metabolism. Catabolic Pathways. Anabolic Pathways 3/6/2011. How to Read a Chemical Equation

Metabolism and Enzymes

Energy Transformation and Metabolism (Outline)

An introduction to metabolism

Metabolism, Energy and Life

An Introduction to Metabolism

An Introduction to Metabolism

An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism

Introduction to Metabolism (Or Energy Management) Chapter 8

AN INTRODUCTION TO METABOLISM. Metabolism, Energy, and Life

Chapter 8: An Introduction to Metabolism

Chapter 8. An Introduction to Metabolism

An Introduction to Metabolism

An Introduction to Metabolism

Flow of Energy. Flow of Energy. Energy and Metabolism. Chapter 6

Activity: Identifying forms of energy

Metabolism and enzymes

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

Chapter 5. Energy Flow in the Life of a Cell

Lecture 7: Enzymes and Energetics

Metabolism. AP Biology Chapter 8

Big Idea #2. Energy. Types of Potential Energy. Kinetic Energy. Chemical Potential Energy. Metabolism

Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of

Ground Rules of Metabolism CHAPTER 6

Chapter 8 Introduction to Metabolism. Metabolism. The sum total of the chemical reactions that occur in a living thing.

Ch. 3 Metabolism and Enzymes

Chapter 8: An Introduction to Metabolism

Chapter 5. Directions and Rates of Biochemical Processes

Biology Kevin Dees. Chapter 8 Introduction to Metabolism

Chapter 6: Energy Flow in the Life of a Cell

Without Energy, There Is No Life

ATP ATP. The energy needs of life. Living economy. Where do we get the energy from? 9/11/2015. Making energy! Organisms are endergonic systems

Chapter 6~ An Introduction to Metabolism

Chapter 6 Active Reading Guide An Introduction to Metabolism

I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI.

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6

Chapter 8: An Introduction to Metabolism

1. Metabolism is the total of all the chemical processes that occur in an organism.

What Is Energy? Energy is the capacity to do work. First Law of Thermodynamics. Types of energy

Chapter 8: Energy and Metabolism

*The entropy of a system may decrease, but the entropy of the system plus its surroundings must always increase

Lecture #8 9/21/01 Dr. Hirsh

Metabolism: Energy and Enzymes. February 24 th, 2012

3.1 Metabolism and Energy

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy

Do Now. What is happening in the pictures below? How do you know? What evidence do you have to support your answer?

Enzymes are macromolecules (proteins) that act as a catalyst

Chapter 6: Energy Flow in the Life of a Cell

Notice that this is an open system!

Pathways that Harvest and Store Chemical Energy

(kilo ) or heat energy (kilo ) C. Organisms carry out conversions between potential energy and kinetic energy 1. Potential energy is energy;

Life Requires FREE ENERGY!

2. The study of is the study of behavior (capture, storage, usage) of energy in living systems.

Chapter 5 Metabolism: Energy & Enzymes

AP Biology. Metabolism & Enzymes

This is an example of cellular respiration, which can be used to make beer and wine using different metabolic pathways For these reasons we call this

Chapter 5. The Working Cell. PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey

Chapter 5. The Working Cell. PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey

Chapter 6: Energy and Metabolism

Chapter Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow,

Chapter 5 Ground Rules of Metabolism Sections 1-5

Biological Chemistry and Metabolic Pathways

2054, Chap. 8, page 1

Ch 4: Cellular Metabolism, Part 1

WHAT YOU NEED TO KNOW:

Energy & Metabolism. Two states of energy. Low and high potential energy 9/23/2016. Energy

Transcription:

CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 8 An Introduction to Metabolism Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

The Energy of Life The living cell is a miniature chemical factory where thousands of reactions occur The cell extracts energy stored in sugars and other fuels and applies energy to perform work Some organisms even convert energy to light, as in bioluminescence

Figure 8.1

Figure 8.1a

Concept 8.1: An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics Metabolism is the totality of an organism s chemical reactions Metabolism is an emergent property of life that arises from orderly interactions between molecules

Organization of the Chemistry of Life into Metabolic Pathways A metabolic pathway begins with a specific molecule and ends with a product Each step is catalyzed by a specific enzyme

Figure 8.UN01 Enzyme 1 Enzyme 2 Enzyme 3 A B C D 1 StartingReaction Reaction 2 Reaction 3 molecule

Catabolic pathways release energy by breaking down complex molecules into simpler compounds Cellular respiration, the breakdown of glucose in the presence of oxygen, is an example of a pathway of catabolism

Anabolic pathways consume energy to build complex molecules from simpler ones The synthesis of protein from amino acids is an example of anabolism Bioenergetics is the study of how energy flows through living organisms

Forms of Energy Energy is the capacity to cause change Energy exists in various forms, some of which can perform work

Kinetic energy is energy associated with motion Heat (thermal energy) is kinetic energy associated with random movement of atoms or molecules Potential energy is energy that matter possesses because of its location or structure Chemical energy is potential energy available for release in a chemical reaction Energy can be converted from one form to another

Figure 8.2 A diver has more potential energy on the platform than in the water. Diving converts potential energy to kinetic energy. Climbing up converts the kinetic energy of muscle movement to potential energy. A diver has less potential energy in the water than on the platform.

Animation: Energy Concepts

The Laws of Energy Transformation Thermodynamics is the study of energy transformations An isolated system, such as that approximated by liquid in a thermos, is unable to exchange energy or matter with its surroundings In an open system, energy and matter can be transferred between the system and its surroundings Organisms are open systems

The First Law of Thermodynamics According to the first law of thermodynamics, the energy of the universe is constant Energy can be transferred and transformed, but it cannot be created or destroyed The first law is also called the principle of conservation of energy

Figure 8.3 Heat CO 2 Chemical energy H 2 O (a) First law of thermodynamics (b) Second law of thermodynamics

Figure 8.3a Chemical energy (a) First law of thermodynamics

Figure 8.3b Heat CO 2 H 2 O (b) Second law of thermodynamics

The Second Law of Thermodynamics During every energy transfer or transformation, some energy is unusable, and is often lost as heat According to the second law of thermodynamics Every energy transfer or transformation increases the entropy (disorder) of the universe

Living cells unavoidably convert organized forms of energy to heat Spontaneous processes occur without energy input; they can happen quickly or slowly For a process to occur without energy input, it must increase the entropy of the universe

Biological Order and Disorder Cells create ordered structures from less ordered materials Organisms also replace ordered forms of matter and energy with less ordered forms Energy flows into an ecosystem in the form of light and exits in the form of heat

Figure 8.4

Figure 8.4a

Figure 8.4b

The evolution of more complex organisms does not violate the second law of thermodynamics Entropy (disorder) may decrease in an organism, but the universe s total entropy increases

Concept 8.2: The free-energy change of a reaction tells us whether or not the reaction occurs spontaneously Biologists want to know which reactions occur spontaneously and which require input of energy To do so, they need to determine energy changes that occur in chemical reactions

Free-Energy Change, ΔG A living system s free energy is energy that can do work when temperature and pressure are uniform, as in a living cell

The change in free energy ( G) during a process is related to the change in enthalpy, or change in total energy ( H), change in entropy ( S), and temperature in Kelvin units (T) G = H T S Only processes with a negative G are spontaneous Spontaneous processes can be harnessed to perform work

Free Energy, Stability, and Equilibrium Free energy is a measure of a system s instability, its tendency to change to a more stable state During a spontaneous change, free energy decreases and the stability of a system increases Equilibrium is a state of maximum stability A process is spontaneous and can perform work only when it is moving toward equilibrium

Figure 8.5 More free energy (higher G) Less stable Greater work capacity In a spontaneous change The free energy of the system decreases ( G < 0) The system becomes more stable The released free energy can be harnessed to do work Less free energy (lower G) More stable Less work capacity (a) Gravitational motion (b) Diffusion (c) Chemical reaction

Figure 8.5a More free energy (higher G) Less stable Greater work capacity In a spontaneous change The free energy of the system decreases ( G < 0) The system becomes more stable The released free energy can be harnessed to do work Less free energy (lower G) More stable Less work capacity

Figure 8.5b (a) Gravitational motion (b) Diffusion (c) Chemical reaction

Free Energy and Metabolism The concept of free energy can be applied to the chemistry of life s processes

Exergonic and Endergonic Reactions in Metabolism An exergonic reaction proceeds with a net release of free energy and is spontaneous An endergonic reaction absorbs free energy from its surroundings and is nonspontaneous

Figure 8.6 (a) Exergonic reaction: energy released, spontaneous Reactants Free energy Energy Products Amount of energy released ( G < 0) (b) Progress of the reaction Endergonic reaction: energy required, nonspontaneous Products Free energy Reactants Energy Amount of energy required ( G > 0) Progress of the reaction

Figure 8.6a (a) Exergonic reaction: energy released, spontaneous Reactants Free energy Energy Products Amount of energy released ( G < 0) Progress of the reaction

Figure 8.6b (b) Endergonic reaction: energy required, nonspontaneous Products Free energy Reactants Energy Amount of energy required ( G > 0) Progress of the reaction

Equilibrium and Metabolism Reactions in a closed system eventually reach equilibrium and then do no work

Figure 8.7 G < 0 G = 0

Cells are not in equilibrium; they are open systems experiencing a constant flow of materials A defining feature of life is that metabolism is never at equilibrium A catabolic pathway in a cell releases free energy in a series of reactions

Figure 8.8 (a) An open hydroelectric system G < 0 G < 0 G < 0 G < 0 (b) A multistep open hydroelectric system

Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions A cell does three main kinds of work Chemical Transport Mechanical To do work, cells manage energy resources by energy coupling, the use of an exergonic process to drive an endergonic one Most energy coupling in cells is mediated by ATP

The Structure and Hydrolysis of ATP ATP (adenosine triphosphate) is the cell s energy shuttle ATP is composed of ribose (a sugar), adenine (a nitrogenous base), and three phosphate groups

Figure 8.9 Adenine Triphosphate group (3 phosphate groups) Ribose (a) The structure of ATP Adenosine triphosphate (ATP) H 2 O Energy Inorganic phosphate (b) The hydrolysis of ATP Adenosine diphosphate (ADP)

Figure 8.9a Adenine Triphosphate group (3 phosphate groups) (a) The structure of ATP Ribose

Figure 8.9b Adenosine triphosphate (ATP) H 2 O Energy Inorganic phosphate (b) The hydrolysis of ATP Adenosine diphosphate (ADP)

Video: Space-Filling Model of ATP

Video: Stick Model of ATP

The bonds between the phosphate groups of ATP s tail can be broken by hydrolysis Energy is released from ATP when the terminal phosphate bond is broken This release of energy comes from the chemical change to a state of lower free energy, not from the phosphate bonds themselves

How the Hydrolysis of ATP Performs Work The three types of cellular work (mechanical, transport, and chemical) are powered by the hydrolysis of ATP In the cell, the energy from the exergonic reaction of ATP hydrolysis can be used to drive an endergonic reaction Overall, the coupled reactions are exergonic

ATP drives endergonic reactions by phosphorylation, transferring a phosphate group to some other molecule, such as a reactant The recipient molecule is now called a phosphorylated intermediate

Figure 8.10 NH 3 NH 2 Glu Glu Glutamic acid Ammonia Glutamine (a) Glutamic acid conversion to glutamine G Glu = +3.4 kcal/mol NH 3 Glu ATP 1 P 2 ADP Glu NH 2 Glu ADP P i Glutamic acid Phosphorylated intermediate Glutamine (b) Conversion reaction coupled with ATP hydrolysis G Glu = +3.4 kcal/mol Glu NH 3 ATP NH 2 Glu ADP P i G Glu = +3.4 kcal/mol + G ATP = 7.3 kcal/mol G ATP = 7.3 kcal/mol Net G = 3.9 kcal/mol (c) Free-energy change for coupled reaction

Figure 8.10a Glu NH 3 Glu NH 2 Glutamic acid Ammonia G Glu = +3.4 kcal/mol Glutamine (a) Glutamic acid conversion to glutamine

Figure 8.10b Glu ATP 1 Glu P ADP Glutamic acid Phosphorylated intermediate NH 3 Glu P ADP 2 NH 2 Glu ADP P i Phosphorylated intermediate Glutamine (b) Conversion reaction coupled with ATP hydrolysis

Figure 8.10c G Glu = +3.4 kcal/mol Glu NH 3 ATP NH 2 Glu ADP P i G Glu = +3.4 kcal/mol + G ATP = 7.3 kcal/mol Net G = 3.9 kcal/mol G ATP = 7.3 kcal/mol (c) Free-energy change for coupled reaction

Transport and mechanical work in the cell are also powered by ATP hydrolysis ATP hydrolysis leads to a change in protein shape and binding ability

Figure 8.11 Transport protein Solute ATP ADP P i P P i Solute transported (a) Transport work: ATP phosphorylates transport proteins. Vesicle Cytoskeletal track ATP ATP ADP P i (b) Motor protein Protein and vesicle moved Mechanical work: ATP binds noncovalently to motor proteins and then is hydrolyzed.

The Regeneration of ATP ATP is a renewable resource that is regenerated by addition of a phosphate group to adenosine diphosphate (ADP) The energy to phosphorylate ADP comes from catabolic reactions in the cell The ATP cycle is a revolving door through which energy passes during its transfer from catabolic to anabolic pathways

Figure 8.12 ATP H 2 O Energy from catabolism (exergonic, energyreleasing processes) ADP P i Energy for cellular work (endergonic energy-consuming processes)

Concept 8.4: Enzymes speed up metabolic reactions by lowering energy barriers A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction An enzyme is a catalytic protein Hydrolysis of sucrose by the enzyme sucrase is an example of an enzyme-catalyzed reaction

Figure 8.UN02 Sucrase Sucrose (C 12 H 22 O 11 ) Glucose (C 6 H 12 O 6 ) Fructose (C 6 H 12 O 6 )

The Activation Energy Barrier Every chemical reaction between molecules involves bond breaking and bond forming The initial energy needed to start a chemical reaction is called the free energy of activation, or activation energy (E A ) Activation energy is often supplied in the form of thermal energy that the reactant molecules absorb from their surroundings

Figure 8.13 A B C D Transition state Free energy A B C D Reactants E A A B G < O C D Products Progress of the reaction

Animation: How Enzymes Work

How Enzymes Speed Up Reactions Enzymes catalyze reactions by lowering the E A barrier Enzymes do not affect the change in free energy ( G); instead, they hasten reactions that would occur eventually

Figure 8.14 Free energy Course of reaction without enzyme Reactants Course of reaction with enzyme E A without enzyme E A with enzyme is lower G is unaffected by enzyme Products Progress of the reaction

Substrate Specificity of Enzymes The reactant that an enzyme acts on is called the enzyme s substrate The enzyme binds to its substrate, forming an enzyme-substrate complex The reaction catalyzed by each enzyme is very specific

The active site is the region on the enzyme where the substrate binds Induced fit of a substrate brings chemical groups of the active site into positions that enhance their ability to catalyze the reaction

Figure 8.15 Substrate Active site Enzyme Enzyme-substrate complex

Video: Closure of Hexokinase Via Induced Fit

Catalysis in the Enzyme s Active Site In an enzymatic reaction, the substrate binds to the active site of the enzyme The active site can lower an E A barrier by Orienting substrates correctly Straining substrate bonds Providing a favorable microenvironment Covalently bonding to the substrate

Figure 8.16-1 1 Substrates enter 2 active site. Substrates are held in active site by weak interactions. Substrates Enzyme-substrate complex

Figure 8.16-2 1 Substrates enter 2 active site. Substrates are held in active site by weak interactions. Substrates Enzyme-substrate complex 3 Substrates are converted to products.

Figure 8.16-3 1 Substrates enter 2 active site. Substrates are held in active site by weak interactions. Substrates Enzyme-substrate complex 4 Products are released. Products 3 Substrates are converted to products.

Figure 8.16-4 1 Substrates enter 2 active site. Substrates are held in active site by weak interactions. Substrates Enzyme-substrate complex 5 Active site is available for new substrates. Enzyme 4 Products are released. Products 3 Substrates are converted to products.

Effects of Local Conditions on Enzyme Activity An enzyme s activity can be affected by General environmental factors, such as temperature and ph Chemicals that specifically influence the enzyme

Effects of Temperature and ph Each enzyme has an optimal temperature in which it can function Each enzyme has an optimal ph in which it can function Optimal conditions favor the most active shape for the enzyme molecule

Figure 8.17 Rate of reaction Optimal temperature for typical human enzyme (37 C) Optimal temperature for enzyme of thermophilic (heat-tolerant) bacteria (77 C) 0 20 40 60 80 100 120 Temperature ( C) (a) Optimal temperature for two enzymes Rate of reaction Optimal ph for pepsin (stomach enzyme) Optimal ph for trypsin (intestinal enzyme) 0 1 2 3 4 5 6 7 8 9 10 ph (b) Optimal ph for two enzymes

Figure 8.17a Rate of reaction Optimal temperature for typical human enzyme (37 C) Optimal temperature for enzyme of thermophilic (heat-tolerant) bacteria (77 C) 0 20 40 60 80 100 120 Temperature ( C) (a) Optimal temperature for two enzymes

Figure 8.17b Rate of reaction Optimal ph for pepsin (stomach enzyme) Optimal ph for trypsin (intestinal enzyme) 0 1 2 3 4 5 6 7 8 9 10 ph (b) Optimal ph for two enzymes

Cofactors Cofactors are nonprotein enzyme helpers Cofactors may be inorganic (such as a metal in ionic form) or organic An organic cofactor is called a coenzyme Coenzymes include vitamins

Enzyme Inhibitors Competitive inhibitors bind to the active site of an enzyme, competing with the substrate Noncompetitive inhibitors bind to another part of an enzyme, causing the enzyme to change shape and making the active site less effective Examples of inhibitors include toxins, poisons, pesticides, and antibiotics

Figure 8.18 (a) Normal binding (b) Competitive inhibition (c) Noncompetitive inhibition Substrate Active site Enzyme Competitive inhibitor Noncompetitive inhibitor

The Evolution of Enzymes Enzymes are proteins encoded by genes Changes (mutations) in genes lead to changes in amino acid composition of an enzyme Altered amino acids in enzymes may result in novel enzyme activity or altered substrate specificity Under new environmental conditions a novel form of an enzyme might be favored For example, six amino acid changes improved substrate binding and breakdown in E. coli

Figure 8.19 Two changed amino acids were found near the active site. Active site Two changed amino acids were found in the active site. Two changed amino acids were found on the surface.

Concept 8.5: Regulation of enzyme activity helps control metabolism Chemical chaos would result if a cell s metabolic pathways were not tightly regulated A cell does this by switching on or off the genes that encode specific enzymes or by regulating the activity of enzymes

Allosteric Regulation of Enzymes Allosteric regulation may either inhibit or stimulate an enzyme s activity Allosteric regulation occurs when a regulatory molecule binds to a protein at one site and affects the protein s function at another site

Allosteric Activation and Inhibition Most allosterically regulated enzymes are made from polypeptide subunits Each enzyme has active and inactive forms The binding of an activator stabilizes the active form of the enzyme The binding of an inhibitor stabilizes the inactive form of the enzyme

Figure 8.20 (a) Allosteric activators and inhibitors Allosteric enzyme with four subunits Active site (one of four) (b) Cooperativity: another type of allosteric activation Substrate Regulatory site (one Activator of four) Active form Stabilized active form Inactive form Stabilized active form Nonfunctional active site Oscillation Inhibitor Inactive form Stabilized inactive form

Cooperativity is a form of allosteric regulation that can amplify enzyme activity One substrate molecule primes an enzyme to act on additional substrate molecules more readily Cooperativity is allosteric because binding by a substrate to one active site affects catalysis in a different active site

Feedback Inhibition In feedback inhibition, the end product of a metabolic pathway shuts down the pathway Feedback inhibition prevents a cell from wasting chemical resources by synthesizing more product than is needed

Figure 8.21 Active site available Threonine in active site Isoleucine used up by cell Isoleucine binds to allosteric site. Feedback inhibition Active site no longer available; pathway is halted. Intermediate A Intermediate B Intermediate C Intermediate D Enzyme 1 (threonine deaminase) Enzyme 2 Enzyme 3 Enzyme 4 Enzyme 5 End product (isoleucine)

Localization of Enzymes Within the Cell Structures within the cell help bring order to metabolic pathways Some enzymes act as structural components of membranes In eukaryotic cells, some enzymes reside in specific organelles; for example, enzymes for cellular respiration are located in mitochondria

Figure 8.22 Mitochondria The matrix contains enzymes in solution that are involved on one stage of cellular respiration. Enzymes for another stage of cellular respiration are embedded in the inner membrane 1 µm

Figure 8.22a The matrix contains enzymes in solution that are involved in one stage of cellular respiration. Enzymes for another stage of cellular respiration are embedded in the inner membrane. 1 µm

Figure 8.UN03a

Figure 8.UN03b

Figure 8.UN04 Free energy Course of reaction without enzyme Reactants Course of reaction with enzyme E A without enzyme E A with enzyme is lower G is unaffected by enzyme Products Progress of the reaction

Figure 8.UN05