Photo-degradation of monoazo dye blue 13 using advanced oxidation process

Similar documents
Photolytic Degradation of Rhodamine B in Water Using H 2 O 2 /UV System

DEGRADATION OF REACTIVE RED 2 BY FENTON AND PHOTO-FENTON OXIDATION PROCESSES

Decolorized of Textile dye waste waters by Hydrogen peroxide, UV and Sunlight

Techniques for effluent treatment. Lecture 5

Chapter - III THEORETICAL CONCEPTS. AOPs are promising methods for the remediation of wastewaters containing

How can oxidation be done

CHEMICAL OXIDATION. The use of oxidizing agents without the need of microorganisms for the reactions to proceed

Decolouring of Synthetic Waste Water by Chemical Oxidation

COMPARISON STUDY OF CONGO RED DYE DEGRADATION PROCESS USING FENTON S REAGENT AND TiO2

Chemical Oxidation Oxidizing agents

Effect of gamma-irradiation on aqueous solutions of Apollofix dyes

Effect of silver nano particle, ferrous sulfate and hydrogen peroxide on photodgradtion of Tornasole RPe and Alizarin yellow G

Investigation on dyes oxidation by Fenton s reagent in aqueous medium

Degradation Study of C.I. Reactive Yellow 145 by Advanced Oxidation Process

Synthesis of nano sized TiO 2 and its application in photocatalytic removal of methylene blue

PHOTOCATALYTIC DEGRADATION OF META- CHLOROPHENOL USING SOLAR AND ARTIFICIAL RADIATION

Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder

Sawsan Mohamed Abu El Hassan Mosa

DEGRADATION OF FAST GREEN FCF USING IMMOBILIZED PHOTO-FENTON REAGENT

Oxidation Power of Various Reactive Species (Chlorine=1) Oxidation Power of Various Reactive Species (Chlorine=1)

Treatment of Reactive Blue 69 solution by electro-fenton process using carbon nanotubes based cathode

The calculation of kinetic parameters would be an integral part of the report.

Oxidation of Phenolic Wastewater by Fenton's Reagent

CHALLENGES ASSESSING AND TREATING WASTEWATER FROM BIOTECHNOLOGY SCALE UP OPERATIONS

CE 370. Disinfection. Location in the Treatment Plant. After the water has been filtered, it is disinfected. Disinfection follows filtration.

Light Matter Interactions: Theory and Applications (LMITA) What is Light?

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

CEL 795- Water and Wastewater Treatment Unit Processes 1 st -Semester Disinfection Dr. Arun Kumar

LAB 05 Enzyme Action

PHOTOCATALYTIC DEGRADATION STUDIES OF POLYANILINE BASED ZnO-Al 2 O 3 NANOCOMPOSITE

Photo catalytic degradation of methylene blue in aqueous solutions using TiO2 nanoparticles

CHAPTER 3 MATERIALS AND METHODS

Contributing factors on the removal of Azo-dyes from industrial wastewater: A comparison of the efficiency of sonocataysis and photocatalysis process

ELEMENTARY RADIATION CHEMISTRY

Characteristics of Fenton s Oxidation of 2, 4, 6 Trichlorophenol

Journal of Innovative Engineering R Senthilkumar et al., Journal of Innovative Engineering 2014, 2(2): 5

Advanced Method of Purification of Pharmaceutical

Original Research Advanced Oxidative Decolorization of Red Cl-5B: Effects of Dye Concentration, Process Optimization and Reaction Kinetics

CHEM 254 EXPERIMENT 9. Chemical Equilibrium-Colorimetric determination of equilibrium constant of a weak acid

Pelagia Research Library

Degradation of Aqueous Diethanolamine (DEA) solutions using UV/H 2 O 2 Process

Photochemical Treatment of Amido Black - 10B Waste Water by Photo-Fenton Reagent

Effects of ã-irradiation on Some Properties of Gum Arabic (Acacia Senegal L)

Photochemical treatment of rhodamine-b wastewater by photo-fenton reagent

Removal of Indigo Caramine dye by using nanosized Semiconducting Photocatalyst in aqueous media

ACTIVATED BLEACHING CLAY FOR THE FUTURE. AndrevJ Torok ThomaE D Thomp~on Georgia Kaolin Company Elizabeth, New JerEey

Arrhenius base is one that dissociates in water to form hydroxide ions.

A STUDY OF PROCESS VARIABLES FOR THE PHOTOCATALYTIC DEGRADATION OF RHODAMINE B

PHOTOCHEMICAL OXIDATION OF p-aminophenol BY FENTON REAGENT

Iran. A. J. Environ. Rezaee, Health. et al., PHOTOCHEMICAL Sci. Eng., 28, Vol. OXIDATION 5, No. 2, pp. OF (Pelegrini et al., 999 ; Lizama et al

PEROXIDASE CATALYZED THE REMOVAL OF PHENOL FROM SYNTHETIC WASTE WATER

Comparison of various oxidative treatments for removal of reactive black CNN

Comparative study of UV-activated processes for the degradation of organic pollutants in

Volume 8, ISSN (Online), Published at:

LIFE02 ENV/B/ Treatment of the water phase. Kris Pynaert and Inge Van Cauteren. Hekkestraat 51, Hofstade-Aalst B-9308, Belgium

Comparison on Degradation of Reactive Black 5 (RB5) in Photocatalytic Fuel Cell (PFC) under UV and Solar Light

The Study of Natural Nano-Composite Filter for Industrial Wastewater Treatment

PHOTOCATALYTIC DEGRADATION OF ERIOCHROME BLACK T USING AMMONIUM PHOSPHOMOLYBDATE SEMICONDUCTOR

Atomic Absorption Spectroscopy and Atomic Emission Spectroscopy

Model 1 Homolysis Reactions are Highly Endothermic

Photo Catalytic Degradation of Effluent of Iron and Power Plant Industries in Aqueous Solution by Tio 2 Nano Catalyst Using Uv Irradiation

EXPERIMENT 1. Object: Measurement of ph of Water THEORY

Radiation Degradation of some Commercial Dyes in Wastewater ABSTRACT

REMOVAL OF REACTIVE YELLOW DYE USING NATURAL COAGULANTS IN SYNTHETIC TEXTILE WASTE WATER

PHOTODEGRADATION OF ROSE BENGAL (MANGANESE DIOXIDE)

Ozone in the Atmosphere

Available online at I-SEEC Proceeding - Science and Engineering (2013) 89 94

Phenols removal using ozonation-adsorption with granular activated carbon (GAC) in rotating packed bed reactor

Kinetics of Crystal Violet Fading AP* Chemistry Big Idea 4, Investigation 11 An Advanced Inquiry Lab

Kinetics of Crystal Violet Fading AP Chemistry Big Idea 4, Investigation 11 An Advanced Inquiry Lab (adapted by Flinn Scientific, Inc.

Ozone Determination: A Comparison of Quantitative Analysis Methods

Characteristics & Types of Chemical Reactions

Journal of Chemical and Pharmaceutical Research

Assessment of Microwave/UV/O 3 in the Photo-Catalytic Degradation of Bromothymol Blue in Aqueous Nano TiO 2 Particles Dispersions


DEGRADATION OF TEXTILE DYE FROM AQUEOS SOLUTION BY USING MBIR DOWEX 11 PHOTOCATALYST

Chemistry 118 Laboratory University of Massachusetts Boston Beer s Law

Chapter 13 Conjugated Unsaturated Systems

Chemical Oxidation and Reduction

CHEMICAL OXIDATION TECHNIQUES FOR THE IN SITU REMEDIATION OF HYDROCARBON IMPACTED SOILS

Kinetics Practice Test 2017 Name: date: 1. Use the data provided the answer the question.

APPLICATION OF SILVER NANOPARTICLES AS METAL MORDANT AND ANTIBACTERIAL AGENT IN WOOL NATURAL DYEING PROCESS Hossein Barani 1, Majid Nasiri Boroumand 2

The Effect of Radical Scavenging Activity on Orange GelbDye Degradation Process Using Fenton s Reagent

EXPERIMENT 14. ACID DISSOCIATION CONSTANT OF METHYL RED 1

Development of Environmentally Friendly Modified Fe-PAN Fibrous Catalyst and Its Application in Degradation of Dye

Decolorization and mineralization of brilliant golden yellow (BGY) by Fenton and photo-fenton processes

Peroxidase Enzyme Lab

A comparative study of the azo dye reactive black 5 degradation by UV/TiO 2 and photo-fenton processes

CHEMISTRY. Section II (Total time 95 minutes) Part A Time 55 minutes YOU MAY USE YOUR CALCULATOR FOR PART A.

Optimization of In-Situ Chemical Oxidation Design Parameters

AP Biology Lab 4 PLANT PIGMENTS AND PHOTOSYNTHESIS

General A haloalkane is a compound in which one or more H atoms of an alkane are replaced by halogen atoms.

CHLORINE THEORY & MEASUREMENT

Chapter 2 LITERATURE SURVEY. Advanced Oxidation Processes are recognized in the early 1970s as the promising

Property Ozone Vs Oxygen. Molecular Formula: O3 O2. Molecular Mass: Color: light blue Colourless

Preparation of TiO2-Bamboo Leaves Ash Composite as Photocatalyst for Dye Photodegradation

AN INTRODUCTION TO ATOMIC SPECTROSCOPY

Development and Evaluation of One-Dimensional Model for Annular UV-H 2 O 2 Photoreactors

Removal of Anionic Dye from Textile Industries' Effluents by using Tunisian clay as adsorbent. Electrophoretic and Streaming potential investigations

Spectrometric Determination of the Acid Dissociation Constant of an Acid-base Indicator

Transcription:

Chemistry International 1(1) (2015) 12-16 Photo-degradation of monoazo dye blue 13 using advanced oxidation process M. Asghar Jamal 1, Majid Muneer 1,* and Munawar Iqbal 2 1Department of Chemistry, GC University Faisalabad, Pakistan 2National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar-25120, Pakistan *Corresponding author E-mail: majidchemist@yahoo.com A R T I C L E I N F O A B S T R A C T Article type: Research article Article history: Received June 2013 Accepted September 2014 January 2015 issue Keywords: Degradation Monoazo dye Oxidation ph Hydrogen peroxide The high energy radiation overcome the bonding of solute in a solution and H 2O 2 acts as an oxidizing agent and generates a free radical in the solution which results in photo-degradation by converting the solute in to simple form and resultantly, colored substance under the effect of photodegradation becomes colorless. The photo-degradation of monoazo dye Blue 13 in an aqueous solution was investigated using a laboratory scale UV lamp in the presence of H 2O 2 and for maximum degradation of dye, the independent parameter UV power, UV exposure time, ph and H 2O 2 concentration were optimized. It was found that neither UV in the presence of H 2O 2 is able to degrade Blue 13 under optimum condition. The results revealed that the use of both UV and H 2O 2 have pronounced effect on the discoloration of dyes which could be used for management of textile effluents contain waste dyes. 12 2015 International Scientific Organization: All rights reserved. Capsule Summary: Photo-degradation of monoazo dye blue 13 was investigated and advanced oxidation process showed promising efficiency for the treatment of dye as a function of ph and hydrogen peroxide. Cite This Article As: M. A. Jamal, M. Muneer, M. Iqbal. Photo-degradation of monoazo dye blue 13 using advanced oxidation process. Chemistry International 1(1) (2015) 12-16. INTRODUCTION Azo dyeing is a technique in which an insoluble azoic dye is produced directly onto or within the fibre. This is achieved by treating a fiber with both diazoic and coupling components. With suitable adjustment of dye bath conditions the two components of fiber and dye react to produce the required insoluble azo dye color. This technique of dyeing is unique, in that the final color is controlled by the choice of the diazoic and coupling components (Al-Kadsai and Guan, 2005; Muneer et al., 2012). But the azo dyes are found carcinogenic and now banned by World Health Organization, but traditionally azo dyes are being used in our dye industry now a day. The main problem is the waste water of these dying industries which is disposed off into streams or rivers without any treatment and it not only affect humanity but also the marine life (Manzoor et al., 2013; Ullah et al., 2013). It is the need of time to invent such a method of treatment that degrade the azo groups in water so that they become other small basic molecule and do not harm the nature cycle. In the mean while the water we use will also become safer. The ph value is

negative logarithm of hydrogen ion concentration, and has a value of 7 at 25 0 C in pure water. The presence of alkali or acid may increase or decrease the ph (Alaton, 2003; Aleboyeg et al., 2005; Islam et al., 2014). Although ph usually has no direct impact on consumers, it is one of the most important operational water quality parameter. Careful attention of ph control is necessary at all stage of water treatment to ensure satisfactory water clarification and disinfection. ph measurement in water provides a mean of classification of other characteristics or behavior such as corrosive activity or the inter linked factors controlling biological function in body (Ghandour et al., 1985). The structure of C.I Blue 13 Dye is given below MATERIAL AND METHODS calibrated by using the distilled water in both reference and sample cells and then absorbance of dye sample at λmax was measured by introducing the dye solution into sample cell instead of distilled water. Effect of UV light Intensity To see how the UV light intensity effects the photodegradation three UV-A tube rods all 6 W and of 254nm were used in UV reactor. Switching on 1, 2 or 3 rods simultaneously 6, 12 and 18 W intensity of UV-A light of 254nm was obtained. In this way the effect of UV light intensity (6, 12, 18 W) was determined by switching on 1, 2 or 3 rods respectively. RESULTS AND DISCUSSION Chemicals The commercial CI Blue 13 dye was taken from a local supplier named Haris Dyes and Chemicals Faisalabad and no further purification was done to assure the real conditions at which the dye industry works and the water residual should contain same kind of impurities as it is on commercial scale. Hydrogen peroxide (H2O2) used was 35% V/V. The ph of dye solution was maintained by using dilute HCl (0.1M) and NaOH (0.1M) to the required value. Effect of ph The ph of each sample was determined by using ph meter (InoLab, wtw series, 720). The ph meter was calibrated by using standard buffer solutions (ph= 10.00 and 7.00) prior to determine the ph of samples. The ph of the samples was measured before and after the UV irradiation. Determination of maximum wavelength λ max The maximum wavelength of the dye was determined by using HITACHI U-2800 double beam spectrophotometer. The dye solution was introduced into the sample cell and then spectrophotometer was scanned through all the visible range (780-380nm) of light. The peak of the graph plotted by spectrophotometer shows the wavelength at which the maximum light was absorbed by the sample. The dye sample was analyzed for ph, and colour intensity before and after treatment with UV, H2O2 and UV/H2O2 and response of dye degradation are shown in Fig. 1 and 2. It was revealed from the data that the absorbance of the dye sample was 1.028 at λmax 568nm. After treatment it was observed that there was 0.49-2.43% discoloration when treated with the UV radiation of 6W for different interval of time respectively. Then by changing the UV radiation intensity to 12W, there was 0.88-4.86% discoloration in the dye solution. Bby changing the UV radiation intensity to 18 W, 1.26-7.30% discoloration in dye solution was observed. Similarly, in case of H 2O 2 used alone, 1.46-7.00% discoloration was observed with different concentration of H 2O 2 respectively. But when a combination of H 2O 2 and UV radiation is used, the discoloration jumps to 17.41-34.24% at 6W UV radiation intensity with different concentration of H 2O 2 and different interval of irradiation time. Similarly, 34.82-66.47% discoloration was observed when 12W UV radiation intensity with different concentration of H 2O 2 and different interval of time is used. Hence, discoloration reaches to 52.24-99.71% when 18 W UV radiation intensity with different concentration of H 2O 2 and different interval of time is used. It is clear from the results that direct UV photolysis of 254 nm cannot cause a considerable discoloration of the dye by promoting the dye molecules to an excited state. This may be attributed that molecules in exited state have a very short lifetime; they return to the ground state or decompose to yield different molecules (Andreozzi et al., 2000). During this process hydroxyl radical generates, which can destruct the azo group present in the dyes as well as oxidation which Measurement of absorbance of each sample at λ max To determine the absorbance of each dye sample at λmax by using spectrophotometer, each solution was scanned at the λmax of CI Blue 13. The spectrophotometer was cause mineralization and degradation of dye structure. 13

(A) 8 7 6 5 4 3 2 1 2 3 4 5 (B) 8.0 7.2 6.4 5.6 4.8 4.0 3.2 2.4 1.6 0.8 6 watt 12 watt 18 watt 10 15 20 25 30 35 40 Time (min) (C) 80 70 60 ph 3 ph 6 ph 7 (D) 110 80 70 60 10 min 20 min 30 min 50 1 2 3 4 5 50 0 1 2 3 4 5 Fig. 1: Degradation of blue 13 at different hydrogen peroxide concentration, phs and UV exposure time The hydroxyl radicals are short-lived and are highly reactive species that react non-selectively with organic matter present in wastewater. These radicals oxidize organic compounds producing organic radicals, which are highly reactive and undergo further oxidation (Basfar and Rahim, 2002). The ph of the sample was 7.86. The sample was treated with H 2O 2 and again ph was observed. The measurement of the sample ph before and after treatment showed that the ph difference was almost negligible i.e. ph was decreased slightly8 which was due to the formation of acids in response of dye degradation and resultantly ph of solution may decrease. For finding the optimum ph conditioned, three different ph parameters in UV radiation for 40 minutes were compared and interpreted. It was observed that at ph 7.86, maximum discoloration (99.708%) occurs by using 0.67% H 2O 2 and 18W intensity of UV light. While keeping 14 the same parameters at ph 6 the discoloration rate was > % and at ph 9 the discoloration rate was 80%, respectively (Iqbal et al., 2014). Effect of H 2O 2 dosage: The effect of H 2O 2 dosage on the discoloration efficiency was investigated, while stabilizing all other conditions of the reaction. It can be seen that the discoloration efficiency first increases with increasing H 2O 2 dose up to a certain point, and then starts to decrease. In the discoloration of C.I. black 5 the same behavior has been reported previousely. This behavior is due to the fact that H 2O 2 is a scavenger for hydroxyl radicals according to the reaction given in the following equation (Bilal et al., 2014). Initiation: OH + H 2O 2 HO 2 + H 2O Propagation: H 2O 2 + O 2H OH + H 2O

105 95 85 0 1 2 3 4 5 Termination: OH + OH H 2O 2 O 2H + O 2H H2O2 + O 2 OH + O 2H H 2O + O 2 When enough H2O2 is present in the solution, it starts to compete with the dye for reaction with hydroxyl radicals. Since HO 2 is less reactive than the OH radical. An increased level of H 2O 2 has a diminishing effect on the reaction rate10. In addition, the OH radicals generated at a high local concentration will readily dimerize to H 2O 2. Therefore, it is important to optimize the applied dose of H 2O 2 to maximize the performance of the UV/H 2O 2 process and minimize the treatment cost. The optimum dose of H 2O 2 for this experiment is 0.67% where the discoloration efficiency reached 99.70%, whereas above this dose the discoloration efficiency goes on decreasing and reaches to 86.57% when 5% H 2O 2 was used. The H 2O 2 concentration is an important parameter to adjust and control the discoloration of dyes in the UV/H 2O 2 reactor. Degradation of the color is due to the hydroxyl radicals generated upon photolysis of H 2O 2. Several studies have proposed different reaction mechanisms for this photolysis. It is widely accepted that the main interaction between H 2O 2 with UV radiation and free radicals are well represented by the above reactions (Aleboyeh et al., 2005). Effect of UV intensity Fig. 2: Degradation of blue 13 at different hydrogen peroxide concentration, phs (7.86) and UV exposure time (30 min), UV intensity (18 watt) The effect of the UV radiation intensity on the discoloration efficiency was also studied, by treating the samples in (6, 12 & 18W) UV chamber. The results have 15 shown that UV radiation intensity enhanced the dye degradation non significantly which may be due the unavailability of hydroxyl radicals. At low UV radiation intensity, the rate of photolysis of H2O2 into hydroxyl radical (H 2O 2 hv 2 OH) is reduced12. The results have shown 99.70% discoloration at 18W UV, 66.47% at 12W and 33.23% at 6W UV radiation intensity. So we can see that the maximum discoloration is obtained at 18W intensity, and subsequently rate of discoloration is going to decrease with decrease in UV irradiation13. It is clear from the results that maximum discoloration was obtained at 0.67% H 2O 2 dosage. From the above discussed results we can conclude that the discoloration efficiency is directly proportional to the intensity of applied UV light and H 2O 2 concentration14. Effect of ph on discoloration efficiency The effect of ph on the discoloration efficiency of the blue dye solution was studied by stabilizing all the other conditions and only varying the ph of the dye solution. At the original ph (ph=7.86) conditions of the dye solution, removal efficiency was 99.70%, while increasing the ph (e.g. ph 9) of the dye solution, led to a decrease in the dye removal efficiency to 94.50%. So it can be concluded that the ph increase leads to a decrease in the discoloration efficiency. In the same way, decreasing the ph (e.g. ph 6) of the dye solution, led to a decrease in the dye removal efficiency to 92.14%. From the above results it is concluded that the discoloration efficiency decrease when the ph of the dye solution either increased or decreased. Effect of time on discoloration efficiency UV exposure time also has a significant effect on the discoloration of the dye. Greater the exposure time higher was the discoloration of the dye solution (Iqbal et al., 2014). It means that the discoloration of dye solution is directly proportional to the exposure time of UV radiation. It is well known that when the hydroxyl radicals produced in the initiation step, they shift the dye molecules to the exited state and the dye molecules destroy due to breakage of the Azo bond. The UV radiations continuously take the dye molecules to the exited state, and the hydroxyl group destroys them on reaching the ground state again. If a dye solution remains more time in UV chamber, it means that more dye molecules are destroyed, which means the more discoloration and more water purification can occur.

CONCLUSIONS The dye CI-13 blue showed higher discoloration i.e. 99.70% at 0.67% H 2O 2 using 18 W intensity of UV light for 40 min at 7.86 ph. Overall, it was observed that dye solution could be degraded effectively; however, the optimization of independent variable such as UV intensity, UV exposure time, initial ph and H 2O 2 concentration is compulsory. By optimizing the variable, complete degradation of dye can be achieved and photocatalytic technique could be used successfully for the management of textile effluents contains waste dyes. ACKNOWLEDGEMENTS Higher Education Commission (HEC) of Pakistan is highly acknowledged for financial support under the start-up Research Project Program (Grant No: 21-194/SRGP/R&D/HEC/2014) and I, Dr. Munawar Iqbal is thankful to Dr. Muhammad Shahid, Assistant Professor, University of Agriculture, Faisalabad, for providing toxicity evaluation facility in his laboratory. REFERENCES Aleboyeh, A., Moussa, Y., Aleboyeh, H., 2005. The effect of operational parameters on UV/H2O2 decolourisation of Acid Blue 74. Dyes and Pigments 66, 129-134. Al-Kdasi, A., Idris, A., Saed, K., Guan, C.T., 2004. Treatment of textile wastewater by advanced oxidation processes-a review. Global Nest: The International Journal, 6(3), 221 229. Andreozzi, R., Caprio, V., Marotta, R., Vogna, D., 2003. Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system. Water Research 37(5), 993-4. Basfar, A.A., Rahim, F.A., 2002. Disinfection of wastewater from a Riyadh Wastewater Treatment Plant with ionizing radiation. Radiation Physics and Chemistry 65, 527. Bilal, N. Ali, S., Iqbal, M., 2014. Application of Advanced Oxidations Processes for the Treatments of Textile Effluents. Asian Journal of Chemistry 26(7), 1882-1886. Ghandour, E.I.M., Kahil, J.B., Atta, S.A., 1985. Distribution of carbonates, bicarbonates and ph values in ground water of Nile Delta Region of Egypt. Ground Water 23, 35-41. Iqbal, M., Bhatti, I.A., 2014. Re-utilization option of industrial wastewater treated by advanced oxidation process. Pakistan Journal of Agriculture Sciences 51(4), 1141-1147. Iqbal, M., Bhatti, I.A., Zia-ur-Rehman, M., Bhatti, H.N., Shahid. M., 2014. Application of bioassays to evaluate the efficiency of advanced oxidation processes for the detoxification of industrial effluents. Asian Journal of Chemistry 26(14), 4291-4296 Islam, A., Islam-ud-Din., Iqbal, M. 2014. Application of Response Surface Methodology for the Extraction of Dye from Henna Leaves. Asian Journal of Chemistry 26(24) In press. Muneer, M., Bhatti, I.A., Iqbal, M., Ather, M., 2012. Degradation study of reactive violet 1 by gamma radiation. Journal of Chemical Society of Pakistan 34, 787. Ullah, I., Nadeem, R., Iqbal, M., Manzoor. Q., 2013. Biosorption of chromium onto native and immobilized sugarcanebagasse waste biomass. Ecological Engineering 60, 99-107. Manzoor, Q., Nadeem, R., Iqbal, M., Saeed, R., Ansari, T.M., 2013. Organic acids pretreatment effect on Rosa bourbonia phyto-biomass for removal of Pb(II) and Cu(II) from aqueous media.. Bioresource Technology 132(3), 446-452. 16