Best Experienced Payoff Dynamics and Cooperation in the Centipede Game: Online Appendix

Similar documents
Best Experienced Payoff Dynamics and Cooperation in the Centipede Game

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

Principal Component Analysis

A strongly polynomial algorithm for linear systems having a binary solution

Jim Lambers MAT 610 Summer Session Lecture 2 Notes

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

1 Directional Derivatives and Differentiability

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2

MATHEMATICS 217 NOTES

22m:033 Notes: 7.1 Diagonalization of Symmetric Matrices

Appendix B for The Evolution of Strategic Sophistication (Intended for Online Publication)

REAL LINEAR ALGEBRA: PROBLEMS WITH SOLUTIONS

SUMMARY OF MATH 1600

October 25, 2013 INNER PRODUCT SPACES

Lecture 12 : Graph Laplacians and Cheeger s Inequality

Lecture 2: Linear Algebra Review

IRREDUCIBLE REPRESENTATIONS OF SEMISIMPLE LIE ALGEBRAS. Contents

Numerical Analysis Lecture Notes

Chapter 6: Orthogonality

Combinatorial Optimization Spring Term 2015 Rico Zenklusen. 2 a = ( 3 2 ) 1 E(a, A) = E(( 3 2 ), ( 4 0

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

Reconstruction and Higher Dimensional Geometry

Multi-Robotic Systems

Overview of Computer Algebra

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N.

MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003

Quadratic forms. Here. Thus symmetric matrices are diagonalizable, and the diagonalization can be performed by means of an orthogonal matrix.

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem.

Chapter 3 Transformations

Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015

Throughout these notes we assume V, W are finite dimensional inner product spaces over C.

Some notes on Coxeter groups

Near-Potential Games: Geometry and Dynamics

Lecture 10 - Eigenvalues problem

Spectral Theorem for Self-adjoint Linear Operators

Lecture notes: Applied linear algebra Part 1. Version 2

12.4 The Diagonalization Process

Lecture Notes 1: Vector spaces

Methods for sparse analysis of high-dimensional data, II

5.3 The Power Method Approximation of the Eigenvalue of Largest Module

Linear Algebra Review. Vectors

Quantum Computing Lecture 2. Review of Linear Algebra

CSE 206A: Lattice Algorithms and Applications Spring Basis Reduction. Instructor: Daniele Micciancio

Differential Topology Final Exam With Solutions

Notes on the matrix exponential

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces.

Diagonalisierung. Eigenwerte, Eigenvektoren, Mathematische Methoden der Physik I. Vorlesungsnotizen zu

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

FIXED POINT ITERATIONS

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent.

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T

1 9/5 Matrices, vectors, and their applications

Lecture Notes 6: Dynamic Equations Part C: Linear Difference Equation Systems

Vector Spaces and Subspaces

Classification of root systems

Absolute value equations

No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question.

Lecture 10: October 27, 2016

Linear Algebra. Min Yan

1 Last time: least-squares problems

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88

CS261: A Second Course in Algorithms Lecture #12: Applications of Multiplicative Weights to Games and Linear Programs

Review of Linear Algebra

9.1 Eigenvectors and Eigenvalues of a Linear Map

Lebesgue Measure on R n

Math 217: Eigenspaces and Characteristic Polynomials Professor Karen Smith

Conceptual Questions for Review

The Cayley-Hamilton Theorem and the Jordan Decomposition

Mathematical Optimisation, Chpt 2: Linear Equations and inequalities

Gaussian Elimination for Linear Systems

Methods for sparse analysis of high-dimensional data, II

Real Analysis Notes. Thomas Goller

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

Analysis-3 lecture schemes

Errors. Intensive Computation. Annalisa Massini 2017/2018

Linear Algebraic Equations

MATH 223A NOTES 2011 LIE ALGEBRAS 35

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs

Rendezvous On A Discrete Line

Introduction to Real Analysis Alternative Chapter 1

. = V c = V [x]v (5.1) c 1. c k

Linear Algebra 1. M.T.Nair Department of Mathematics, IIT Madras. and in that case x is called an eigenvector of T corresponding to the eigenvalue λ.

Chapter Two Elements of Linear Algebra

A Review of Linear Algebra

Random matrices: Distribution of the least singular value (via Property Testing)

FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

Notes on basis changes and matrix diagonalization

Iterative Methods for Solving A x = b

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS

A matrix over a field F is a rectangular array of elements from F. The symbol

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets

Final Exam Practice Problems Answers Math 24 Winter 2012

The SVD-Fundamental Theorem of Linear Algebra

LECTURE OCTOBER, 2016

Jordan normal form notes (version date: 11/21/07)

Eigenvalues and Eigenvectors

Lecture 8 : Eigenvalues and Eigenvectors

Evolutionary Dynamics and Extensive Form Games by Ross Cressman. Reviewed by William H. Sandholm *

ECE 275A Homework #3 Solutions

Transcription:

Best Experienced Payoff Dynamics and Cooperation in the Centipede Game: Online Appendix William H Sandholm, Segismundo S Izquierdo, and Luis R Izquierdo February 8, 018 Contents I Exact and numerical calculation in Mathematica I1 Algebraic numbers and solutions to polynomial equations I Algorithms from computational algebra 3 I3 Numerical evaluation and precision tracking 3 II The BEP Centipedenb notebook 4 II1 Exact analysis 4 II Numerical analysis 5 II3 More on computation of approximate rest points and eigenvalues 6 III Dimension reduction for local stability analysis 7 IV Time until convergence under different test-set rules 10 V Analyses of repulsion from the backward induction state 13 V1 Test-two, stick-if-tie: 13 V Test-adjacent, stick-if-tie: 14 VI Formulas for BEP(τ, 1, β) dynamics in Centipede 15 VI1 Test-all 15 VI Test-two 16 VI3 Test-adjacent 17 VII Multinomial formulas for BEP(τ, κ, β) dynamics 18 Department of Economics, University of Wisconsin Department of Industrial Organization, Universidad de Valladolid Department of Civil Engineering, Universidad de Burgos

VIII Approximate components of interior rest points 0 VIII1 Test-all 1 VIII Test-two 5 VIII3 Test-adjacent 9 IX Approximate eigenvalues of DV(ξ ) 33 IX1 Test-all 33 IX Test-two 35 IX3 Test-adjacent 37 I Exact and numerical calculation in Mathematica In this section we describe the built-in Mathematica functions we use to prove exact (analytical) results and to obtain numerical evaluations of exact expressions I1 Algebraic numbers and solutions to polynomial equations To obtain our analytical results, we take advantage of Mathematica s ability to perform exact computations using algebraic numbers As described in Strzeboński (1996, 1997), Mathematica represents algebraic numbers using Root objects, with Root[poly, k] designating one of the roots of the minimal polynomial poly The index k is used to single out a particular root of poly, with the lowest indices referring to the real roots of poly in increasing order, and the higher indices referring to the complex roots in a more complicated way Root objects also contain a hidden third element that specifies an isolating set for the root, meaning a set containing the root of poly in question and no others The forms of isolating sets depend on whether roots are isolated using arbitraryprecision floating point methods or exact methods If Mathematica s default settings are used, then roots are isolated using arbitrary-precision floating point methods based on the Jenkins-Traub algorithm (Jenkins (1969), Jenkins and Traub (1970a,b)), the workhorse numerical algorithm for this purpose While in theory this algorithm always isolates all real and complex roots of poly in disjoint disks in the complex plane, flawless implementation of the algorithm is difficult; see Strzeboński (1997, p 649) If we instead use the setting SetOptions[Root,ExactRootIsolation->True] then Mathematica isolates roots using exact methods that is, methods that only use rational number calculations Real roots of polynomials are isolated in disjoint intervals using the Vincent-Akritas-Strzeboński method, which is based on Descartes rule of signs and a classic theorem of Vincent; see Akritas et al (1994) and Akritas (010) Complex roots are isolated in rectangles using the Collins and Krandick (199) method Exact roots of univariate polynomials (and much else) can be computed using the Mathematica function Reduce When computing the exact rest points of BEP dynamics, we apply Reduce to the output of the function GroebnerBasis, described next

I Algorithms from computational algebra The Mathematica function GroebnerBasis is an implementation of a proprietary variation of the algorithm of Buchberger (1965, 1970) 1 Choosing the option Method -> Buchberger causes Mathematica to use the original Buchberger algorithm, which runs considerably more slowly than the default algorithm; however, there was only one case in which the default algorithm produced a Gröbner basis and the Buchberger algorithm failed to terminate The Mathematica function CylindricalDecomposition implements the Collins (1975) cylindrical algebraic decomposition algorithm with various improvements If this function is run in its default mode, it makes use of arbitrary-precision arithmetic To force Mathematica to work with algebraic numbers, one uses the following settings: SetOptions[Root,ExactRootIsolation->True] SetSystemOptions[ InequalitySolvingOptions -> CADDefaultPrecision ->Infinity] Unfortunately, these settings cause CylindricalDecomposition to run extremely slowly, and in the case of BEP dynamics in Centipede it only generates a result in two-dimensional cases Even if arbitrary-precision arithmetic is permitted, the function only generates a result when the dimension is or 3 I3 Numerical evaluation and precision tracking When Mathematica performs calculations using arbitrary-precision numbers x, it keeps track of the digits whose correctness it views as guaranteed Precision[x] reports the number of correct base 10 significant digits of x: for instance, if x = d 0 d 1 d d 3 d 4 10 k, the precision is the number of the correct digits in d 0 d 1 d d 3 d 4 Accuracy[x] is the number of correct base 10 digits of x to the right of the decimal point Exact numbers in Mathematica (eg, integers, rational numbers, and algebraic numbers) have Precision equal to To perform certain parts of our analysis (in particular, checking that an eigenvalue of a derivative matrix has negative real part), we need to numerically evaluate exact numbers and expressions We do so using the Mathematica function N N[expr, n] evaluates expr as an arbitrary-precision number at guaranteed precision n When Mathematica performs computations using arbitrary-precision numbers, it maintains precision and accuracy guarantees, the values of which can be accessed using the Precision and Accuracy functions While in principle Mathematica s precision tracking should not make mistakes, there are at least two reasons for exercising caution when using it in proofs First, Mathematica s precision tracking is not based on interval arithmetic, which represents real and complex numbers using exact intervals (in R) and rectangles (in C) that contain the numbers in question, and which relies on theorems that define rules for performing arithmetic and 1 An up-to-date presentation of Gröbner basis algorithms, including many improvements on Buchberger s algorithm, can be found in Cox et al (015) See referencewolframcom/language/tutorial/complexpolynomialsystemshtml for details 3

other mathematical operations on these intervals and rectangles that maintain containment guarantees (Alefeld and Herzberger (1983), Tucker (011)) Instead, Mathematica s precision bounds are sometimes obtained using faster methods of the Jenkins-Traub variety (see Section I1), which work correctly in theory but which are difficult to implement perfectly Second, Mathematica s precision tracking is a black box: the specific algorithms it employs are proprietary We contend with these issues by restricting our use of Mathematica s numerical evaluation and precision tracking to a few clearly delineated cases: the evaluation of algebraic numbers, and the basic arithmetic operations of addition, subtraction, multiplication, and division In particular, we do not use Mathematica for precision tracking in the computation of matrix inverses or the solution of linear systems, operations for which interval arithmetic does not generally provide clean answers (Alefeld and Herzberger (1983)) While one could insist that interval arithmetic be used for all non-exact calculations, we chose not to do so II The BEP Centipedenb notebook In this section we describe the main functions from the BEP Centipedenb notebook, which contains all of the procedures we use to analyze BEP dynamics Section II1 describes functions used to prove analytical results, and Section II describes the functions used in numerical analyses and in approximations with error bounds (cf Proposition III4) More details about the use of these functions are provided in the BEP Centipedenb notebook itself Section II3 explains the algorithms used to compute numerical values of rest points of the dynamics and eigenvalues of their derivative matrices Unless stated otherwise, the functions described below take a test-set rule τ {τ all, τ two, τ adj }, a tie-breaking rule β {β min, β stick, β unif } and a length d of the Centipede game as parameters All functions besides the last two are for BEP dynamics with number of trials κ = 1 The BEP Centipedenb notebook includes examples of the use of each of the functions II1 Exact analysis The functions for exact analysis of BEP dynamics in Centipede are as follows: ExactRestPoints the dynamic Uses GroebnerBasis and Reduce to compute the exact rest points of InstabilityOfVertexRestPoint Conducts an analysis of the local stability of the vertex rest point ξ To do this, the function computes the derivative matrix DV (ξ ) of the dynamic and the eigenvalues and eigenvectors of DV(ξ ), where V : aff(ξ) TΞ (see Appendix A) Finally, the function reports whether one can conclude that ξ is unstable The function was not used explicitly in our analysis Instead, we used it to determine the form of the derivative matrix, eigenvalues, and eigenvectors for arbitrary values of d; see Appendix A and Section V below 4

LocalStabilityOfInteriorRestPoint Conducts an analysis of the local stability of the interior rest point ξ To do this, the function computes a rational approximation ξ of the exact interior rest point ξ The function then evaluates the eigenvalues of DV(ξ), evaluates the perturbation bound from Proposition III4 (which combines arguments from Appendix B and Section III), and reports whether one can conclude that ξ is asymptotically stable See Section III for further details GlobalStabilityOfInteriorRestPoint Conducts an analysis of the global stability of the interior rest point ξ To do this, the function uses CylindricalDecomposition to determine whether the relevant Lyapunov function (see Sections 5 and 61) is a strict Lyapunov function for the interior rest point ξ on domain Ξ {ξ } We did not use this function in our analysis because it fails to terminate under the settings for exact computation described in Section I3 II Numerical analysis The following functions from the BEP Centipedenb are used for numerical analysis and as subroutines for LocalStabilityOfInteriorRestPoint FloatingPointApproximateRestPoint Computes a floating point approximation of the stable interior rest point of the BEP dynamic See Section II3 for details RationalApproximateRestPoint Computes a rational approximation of the stable interior rest point of the BEP dynamic See Section II3 for details EigenvaluesAtRationalApproximateRestPoint Computes the exact eigenvalues of DV(ξ), where ξ is the rational approximation to the interior rest point obtained from a call to RationalApproximateRestPoint See Section II3 for details NEigenvaluesAtRationalApproximateRestPoint Computes the eigenvalues of DV( ξ) using arbitrary-precision arithmetic, where ξ is a 16-digit precision approximation to the rational point computed using RationalApproximateRestPoint See Section II3 for details NumericalGlobalStabilityOfInteriorRestPointLyapunov Evaluates the time derivative Λ(ξ) = Λ(ξ) V(ξ) at a floating-point approximation Λ of the appropriate candidate Lyapunov function L for the interior rest point ξ, reporting instances in which the time derivative is not negative should any exist The (presumably large number of) states ξ at which to evaluate Λ(ξ) is chosen by the user NumericalGlobalStabilityOfInteriorRestPointNDSolve Computes numerical solutions to the BEP dynamic from initial conditions provided by the user, and reports whether any of these numerical solutions fails to converge to a neighborhood of the interior rest point ξ 5

NDSolveMeanDynamics Uses Mathematica s NDSolve function to compute a numerical solution to the BEP dynamic from an initial condition provided by the user The solution is computed until the time at which the norm of the law of motion is sufficiently small, where what constitutes sufficiently small can be chosen by the user The function also graphs the components of the state as a function of time, and reports the terminal point and the time at which this point is reached FloatingPointApproximateRestPointTestAllMinIfTieWithBIAgents Computes a floating point approximation of the stable interior rest point of the dynamics in a population consisting of mass b of backward induction agents and mass (1 b) of BEP(τ all, 1, β min ) agents The value of b is specified by the user This function was used to produce Figures 5 and 6 See Section II3 for details FloatingPointApproximateRestPointTestTwoMinIfTieWithBIAgents Computes a floating point approximation of the stable interior rest point of the dynamics in a population consisting of mass b of backward induction agents and mass (1 b) of BEP(τ two, 1, β min ) agents The value of b is specified by the user This function was used to produce Figure 7 See Section II3 for details FloatingPointApproximateRestPointTestAllMinIfTieManyTrials Uses Mathematica s FindRoot function to compute a floating point approximation of the stable interior rest point of the BEP(τ all, κ, β min ) dynamic, where the number of trials κ is specified by the user This function was used in producing Figures 8 and 9 NDSolveMeanDynamicsTestAllMinIfTieManyTrials Uses Mathematica s NDSolve function to compute a numerical solution of the BEP(τ all, κ, β min ) dynamic, where the number of trials κ and the initial condition of the solution are specified by the user The solution is computed until the time at which the norm of the law of motion is sufficiently small, where what constitutes sufficiently small can be chosen by the user The function also graphs the components of the state as a function of time, and reports the terminal point and the time at which this point is reached The function was used in producing Figures 8, 9, and 10 II3 More on computation of approximate rest points and eigenvalues The BEP Centipedenb notebook computes approximate rest points of BEP(τ, 1, β) dynamics using the Euler method: {ξ t } T t=0 is computed starting from an initial condition ξ 0 by iteratively applying (1) ξ t+1 = ξ t + h V (ξ t ), where V : R s R s is the (extended) law of motion of the dynamics and h is the step size of the algorithm This algorithm is run in two sequential stages, to be described next When one of the first three FloatingPointApproximateRestPoint functions from Section II is called, algorithm (1) is run using IEEE 754 Standard double-precision 6

floating-point arithmetic The step size of the algorithm is set to h = 4, and the initial condition is ξ 0 = (x 0, y 0 ) Ξ = (X, Y), where x 0 and y 0 are the barycenters of simplices X and Y Several thousand iterations of (1) are run, and the output of each iteration is projected onto Ξ to minimize the accumulation of roundoff errors from the floating-point calculation The floating-point numbers obtained in this way are very close to the exact quantities they approximate, but their digits (ie, the values of the d i in x = d 0 d 1 d d 3 d 4 10 k ) may all be wrong, especially in small numbers, since many of the exact numbers we aim to approximate lie outside the range of IEEE 754 double-precision 3 To address this issue, the function RationalApproximateRestPoint begins with a call to FloatingPointApproximateRestPoint, and then uses the output of this procedure to create the initial condition for a second stage that employs rational arithmetic This initial condition is the rational point in Ξ that lies closest to the floating-point output of the first stage The step size h is set to 1 in the second stage, since overshooting is no longer a problem in the neighborhood of the exact rest point Increment (1) is executed repeatedly using rational arithmetic until it locates a rational point ξ T that is an approximate fixed point of (1), in the sense that ξ T and ξ T+1 = ξ T + V (ξ T ) agree with 6 digits of precision for numbers greater or equal to 10 4, or 3 digits of precision for smaller numbers This agrees with the format we use to report rest points in the tables in Section VIII NEigenvaluesAtRationalApproximateRestPoint computes the eigenvalues of DV( ξ) using arbitrary-precision arithmetic, where ξ is a 16-digit precision approximation to the rational point computed by calling RationalApproximateRestPoint The use of arbitrary precision allows us to keep track of the precision of the computed eigenvalues Proposition III4 provides a bound on the distances between the eigenvalues of DV(ξ) and the eigenvalues of DV(ξ ) In the tables in Section IX, the reported eigenvalues, which are arbitrary-precision approximations to the (algebraic-valued) eigenvalues of DV(ξ), are shown with 5 digits of precision for numbers greater or equal to 1, 4 digits of precision for numbers greater or equal to 10, and 3 digits of precision for smaller numbers III Dimension reduction for local stability analysis This section presents the dimension reduction step used to reduce the computational demands of computing eigenvalue perturbation bounds, and presents a version of this bound (Proposition III4) that incorporates all of the simplifications introduced here and in Appendix B Write a = s 1, b = s, and s = s 1 + s, and recall that d = s The computations we use to prove local stability of the interior rest point require calculations involving the derivative matrices DV (ξ) R s s that quickly become very computationally demanding as the size of the matrix grows Since we are only interested in the action of DV (ξ) on the d-dimensional subspace TΞ, it should be possible to perform the desired calculations 3 For example, note that the IEEE 754 double-precision representation of numbers such as 378 10 681 and 18 10 0413 (both of which appear in Table 1 below) is 0, since both numbers are well below 1074 494 10 34, which is the smallest positive IEEE 754 double-precision number 7

using matrices in R d d We now show explicitly how this is done The analysis is a simple extension of arguments from Sandholm (007, p 661) Define the orthonormal matrix R R s s by R = a a a(a 1) + 1 a a a(a 1) a a a(a 1) a a a a a(a 1) a a a a(a 1) a(a 1) a a + 1 a(a 1) a a a a a(a 1) a(a 1) a a a(a 1) + 1 a 0 0 a a a a 0 0 a a 0 0 b b + 1 b b b b b(b 1) b(b 1) b(b 1) b b b b + 1 b(b 1) b(b 1) b b b b b(b 1) b(b 1) b b b b b b + 1 b(b 1) b(b 1) b(b 1) 0 0 b b b b b b b b Define the matrix J R d s 1 0 0 0 0 0 0 0 0 0 1 0 0 0 J = 0 0 1 0 0 0 0 0 0 0 0 0 1 0 Define R R d s by R = JR In words, R is R with the last row in each block removed Let e a denote the last standard basis vector in R a The upper diagonal block of R rotates { span{1, e a } = span 1 a 1, a a 1 ( ea 1 a 1)} R a about its orthogonal complement by an angle of cos 1 ( 1 a ) It is easy to verify that this block maps 1 to ae a, and so, by virtue of being orthonormal, maps TΞ 1 isometrically to R a = {x Ra : x a = 0} Likewise, the lower diagonal block of R maps 1 to be b and maps TΞ isometrically to R b = {y Rb : y b = 0} Altogether, premultiplying z R s by R double-rotates z so that its TΞ component lies in R a Rb Then premultiplying the result by J removes the now-superfluous final coordinates of each block Recall from Appendix A that the vector field V maps aff(ξ) to TΞ, so that DV(ξ)z TΞ 8

for all ξ Ξ and z TΞ, and that the extension V of V maps R s to itself, so that DV (ξ) also maps R s to itself Proposition III1 If ξ aff(ξ), then DV(ξ) and R DV (ξ) R have the same eigenvalues, including multiplicities Proposition III1 is an immediate corollary of the following lemma: Lemma III Suppose that M R s s maps TΞ into itself, and let z C s be an element of the complexification of TΞ Then (λ, z) is an eigenvalue/eigenvector pair of M if and only if (λ, Rz) is an eigenvalue/eigenvector pair for RM R Proof The proof follows Sandholm (007) To start, recall from Appendix A that Φ R s s is the orthogonal projection of R s onto TΞ, and note the following geometrically obvious facts, each of which can be verified by direct computation: () (3) R R = R J JR = Φ R s s, R R = JRR J = JJ = I R d d If Mz = λz, then since Mz and z are in the complexification of TΞ, we have RMΦz = λ RΦz; thus () and (3) imply that RM R Rz = λ R R Rz = λ Rz Conversely, if RM R Rz = λ Rz, then () implies that RMΦz = RMz = λ Rz, and so that Mz = λz The following result is also needed to obtain the eigenvalue bound Proposition III3 For M, M R s s, RM R RM R 4 M M Proof Using the submultiplicativity of matrix norms and the orthonormality of R, RM R RM R RMR RM R = R(M M )R R R R R(M M )R R 4 M M Using the results above and the arguments from Appendix B, including the definition = max i S max k S j S we obtain the following result: V i ξ j ξ k (1,, 1 1,, 1), Proposition III4 Suppose that RDV (ξ) R is complex diagonalizable with RDV (ξ) R = Q diag(λ) Q 1, and let λ be an eigenvalue of DV(ξ ) Then there is an eigenvalue λ i of DV(ξ) such that (4) λ λ i < 8 d d/ 1 tr( Q Q) d/ det( Q) ξ k ξ k k S 9

When the function InstabilityOfVertexRestPoint from the BEP Centipedenb notebook is called, the eigenvectors in the matrix Q are chosen to have the Euclidean norm 1, as this tends to lower the bound on the condition number of Q (see Guggenheimer et al (1995)) If this normalization were performed exactly, then we would have tr( Q Q) = d, allowing us to simplify inequality (4) However, because InstabilityOfVertexRestPoint performs the normalization after converting the entries of Q to arbitrary precision numbers, it uses the original inequality (4) Of course, the effect of this choice on the bound we obtain is essentially nil IV Time until convergence under different test-set rules Figures 1,, and 3 present numerical solutions to the BEP(τ, 1, β min ) dynamics with τ = τ all, τ two, and τ adj in a Centipede game of length d = 10 All solutions have initial condition ξ = (x, y) = ((99, 01, 0, ), (99, 01, 0, )) 4 The computation of the solution is cut off when it enters a Euclidean ball of radius 10 3 centered at the stable rest point ξ of each dynamic The numbers of time units required until the ball is reached are 1011 under τ all, 3981 under τ two, and 1507 under τ adj, as suggested in Section 61 Figures 4, 5, and 6 present solutions as above, but for a Centipede game of length d = 0 In this case the numbers of time units required until the ball of radius 10 3 around ξ is reached are 98 under τ all, 7640 under τ two, and 4165 under τ adj, again agreeing with the claim in Section 61 It is noteworthy that the time until convergence under BEP(τ all, 1, β min ) is faster in the game of length 0 than in the game of length 10 Judging from Figures 1 and 4, it appears that when revising agents test all strategies, having more strategies to test makes them abandon strategy 1 more quickly in favor of more cooperative strategies, which in turn increases the chances that still more cooperative strategies will be chosen during subsequent revisions 4 The results are similar for other choices of ξ with x 1 = y 1 = 99 10

10 x 1 x 4 10 y 1 y 4 08 x x 3 x 5 x 6 08 y y 3 y 5 y 6 06 06 04 04 0 0 4 6 8 10 (i) population 1 4 6 8 10 (ii) population Figure 1: Solution to the BEP(τ all, 1, β min ) dynamic from initial condition ξ in Centipede of length d = 10 10 x 1 x 4 10 y 1 y 4 08 x x 3 x 5 x 6 08 y y 3 y 5 y 6 06 06 04 04 0 0 10 0 30 40 50 (i) population 1 10 0 30 40 50 (ii) population Figure : Solution to the BEP(τ two, 1, β min ) dynamic from initial condition ξ in Centipede of length d = 10 10 x 1 x 4 10 y 1 y 4 08 x x 3 x 5 x 6 08 y y 3 y 5 y 6 06 06 04 04 0 0 50 100 150 50 100 150 (i) population 1 (ii) population Figure 3: Solution to the BEP(τ adj, 1, β min ) dynamic from initial condition ξ in Centipede of length d = 10 11

10 10 x 1 x 5 x 9 y 1 y 5 y 9 08 x x 3 x 6 x 7 x 10 x 11 08 y y 3 y 6 y 7 y 10 y 11 x 4 x 8 y 4 y 8 06 06 04 04 0 0 0 4 6 8 10 (i) population 1 0 4 6 8 10 (ii) population Figure 4: Solution to the BEP(τ all, 1, β min ) dynamic from initial condition ξ in Centipede of length d = 0 10 10 x 1 x 5 x 9 y 1 y 5 y 9 08 x x 3 x 6 x 7 x 10 x 11 08 y y 3 y 6 y 7 y 10 y 11 x 4 x 8 y 4 y 8 06 06 04 04 0 0 0 10 0 30 40 50 60 70 (i) population 1 0 10 0 30 40 50 60 70 (ii) population Figure 5: Solution to the BEP(τ two, 1, β min ) dynamic from initial condition ξ in Centipede of length d = 0 10 10 x 1 x 5 x 9 y 1 y 5 y 9 08 x x 3 x 6 x 7 x 10 x 11 08 y y 3 y 6 y 7 y 10 y 11 x 4 x 8 y 4 y 8 06 06 04 04 0 0 0 50 100 150 00 (i) population 1 0 50 100 150 00 (ii) population Figure 6: Solution to the BEP(τ adj, 1, β min ) dynamic from initial condition ξ in Centipede of length d = 0 1

V Analyses of repulsion from the backward induction state V1 Test-two, stick-if-tie: Under the BEP(τ two, 1, β stick ) dynamic, DV (ξ ) = 1 1 0 1 1 m m 0 1 1 1 0 0 0 m m m 0 0 1 m 0 0 0 0 1 0 1 1 m m m 1 1 0 0 1 1 0 n n 1 1 0 0 0 n n For d 3, the eigenvalues of DV(ξ ) with respect to TΞ and the bases for their eigenspaces are: (5) (6) (7) (8) 0, { ε ε j : j {3,, s } } if d 4; 1, { m δ δ i : i {3,, s 1 } } ; { λ 1 1 + ( 1 m m ), ( λ, λ,, λ } m m 1, 1,, 1 n n ) ; and { λ + 1 + 1 + ( 1 m m ), ( λ +, λ +,, λ } + m m 1, 1,, 1 n n ) The eigenvectors in (5) span the center subspace E c of the linear equation ż = DV(ξ ) z, while the eigenvectors in (6) and (7) span the stable subspace E s The normal vector to the hyperplane E c E s is the orthogonal projection onto TΞ of the auxiliary vector which satisfies z aux = 1 λ δ 1 ε 1 (z ) (δ i δ 1 ) = 1 λ > 0 for i S 1 {1}, and (z ) (ε j ε 1 ) = 1 > 0 for j S {1} Since the remaining eigenvalue, from (8), is positive, the arguments used in the appendix for BEP(τ all, 1, β stick ) imply that ξ is a repellor 13

V Test-adjacent, stick-if-tie: Under the BEP(τ adj, 1, β stick ) dynamic, DV(x, y ) = 0 1 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 For d 3, the eigenvalues of DV(ξ ) with respect to TΞ and the bases for their eigenspaces are: (9) (10) (11) 0, λ λ + 17+1, 4 17 1 4, { (δ δ 3 ) ε 1 + ε } { ε ε j : j {3,, s } } if d 4 { δ 3 δ i : i {4,, s 1 } } if d 5; { } ( λ, λ, 0,, 0 1, 1, 0, 0) ; and { } ( λ +, λ +, 0,, 0 1, 1, 0, 0) The eigenvectors in (9) span the center subspace E c of the linear equation ż = DV(ξ ) z, while the eigenvector in (10) spans the stable subspace E s The normal vector to the hyperplane E c E s is the orthogonal projection onto TΞ of the auxiliary vector which satisfies z aux = ( 1 λ 1 ) δ1 1 δ ε 1 (z ) (δ δ 1 ) = (z aux) (δ δ 1 ) = 1 λ > 0, (z ) (δ i δ 1 ) = (z aux) (δ i δ 1 ) = λ > 0 for i S 1 {1, }, and (z ) (ε j ε 1 ) = (z aux) (ε j δ 1 ) = 1 > 0 for j S {1} Since the remaining eigenvalue, from (11), is positive, the arguments used in the appendix for BEP(τ all, 1, β stick ) imply that ξ is a repellor 14

VI Formulas for BEP(τ, 1, β) dynamics in Centipede This section provides explicit formulas for BEP(τ, 1, β) dynamics in the Centipede game for the cases considered in the paper that is, for τ {τ all, τ two, τ adj } and β {β min, β stick, β unif } These are the formulas implemented in the BEP Centipedenb notebook VI1 Test-all BEP(τ all, 1, β min ): ẋ i = s k=i ẏ j = s 1 s 1 k=j+1 BEP(τ all, 1, β stick ): ẋ i = + s k=i s 1 q=i+1 i 1 + x i ẏ j = + s 1 k=j+1 s q=j+1 y k i m=1 y m s1 i + i 1 k 1 y k y l i k k m=1 y m s1 i x i, x k (x 1 + x ) s 1 + (x 1 ) s y 1 if j = 1, j+1 x k y k i m=1 i 1 x q m=1 k 1 y k m=1 x m s j + y m s1 i + i k 1 y k j k 1 j k+1 k x k x l x m s j y j i 1 y l i k k j+1 x k x m s j + y q q=1 i 1 x q k 1 y k i k k y l y m s1 i 1 + m=1 m=1 y m s1 k 1 x i, j 1 y q q=1 m=1 i k k y l y m s1 i + m=1 j k 1 j k+1 k x k x l x m s j + j k 1 j k+ k x k x l x m s j 1 + + y j (x 1) s + m=1 j k 1 k x k x l x m s k y j m=1 m=1 otherwise 15

BEP(τ all, 1, β unif ): ẋ i = ẏ j = s j=i s 1 h=j+1 VI Test-two BEP(τ two, 1, β min ): ẋ i = 1 s 1 1 + 1 s 1 1 ẏ j = 1 s 1 + 1 s 1 BEP(τ two, 1, β stick ): ẋ i = 1 s 1 1 + 1 s 1 1 ẏ j = 1 s 1 + 1 s 1 y j i j=1 y j s1 i + j+1 x h x h s j i 1 h=1 s 1 h=i+1 j 1 h=1 s h=j+1 i 1 h=1 s 1 h=i+1 j 1 h=1 s h=j+1 h=1 s k=h+1 s i 1 + xs 1 y k + k=i s 1 k=h+ s 1 k 1 y k s + j=1 y j s1 k 1 j=0 h=1 ( ) s 1 j k 1 y k 1 k j j + 1 y l s1 k 1 j x i, h=0 j k 1 x k x h s k ( ) s k x h k 1 k h h + 1 x l s k h y j h k 1 y k y l (x i + x h ) + i i 1 k 1 y k y l + y k y l + i 1 h+1 k 1 x k + x k x l (y j + y h ) + j+1 k=j+1 s k=h+1 s y k + k=i s 1 k=h+ s 1 x k x l + h k 1 j k 1 x k x l + j y k x k h 1 y k y l (x i + x h ) + x i (x i + x h ) x i, (y j + y h ) y j y k + i i 1 k 1 i 1 y k y l + y k y l (x i + x h ) + x i h+1 k 1 x k + x k x l (y j + y h ) + y j j+1 k=j+1 x k x l + h x k j k 1 x k x l (y j + y h ) + y j + j y k x i, x k y j 16

BEP(τ two, 1, β unif ): ẋ i = 1 s 1 1 + 1 s 1 1 ẏ j = 1 s 1 + 1 s 1 i 1 h=1 s 1 h=i+1 j 1 h=1 s h=j+1 VI3 Test-adjacent s k=h+1 s k=i s 1 k=h+ s 1 h k 1 y k + y k y l + 1 h 1 y k (x i + x h ) + i i 1 k 1 y k y l + y k y l + 1 i 1 y k (x i + x h ) x i, h+1 k 1 x k + x k x l + 1 h x k (y j + y h ) + j+1 j k 1 x k x l + x k x l + 1 j x k (y j + y h ) y j k=j+1 Let c p i equal if i {1, s p } and equal 1 otherwise, ie, c p i = 1 + 1[i {1, s p }] BEP(τ adj, 1, β min ): ẋ i = ẏ j = 1 1[i = 1] + 1 1[i = s1 ] 1 1[j = 1] + 1 1[j = s ] i 1 h=i 1 i+1 h=i+1 j 1 h=j 1 j+1 h=j+1 s k=h+1 s y k + k=i s 1 k=h+ h k 1 y k y l ( c 1 i x i + c 1 h x h) + i i 1 k 1 y k y l + y k y l + h+1 k 1 x k + s 1 j+1 k=j+1 x k x l + i 1 y k x k x l ( c j y j + c h y h) + j k 1 x k x l + j x k ( c 1 i x i + c 1 h x h) x i, ( c j y j + c h y h) y j 17

BEP(τ adj, 1, β stick ): ẋ i = ẏ j = 1 1[i = 1] + 1 1[i = s1 ] BEP(τ adj, 1, β unif ): ẋ i = ẏ j = 1 1[j = 1] + 1 1[j = s ] 1 1[i = 1] + 1 1[i = s1 ] 1 1[j = 1] + 1 1[j = s ] i 1 h=i 1 i+1 h=i+1 j 1 h=j 1 j+1 h=j+1 i 1 s k=h+1 s h=i 1 i+1 h=i+1 j 1 h=j 1 j+1 h=j+1 y k + k=i s 1 k=h+ k=j+1 h k 1 i i 1 k 1 y k y l + h+1 k 1 x k + s 1 j+1 s k=h+1 s y k + k=i s 1 k=h+ x k x l + ( y k y l c 1 i x i + c 1 h x ) h 1 h + c 1 i x i y k ( y k y l c 1 i x i + c 1 h x ) h + c 1 i x i ( x k x l c j y j + c h y ) h + c j y j h + i 1 x k j k 1 ( x k x l c j y j + c h y ) h + c j y j h k 1 y k y l + 1 h 1 y k i i 1 k 1 y k y l + y k y l + 1 h+1 k 1 x k + x k x l + 1 h x k s 1 j+1 k=j+1 x k x l + j k 1 x k x l + 1 i 1 ( c 1 i x i + c 1 h x h) + y k + y k j x i, x k y j ( c 1 i x i + c 1 h x h) x i, ( c j y j + c h y h) + j x k ( c j y j + c h y h) y j VII Multinomial formulas for BEP(τ, κ, β) dynamics The general formula (B) for the BEP(τ, κ, β) dynamic explicitly lists each of the κ strategies played an agent s opponents when an agent tests a strategy i in his test set We can obtain a formula with far fewer terms by instead working with the distribution of opponents strategies when the agent tests strategy i Using such formulas is essential for numerical computations when κ is not small To express (B) in this form we introduce a number of definitions Let Z sq,κ + = z Zsq + : z j = κ j S q 18

denote the set of possible (unnormalized) empirical distributions of opponents strategies when a population p agent tests one of his own strategies κ times When the state of population q is ξ q Ξ q, the probability that empirical distribution z occurs is the multinomial probability ( ) M p,κ (z, ξ q κ ) = (ξ q 1 z 1 z )z1 (ξ q ) z s q s q s q And if a population p agent faces empirical distribution z when testing strategy i S p, his total payoff is π p i (z) = j S q U p ij z j Therefore, if we let Π p,κ (ξ q ) be a random variable representing the total payoff obtained if i strategy i S p is tested κ times when the state of the opposing population is ξ q, then the distribution of Π p,κ (ξ q ) is i P ( ) Π p,κ (ξ q ) = w p i i = M p,κ (z, ξ q ) z Z sq,κ + : πp i (z)=w p i We use the notation above to obtain our new expression for BEP dynamics Let W p,κ i = {π p i (z): z Zsq,κ + } denote the set of possible test results for strategy i S p in κ trials Also, for R p S p, write W p,κ = R p k R p Wp,κ Then we can express the BEP(τ, κ, β) dynamic as k ( ) (1) ξ p = ξ i j τ p j j S (Rp p,κ ) p R p S Π (ξ q ) = w p k k β p (w p, R p ) ji ξp i p w p W p,κ R p k R p P The general formula (1) becomes simpler if particular test-set and tie-breaking rules are chosen For instance, under the convention that an empty product evaluates to 1, the BEP(τ all, κ, β min ) dynamic can be expressed as ẋ i = ẏ j = w 1 i W1,κ i w j W,κ j P( Π 1,κ (y) = w 1 i i P( Π,κ (x) = w i j ) i 1 ) j 1 P ( ) s1 Π 1,κ (y) < w 1 k i P ( ) Π 1,κ (y) w 1 l i x i, l=i+1 P ( ) s Π,κ (x) < w k i P ( ) Π,κ (x) w l i y j l=j+1 19

VIII Approximate components of interior rest points The tables in this section present approximate components of the unique interior rest points of BEP(τ, 1, β) dynamics in Centipede games of lengths up to d = 0 Dashed lines in the tables separate cases in which the values were originally computed exactly from those in which the values were computed numerically Tables 1,, and 3 present the approximate rest points of the BEP(τ all, 1, β) dynamics with β = β min, β stick, and β unif The approximate rest points of the BEP(τ two, 1, β) dynamics are presented in Tables 4 6, and those of the BEP(τ adj, 1, β) dynamics are presented in Tables 7 9 The main text contains graphs of the rest points as a function of d for the three cases with tie-breaking rule β min Graphs for the remaining six cases appear here as Figures 7 1 0

VIII1 Test-all p [6] [5] [4] [3] [] [1] [0] 3 - - - - - 618034 381966 4 - - - - 11365 50171 384663 5 - - - - 113493 501849 384658 6 - - - 31 10 9 113493 501849 384658 7 - - - 31 10 9 113493 501849 384658 8 - - 83 10 137 31 10 9 113493 501849 384658 9 - - 83 10 137 31 10 9 113493 501849 384658 10-775 10 3403 83 10 137 31 10 9 113493 501849 384658 11-775 10 3403 83 10 137 31 10 9 113493 501849 384658 1 106 10 1476 775 10 3403 83 10 137 31 10 9 113493 501849 384658 0 106 10 1476 775 10 3403 83 10 137 31 10 9 113493 501849 384658 q [6] [5] [4] [3] [] [1] [0] 3 - - - - 381966 381966 36068 4 - - - - 337084 419741 43175 5 - - - 00146 33567 419706 43160 6 - - - 00146 33567 419706 43160 7 - - 953 10 35 00146 33567 419706 43160 8 - - 953 10 35 00146 33567 419706 43160 9-378 10 681 953 10 35 00146 33567 419706 43160 10-378 10 681 953 10 35 00146 33567 419706 43160 11 18 10 0413 378 10 681 953 10 35 00146 33567 419706 43160 1 18 10 0413 378 10 681 953 10 35 00146 33567 419706 43160 0 18 10 0413 378 10 681 953 10 35 00146 33567 419706 43160 Table 1: The interior rest point of the BEP(τ all, 1, β min ) dynamic for Centipede of lengths d {3,, 0} p denotes the penultimate player, q the last player The dashed lines separated exact (d 6) from numerical (d 7) results 1

p [6] [5] [4] [3] [] [1] [0] - - - - - 618034 381966 3 - - - - - 569840 430160 4 - - - - 11040 5000 389541 5 - - - - 110647 499886 389467 6 - - - 49 10 9 110647 499886 389467 7 - - - 49 10 9 110647 499886 389467 8 - - 1 10 138 49 10 9 110647 499886 389467 9 - - 1 10 138 49 10 9 110647 499886 389467 10-151 10 344 1 10 138 49 10 9 110647 499886 389467 11-151 10 344 1 10 138 49 10 9 110647 499886 389467 1 91 10 13906 151 10 344 1 10 138 49 10 9 110647 499886 389467 0 91 10 13906 151 10 344 1 10 138 49 10 9 110647 499886 389467 q [6] [5] [4] [3] [] [1] [0] - - - - - 618034 381966 3 - - - - 34718 430160 451 4 - - - - 3303 416835 5114 5 - - - 001355 331507 416301 50838 6 - - - 001355 331507 416301 50838 7 - - 38 10 35 001355 331507 416301 50838 8 - - 38 10 35 001355 331507 416301 50838 9-43 10 689 38 10 35 001355 331507 416301 50838 10-43 10 689 38 10 35 001355 331507 416301 50838 11 119 10 0651 43 10 689 38 10 35 001355 331507 416301 50838 1 119 10 0651 43 10 689 38 10 35 001355 331507 416301 50838 0 119 10 0651 43 10 689 38 10 35 001355 331507 416301 50838 Table : The interior rest point of the BEP(τ all, 1, β stick ) dynamic for Centipede of lengths d {,, 0} p denotes the penultimate player, q the last player The dashed lines separated exact (d 5) from numerical (d 6) results

p [6] [5] [4] [3] [] [1] [0] - - - - - 585786 41414 3 - - - - - 564579 43541 4 - - - - 107649 49833 394019 5 - - - - 108048 498041 393911 6 - - - 01 10 9 108048 498041 393911 7 - - - 01 10 9 108048 498041 393911 8 - - 693 10 140 01 10 9 108048 498041 393911 9 - - 693 10 140 01 10 9 108048 498041 393911 10-105 10 3479 693 10 140 01 10 9 108048 498041 393911 11-105 10 3479 693 10 140 01 10 9 108048 498041 393911 1 665 10 1544 105 10 3479 693 10 140 01 10 9 108048 498041 393911 0 665 10 1544 105 10 3479 693 10 140 01 10 9 108048 498041 393911 q [6] [5] [4] [3] [] [1] [0] - - - - - 585786 41414 3 - - - - 318750 43541 4589 4 - - - - 38099 413576 5835 5 - - - 00161 37653 41316 57960 6 - - - 00161 37653 41316 57960 7 - - 16 10 35 00161 37653 41316 57960 8 - - 16 10 35 00161 37653 41316 57960 9-160 10 696 16 10 35 00161 37653 41316 57960 10-160 10 696 16 10 35 00161 37653 41316 57960 11 137 10 0874 160 10 696 16 10 35 00161 37653 41316 57960 1 137 10 0874 160 10 696 16 10 35 00161 37653 41316 57960 0 137 10 0874 160 10 696 16 10 35 00161 37653 41316 57960 Table 3: The interior rest point of the BEP(τ all, 1, β unif ) dynamic for Centipede of lengths d {,, 0} p denotes the penultimate player, q the last player The dashed lines separated exact (d 6) from numerical (d 7) results 3

06 06 05 05 04 04 03 03 0 0 01 01 00 5 10 15 0 d (i) penultimate mover 00 5 10 15 0 d (ii) last mover Figure 7: The interior rest point of Centipede under the BEP(τ all, 1, β min ) dynamic for game lengths d = 3,, 0 Markers,,, and, represent weights on strategies [0], [1], [], and [3] (continue at all decision nodes; stop at the last, second-to-last, or third-to-last decision node) Other weights are less than 10 8 The dashed line separates exact (d 6) and numerical (d 7) results 06 06 05 05 04 04 03 03 0 0 01 01 00 5 10 15 0 d (i) penultimate mover 00 5 10 15 0 d (ii) last mover Figure 8: The interior rest point of Centipede under the BEP(τ all, 1, β min ) dynamic for game lengths d = 3,, 0 Markers,,, and, represent weights on strategies [0], [1], [], and [3] (continue at all decision nodes; stop at the last, second-to-last, or third-to-last decision node) Other weights are less than 10 8 The dashed line separates exact (d 6) and numerical (d 7) results 4

VIII Test-two p [7] [6] [5] [4] [3] [] [1] [0] 3 - - - - - - 666667 333333 4 - - - - - 5746 435788 306750 5 - - - - - 6355 417165 319310 6 - - - - 0489 55195 391735 31041 7 - - - - 048513 55401 3864 309844 8 - - - 003549 050550 54601 38766 308534 9 - - - 003854 05103 54560 38016 308368 10 - - 000165 003938 051375 54507 381745 30870 11 - - 000173 003957 051415 5450 381696 30857 1-498 10 6 000174 003961 05143 54500 381684 30853 13-514 10 6 000175 00396 05145 54500 38168 30853 14 108 10 7 517 10 6 000175 00396 05145 54500 381681 30853 15 110 10 7 517 10 6 000175 00396 05145 54500 381681 3085 0 110 10 7 517 10 6 000175 00396 05145 54500 381681 3085 q [7] [6] [5] [4] [3] [] [1] [0] 3 - - - - - 500000 333333 166667 4 - - - - - 409494 360668 9837 5 - - - - 106563 347606 34311 150 6 - - - - 118350 336191 319434 606 7 - - - 01586 1161 37768 31391 474 8 - - - 014048 13313 35699 311961 4979 9 - - 000773 014479 13730 3483 311317 4870 10 - - 00083 014600 13865 34645 311189 4877 11-88 10 5 000834 01467 1389 34595 31115 487 1-99 10 5 000837 014633 13898 34585 311145 487 13 734 10 7 301 10 5 000837 014634 13899 34584 311144 487 14 753 10 7 301 10 5 000837 014634 13899 34583 311144 487 15 756 10 7 301 10 5 000837 014634 13899 34583 311144 487 16 757 10 7 301 10 5 000837 014634 13899 34583 311144 487 0 757 10 7 301 10 5 000837 014634 13899 34583 311144 487 Table 4: The interior rest point of the BEP(τ two, 1, β min ) dynamic for Centipede of lengths d {3,, 0} p denotes the penultimate player, q the last player The dashed lines separated exact (d 8) from numerical (d 9) results 5

p [7] [6] [5] [4] [3] [] [1] [0] - - - - - - 618034 381966 3 - - - - - - 539189 460811 4 - - - - - 0846 411450 38014 5 - - - - - 3867 39869 377441 6 - - - - 0357 353 378763 366 7 - - - - 04088 579 374384 359455 8 - - - 00980 0479 5384 371574 35771 9 - - - 00339 043396 5559 370966 356839 10 - - 000138 003311 043558 5576 370747 356670 11 - - 000145 00337 043595 5585 370707 356641 1-419 10 6 000147 003330 043603 5586 370697 356633 13-43 10 6 000147 003331 043604 5586 370695 35663 14 904 10 8 434 10 6 000147 003331 043604 5586 370695 35663 15 94 10 8 434 10 6 000147 003331 043604 5586 370695 35663 16 97 10 8 434 10 6 000147 003331 043604 5586 370695 35663 17 98 10 8 434 10 6 000147 003331 043604 5586 370695 35663 0 98 10 8 434 10 6 000147 003331 043604 5586 370695 35663 q [7] [6] [5] [4] [3] [] [1] [0] - - - - - - 618034 381966 3 - - - - - 36910 36910 61795 4 - - - - - 344955 364555 90490 5 - - - - 087713 31011 39668 7409 6 - - - - 10001 304394 3341 7345 7 - - - 010544 10407 9890 317193 69316 8 - - - 011813 105888 97664 315745 68891 9 - - 000650 01191 106378 97094 315103 68585 10 - - 00069 0197 10658 96977 314969 68537 11-4 10 5 000701 0131 106559 96944 314931 6850 1-51 10 5 000703 0136 106566 96938 31495 68518 13 617 10 7 53 10 5 000703 0137 106567 96937 31493 68517 14 633 10 7 53 10 5 000703 0137 106567 96936 31493 68517 15 635 10 7 53 10 5 000703 0137 106567 96936 31493 68517 16 636 10 7 53 10 5 000703 0137 106567 96936 31493 68517 0 636 10 7 53 10 5 000703 0137 106567 96936 31493 68517 Table 5: The interior rest point of the BEP(τ two, 1, β stick ) dynamic for Centipede of lengths d {,, 0} p denotes the penultimate player, q the last player The dashed lines separated exact (d 8) from numerical (d 9) results 6

p [7] [6] [5] [4] [3] [] [1] [0] - - - - - - 585786 41414 3 - - - - - - 59609 470391 4 - - - - - 06430 40994 38476 5 - - - - - 368 396778 379541 6 - - - - 035854 3566 377039 363541 7 - - - - 041111 5761 37690 360438 8 - - - 00999 043058 591 369887 358136 9 - - - 00361 043675 611 36981 357671 10 - - 000139 003334 043839 6133 36906 35749 11 - - 000146 003350 043877 6144 3690 357461 1-4 10 6 000148 003353 043885 6145 36901 357453 13-435 10 6 000148 003354 043887 6145 369011 357451 14 911 10 8 437 10 6 000148 003354 043887 6145 369011 357451 15 931 10 8 437 10 6 000148 003354 043887 6145 369010 357451 16 934 10 8 437 10 6 000148 003354 043887 6145 369010 357451 17 934 10 8 438 10 6 000148 003354 043887 6145 369010 357451 0 934 10 8 438 10 6 000148 003354 043887 6145 369010 357451 q [7] [6] [5] [4] [3] [] [1] [0] - - - - - - 585786 41414 3 - - - - - 36018 366186 7363 4 - - - - - 3416 361057 9677 5 - - - - 08768 308865 36875 76633 6 - - - - 100366 30331 30604 75717 7 - - - 010605 1045 9791 314635 736 8 - - - 011890 106443 96679 3131 71775 9 - - 000654 0173 106951 96114 31579 7149 10 - - 000696 01381 107106 95999 31446 71371 11-44 10 5 000706 01405 107138 95966 31409 71351 1-53 10 5 000708 01410 107146 95961 31403 71348 13 61 10 7 55 10 5 000708 01411 107147 95959 31401 71347 14 637 10 7 55 10 5 000708 01411 107147 95959 31401 71347 15 640 10 7 55 10 5 000708 01411 107147 95959 31401 71347 0 640 10 7 55 10 5 000708 01411 107147 95959 31401 71347 Table 6: The interior rest point of the BEP(τ two, 1, β unif ) dynamic for Centipede of lengths d {,, 0} p denotes the penultimate player, q the last player The dashed lines separated exact (d 8) from numerical (d 9) results 7

06 06 05 05 04 04 03 03 0 0 01 01 00 5 10 15 0 d (i) penultimate mover 00 5 10 15 0 d (ii) last mover Figure 9: The stable rest point of Centipede under the BEP(τ two, 1, β min ) dynamic for game lengths d = 3,, 0 Markers,,,,, and represent weights on strategies [0], [1], [], [3], [4], and [5] Other weights are less than 10 4 The dashed line separates exact (d 8) and numerical (d 9) results 06 06 05 05 04 04 03 03 0 0 01 01 00 5 10 15 0 d (i) penultimate mover 00 5 10 15 0 d (ii) last mover Figure 10: The stable rest point of Centipede under the BEP(τ two, 1, β min ) dynamic for game lengths d = 3,, 0 Markers,,,,, and represent weights on strategies [0], [1], [], [3], [4], and [5] Other weights are less than 10 4 The dashed line separates exact (d 8) and numerical (d 9) results 8

VIII3 Test-adjacent p [7] [6] [5] [4] [3] [] [1] [0] 3 - - - - - - 79473 7057 4 - - - - - 9637 584389 11939 5 - - - - - 397177 490705 11118 6 - - - - 095463 499705 33347 081485 7 - - - - 181047 459731 84081 075141 8 - - - 014840 301960 371559 4331 06830 9 - - - 030316 30016 353575 43038 07854 10 - - 000144 057357 8355 344163 41557 0737 11 - - 00096 058116 8139 343333 461 073856 1-890 10 10 000593 058071 81958 34349 46 073866 13-178 10 9 000593 05807 81957 34349 463 073867 14 190 10 3 356 10 9 000593 05807 81957 34349 463 073867 15 381 10 3 356 10 9 000593 05807 81957 34349 463 073867 16 761 10 3 356 10 9 000593 05807 81957 34349 463 073867 0 761 10 3 356 10 9 000593 05807 81957 34349 463 073867 q [7] [6] [5] [4] [3] [] [1] [0] 3 - - - - - 545589 404665 049746 4 - - - - - 503549 41631 0800 5 - - - - 176647 5360 37563 049570 6 - - - - 76453 45703 16693 0498 7 - - - 045738 413785 38370 169467 04639 8 - - - 089495 394108 301989 168401 046007 9 - - 00593 165863 35015 7705 159399 044788 10 - - 005004 164064 34115 77408 16463 047740 11-149 10 6 010069 16366 338681 76584 164506 047791 1-300 10 6 010109 1631 338579 76597 16457 04787 13 534 10 15 600 10 6 010109 16311 338578 76597 16457 04787 14 107 10 14 600 10 6 010109 16311 338578 76597 16457 04787 15 14 10 14 600 10 6 010109 16311 338578 76597 16457 04787 0 14 10 14 600 10 6 010109 16311 338578 76597 16457 04787 Table 7: The interior rest point of the BEP(τ adj, 1, β min ) dynamic for Centipede of lengths d {3,, 0} p denotes the penultimate player, q the last player The dashed lines separated exact (d 7) from numerical (d 8) results 9

p [7] [6] [5] [4] [3] [] [1] [0] - - - - - - 618034 381966 3 - - - - - - 618034 381966 4 - - - - - 199035 590835 10130 5 - - - - - 79691 509434 10875 6 - - - - 033018 390517 40637 170093 7 - - - - 063584 373078 3930 171018 8 - - - 00105 10895 345367 370869 161817 9 - - - 0030 15457 3470 368046 161475 10 - - 198 10 7 004684 15303 341681 36704 16117 11 - - 399 10 7 004697 1536 341665 367187 16114 1-70 10 17 798 10 7 004697 1536 341665 367187 16114 13-540 10 17 798 10 7 004697 1536 341665 367187 16114 14 395 10 43 108 10 16 798 10 7 004697 1536 341665 367187 16114 15 790 10 43 108 10 16 798 10 7 004697 1536 341665 367187 16114 16 158 10 4 108 10 16 798 10 7 004697 1536 341665 367187 16114 0 158 10 4 108 10 16 798 10 7 004697 1536 341665 367187 16114 q [7] [6] [5] [4] [3] [] [1] [0] - - - - - - 618034 381966 3 - - - - - 381966 47136 145898 4 - - - - - 40536 417039 18046 5 - - - - 093004 479038 97798 130161 6 - - - - 14464 4169 30088 138184 7 - - - 008418 47934 35596 6559 1157 8 - - - 017105 46616 345439 6679 14111 9 - - 408 10 5 035361 4053 338091 633 1131 10 - - 846 10 5 035956 41953 33756 680 1165 11-338 10 11 000170 035964 41930 33754 658 1155 1-677 10 11 000170 035964 41930 33754 658 1155 13 366 10 7 135 10 10 000170 035964 41930 33754 658 1155 14 731 10 7 135 10 10 000170 035964 41930 33754 658 1155 15 146 10 6 135 10 10 000170 035964 41930 33754 658 1155 0 146 10 6 135 10 10 000170 035964 41930 33754 658 1155 Table 8: The interior rest point of the BEP(τ adj, 1, β stick ) dynamic for Centipede of lengths d {,, 0} p denotes the penultimate player, q the last player The dashed lines separated exact (d 6) from numerical (d 7) results 30

p [7] [6] [5] [4] [3] [] [1] [0] - - - - - - 585786 41414 3 - - - - - - 59817 401873 4 - - - - - 18788 589856 6 5 - - - - - 68333 51151 0416 6 - - - - 09871 380637 4111 177381 7 - - - - 059383 36783 396409 176385 8 - - - 0009 11561 3457 374517 166773 9 - - - 00034 119991 34033 371631 16611 10 - - 143 10 7 004141 119937 33934 370816 165764 11 - - 88 10 7 004151 119958 339330 370801 165760 1-115 10 17 576 10 7 004151 119958 339330 370801 165760 13-31 10 17 576 10 7 004151 119958 339330 370801 165760 14 46 10 44 46 10 17 576 10 7 004151 119958 339330 370801 165760 15 853 10 44 46 10 17 576 10 7 004151 119958 339330 370801 165760 16 171 10 43 46 10 17 576 10 7 004151 119958 339330 370801 165760 0 171 10 43 46 10 17 576 10 7 004151 119958 339330 370801 165760 q [7] [6] [5] [4] [3] [] [1] [0] - - - - - - 585786 41414 3 - - - - - 353505 475030 171464 4 - - - - - 389143 40433 19045 5 - - - - 08614 470163 305175 138448 6 - - - - 135659 40903 30974 145414 7 - - - 00755 38377 3549 73400 18450 8 - - - 015754 3999 34189 73010 19117 9 - - 334 10 5 03755 3617 33538 68586 17081 10 - - 69 10 5 033304 3608 334871 68485 17063 11-00 10 11 000139 033311 3619 334839 68465 17053 1-400 10 11 000139 033311 3619 334839 68465 17053 13 94 10 8 801 10 11 000139 033311 3619 334839 68465 17053 14 185 10 7 801 10 11 000139 033311 3619 334839 68465 17053 15 369 10 7 801 10 11 000139 033311 3619 334839 68465 17053 0 369 10 7 801 10 11 000139 033311 3619 334839 68465 17053 Table 9: The interior rest point of the BEP(τ adj, 1, β unif ) dynamic for Centipede of lengths d {,, 0} p denotes the penultimate player, q the last player The dashed lines separated exact (d 7) from numerical (d 8) results 31

06 06 05 05 04 04 03 03 0 0 01 01 00 5 10 15 0 d (i) penultimate mover 00 5 10 15 0 d (ii) last mover Figure 11: The stable rest point of Centipede under the BEP(τ adj, 1, β min ) dynamic for game lengths d = 3,, 0 Markers,,,,, and represent weights on strategies [0], [1], [], [3], [4], and [5] Other weights are less than 10 4 The dashed line separates exact (d 6) and numerical (d 7) results 06 06 05 05 04 04 03 03 0 0 01 01 00 5 10 15 0 d (i) penultimate mover 00 5 10 15 0 d (ii) last mover Figure 1: The stable rest point of Centipede under the BEP(τ adj, 1, β min ) dynamic for game lengths d = 3,, 0 Markers,,,,, and represent weights on strategies [0], [1], [], [3], [4], and [5] Other weights are less than 10 4 The dashed line separates exact (d 7) and numerical (d 8) results 3

IX Approximate eigenvalues of DV(ξ ) The tables in this section show approximate eigenvalues of the derivative matrix DV(ξ ) at the interior rest point ξ of BEP(τ, 1, β) dynamics in Centipede games of lengths up to d = 0 Tables 10, 11, and 1 present the approximate eigenvalues of DV(ξ ) for the BEP(τ all, 1, β) dynamics with β = β min, β stick, and β unif The approximate eigenvalues for BEP(τ two, 1, β) dynamics are in Tables 13 15, and those for BEP(τ adj, 1, β) dynamics are in Tables 16 18 IX1 Test-all d = 3 1 ± 380 1 d = 4 11411 ± 377 i 8589 ± 377 i d = 5 11355 ± 384 i 8645 ± 384 i 1 d = 6 11355 ± 384 i 8645 ± 384 i 1 ± 974 10 5 i d = 7 11355 ± 384 i 8645 ± 384 i 1 ± 974 10 5 i 1 d = 8 11355 ± 384 i 8645 ± 384 i 1 ± 974 10 5 i 1 1 d = 9 11355 ± 384 i 8645 ± 384 i 1 ± 974 10 5 i 1 1 1 d = 10 11355 ± 384 i 8645 ± 384 i 1 ± 974 10 5 i 1 1 1 d = 0 11355 ± 384 i 8645 ± 384 i 1 ± 974 10 5 i 1 1 1 Table 10: Approximate eigenvalues of DV(ξ ) for the BEP(τ all, 1, β min ) dynamic The symbol 1 is used as a shorthand for 10000 d = 8090 ± 4468 i d = 3 9473 ± 5843 i 1 d = 4 109 ± 399 i 7756 ± 3807 i d = 5 1134 ± 393 i 773 ± 3746 i 9989 d = 6 1134 ± 393 i 773 ± 3746 i 9989 1 d = 7 1134 ± 393 i 773 ± 3746 i 9989 1 1 d = 8 1134 ± 393 i 773 ± 3746 i 9989 1 1 1 d = 9 1134 ± 393 i 773 ± 3746 i 9989 1 1 1 d = 0 1134 ± 393 i 773 ± 3746 i 9989 1 1 1 Table 11: Approximate eigenvalues of DV(ξ ) for the BEP(τ all, 1, β stick ) dynamic The symbol 1 is used as a shorthand for 10000 33