Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution

Similar documents
Supporting Information. Electronic Modulation of Electrocatalytically Active. Highly Efficient Oxygen Evolution Reaction

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions

Supporting Information for. Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Supplementary Information for. High-performance bifunctional porous non-noble metal phosphide catalyst for overall

Bioinspired Cobalt-Citrate Metal-Organic Framework as An Efficient Electrocatalyst for Water Oxidation

Supporting Information

Engineering NiS/Ni 2 P Heterostructures for Efficient Electrocatalytic Water Splitting

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts

Hexagonal-Phase Cobalt Monophosphosulfide for. Highly Efficient Overall Water Splitting

Formation of Hierarchical Structure Composed of (Co/Ni)Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation

Supporting Information. Direct Observation of Structural Evolution of Metal Chalcogenide in. Electrocatalytic Water Oxidation

bifunctional electrocatalyst for overall water splitting

Supporting Information for:

Supporting Information

Supporting information

Supporting Information. Cobalt Molybdenum Oxide Derived High-Performance Electrocatalyst

Supporting Information

Supporting Information

Supporting Information

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing , China

Bimetallic Thin Film NiCo-NiCoO as Superior Bifunctional Electro- catalyst for Overall Water Splitting in Alkaline Media

Photo of the mass manufacture of the Fe-rich nanofiber film by free-surface electrospinning technique

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium

Pomegranate-Like N, P-Doped Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced

η (mv) J (ma cm -2 ) ma cm

Facile synthesis of accordion-like Ni-MOF superstructure for highperformance

Magnesiothermic synthesis of sulfur-doped graphene as an efficient. metal-free electrocatalyst for oxygen reduction

Supporting Information

Cloth for High-Efficient Electrocatalytic Urea Oxidation

Supporting Information

Supporting Informantion

Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation

Supporting Information. for Water Splitting. Guangxing Zhang, Jie Yang, Han Wang, Haibiao Chen, Jinlong Yang, and Feng Pan

Electronic Supplementary Information

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries

Supporting Information for

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with. Gui-Xiang Huang, Chu-Ya Wang, Chuan-Wang Yang, Pu-Can Guo, Han-Qing Yu*

Electronic Supplementary Information

In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on. Reduced Graphene Oxide for Reversible Lithium Storage

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction

Electronic Supplementary Information

One-Step Facile Synthesis of Cobalt Phosphides for Hydrogen Evolution Reaction Catalyst in Acidic and Alkaline Medium

Interconnected Copper Cobaltite Nanochains as Efficient. Electrocatalysts for Water Oxidation in Alkaline Medium

Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries

Electronic Supplementary Information

Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for. High-Rate Supercapacitors

Supporting information

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors

Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires. by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts

Supplementary Figure 1 SEM image for the bulk LCO.

Supporting Information

Supporting information for. The development of cobalt hydroxide as a bifunctional catalyst for oxygen. electrocatalysis in alkaline solution.

Supporting Information

Supporting Information

Supporting information. A Metal-Organic Framework-Derived Porous Cobalt Manganese Oxide Bifunctional

Trifunctional Ni-N/P-O-codoped graphene electrocatalyst enables

Self-Supported Three-Dimensional Mesoporous Semimetallic WP 2. Nanowire Arrays on Carbon Cloth as a Flexible Cathode for

Supporting Information. Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage

Supporting Information. Co 4 N Nanosheets Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium Sulfur Batteries

In-situ Growth of Layered Bimetallic ZnCo Hydroxide Nanosheets for Highperformance All-Solid-State Pseudocapacitor

Electronic Supplementary Information

Supporting Information

Supporting information

B-site doping effects of NdBa 0.75 Ca 0.25 Co 2 O 5+δ double perovskite catalysts for oxygen evolution and reduction reactions

Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI )

Electronic Supplementary Information

Electronic Supplementary Information

Supporting Information. MOF Templated Nitrogen Doped Carbon Stabilized Pt-Co Bimetallic

Atomic H-Induced Mo 2 C Hybrid as an Active and Stable Bifunctional Electrocatalyst Supporting Information

Supporting Information

Supporting Information for

Supporting information for

A Scalable Synthesis of Few-layer MoS2. Incorporated into Hierarchical Porous Carbon. Nanosheets for High-performance Li and Na Ion

Electronic Supplementary Information

An Advanced Anode Material for Sodium Ion. Batteries

Ni-Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen Evolution in Acid

Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and. Long-Life Anodes for Lithium-Ion Batteries. Supporting Information

Supporting Information for

Supporting Information

Supporting Information

Supporting Information. Catalysts

One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for. electrocatalytic nitrogen reduction to ammonia

Supporting Information

Electronic Supplementary Information

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water

Metal free and Nonprecious Metal Materials for Energy relevant Electrocatalytic Processes. Shizhang Qiao ( 乔世璋 )

Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS 2 Nanosheets

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper

unique electronic structure for efficient hydrogen evolution

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization

Three-Dimensional Honeycomb-Like Cu 0.81 Co 2.19 O 4. Nanosheet Arrays Supported by Nickel Foam and. Their High Efficiency as Oxygen Evolution

Supplementary Information for

Self-Growth-Templating Synthesis of 3D N,P,Co-Doped. Mesoporous Carbon Frameworks for Efficient Bifunctional

Supporting Information. sulfurization of a bi-metal-organic framework for highperformance. supercapacitor and its photocurrent

Transcription:

Electronic Supplementary Material Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution Jiaqing Zhu 1, Zhiyu Ren 1 ( ), Shichao Du 1, Ying Xie 1, Jun Wu 1,2, Huiyuan Meng 1, Yuzhu Xue 1, and Honggang Fu 1 ( ) 1 Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People s Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China 2 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China Supporting information to DOI 10.1007/s12274-017-1511-9 Table S1 The experimental parameters of the synthesized samples Sample Inventory Co(NO 3 ) 2 6 H 2 O NH 3 H 2 O C 3 H 7 NO 2 S GO Reaction mode Co 1 x S/rGO 0.05 mmol 1 ml 0.31 mmol 25 mg CoS/rGO 0.05 mmol 0.25 mmol 25 mg Co 1 x S 0.05 mmol 1 ml 0.31 mmol CoS 0.05 mmol 0.25 mmol Co 3 O 4 /rgo 0.05 mmol 1 ml 25 mg Co 1 x S/rGO-1 0.05 mmol 1 ml 0.31 mmol 25 mg Co 1 x S/rGO-p 0.05 mmol 1 ml 0.31 mmol 25 mg Address correspondence to Zhiyu Ren, zyren@hlju.edu.cn; Hongang Fu, fuhg@vip.sina.com

Table S2 Frequency analysis of the intermediates on {110} surface of Co 1 x S and CoS Sample OH* O* OOH* CoS Computed 272.825630 24.618386 286.029923 vibrational 124.345575 11.869355(i) 139.196837 frequencies 103.193740 10.958106(i) 118.814726 (mev) 18.230310 26.298764 10.227266 19.919208 13.466707(i) 7.610050 5.848142 15.300820(i) 54.979765(i) E ZPE (ev) 0.264 0.012 0.315 Co 1 x S Computed vibrational frequencies (mev) 279.213573 123.512516 115.525533 13.399337 0.753456 21.722640(i) 8.732130 5.400658 28.879691(i) 286.365801 138.481011 120.359093 24.733511 19.235603 7.909700 2.523353 14.376472(i) 54.896259(i) E ZPE (ev) 0.266 0.007 0.299 Figure S1 XRD pattern of CoS powder. www.editorialmanager.com/nare/default.asp

Figure S2 XPS survey spectrum of Co 1 x S/rGO hybrid (a), Co 1 x S (b), and CoS/rGO hybrids (c). Figure S3 SEM image of Co 1 x S/rGO hybrid. www.thenanoresearch.com www.springer.com/journal/12274 Nano Research

Figure S4 (a) (c) The SEM images of Co 1 x S, Co 3 O 4 /rgo hybrid and CoS/rGO hybrid; (d) the SEM images of Co 1 x S/rGO-1 hybrid synthesized by one-step hydrothermal reaction. Figure S5 (a) (c) XRD patterns of Co 1 x S/rGO-1 and Co 3 O 4 /rgo hybrids. Figure S6 XPS survey spectrum of Co 1 x S/rGO-P. www.editorialmanager.com/nare/default.asp

Figure S7 (a) (d) CVs for Co 1 x S/rGO hybrid, Co 1 x S, CoS/rGO hybrid, and CoS at various scan rate (10, 20, 40, 60, 80, 100, and 120 mv s 1 ); (e) the capacitive current at 0.15 V (vs. RHE) as a function of scan rate for Co 1 x S/rGO hybrid,cos/rgo hybrid, and CoS (Δj 0 = j a j c ). Figure S8 Nitrogen adsorption desorption isotherms of Co 1 x S/rGO hybrid (a), Co 1 x S (b), CoS/rGO hybrid (c), Co 1 x S/rGO-1 hybrid (d), and CoS (e). www.thenanoresearch.com www.springer.com/journal/12274 Nano Research

Figure S9 (a) and (b) ir-compensated OER polarization curves and the corresponding Tafel plots for Co 1 x S/rGO-1 and hybrids electrodes in 1.0 M KOH; (c) EIS data collected for Co 1 x S/rGO-1 and hybrids, under OER overpotential = 270 mv. Figure S10 (a) and (b) ir-compensated OER polarization curves and the corresponding Tafel plots for CoS and hybrids electrodes in 1.0 M KOH; (c) EIS data collected for CoS and hybrids, under OER overpotential = 270 mv. Table S3 Comparison of catalytic performance of Co 1 x S/rGO hybrid for OER to reported catalysts Materials Electrode Onset potential (V vs. RHE) Potential (at 10 ma cm 2, V vs. RHE) Tafel slope (mv dec 1 ) Electrolyte Co 9 S 8 /graphene GC 1.51 1.639 82.7 1 M KOH [S1] CoSe 2 GC 1.50 1.55 44 1 M KOH [S2] Co 3 S 4 GC 1.58 1.65 61.4 [S3] Fe 3 O 4 @Co 9 S 8 /rgo GC 1.48 1.55 65.5 [S4] Mn 3 O 4 /CoSe 2 GC 1.54 1.68 49 0.1M KOH [S5] NG-CoSe 2 GC 1.523 1.589 40 [S6] CoS 2 /N,S-GO GC 1.62 75 1 M KOH [S7] Co 1 x Fe x S@N-MC GC 1.57 1.64 159 0.1 M KOH [S8] NiCo 2 S 4 @N/S-rGO GC 1.7 156 [S9] Ni 3 S 2 /Ni Ni foam 1.387 159.3 1 M KOH [S10] Ni 3 S 2 /NF Ni foam 1.49 43 1 M KOH [S11] NiSe Ni foam 1.50 64 1 M KOH [S12] NiCo 2 S 4 Carbon 1.50 1.51 141 1 M KOH [S13] Co 1 x S/rGO GC 1.49 1.54 79 1 M KOH Ref. This work www.editorialmanager.com/nare/default.asp

Table S4 Parameters obtained by fitting the impedance spectra of Co 1 x S/rGO, CoS/rGO, Co 1 x S, CoS, and Co 1 x S/rGO-1 using the equivalent circuit in Fig. 4(c) Sample name R S (Ω) C C (μf) R C (Ω) C CT (μf) R CT (Ω) Co 1 x S/rGO 0.74 160 7.99 3640 45.9 Co 1 x S CoS 1.66 1.94 28.1 7.48 16.3 28.5 2210 1730 158 229 CoS/rGO 0.82 106 10.1 3240 62.4 Co 1 x S/rGO-1 1.07 40.5 12.3 2930 77.0 Figure S11 (a) and (b) Ball models of Co 1 x S and CoS, respectively; Co and S atom is depicted blue and yellow, respectively. Table S5 Atomic populations of (110) facets of Co 1 x S Species Ion s p d f Total Charge (e) S 1 1.88 4.31 0.00 0.00 6.19 0.19 S 2 1.83 4.25 0.00 0.00 6.08 0.08 S 3 1.79 4.30 0.00 0.00 6.09 0.09 S 4 1.83 4.25 0.00 0.00 6.08 0.08 S 5 1.88 4.31 0.00 0.00 6.20 0.20 S 6 1.88 4.31 0.00 0.00 6.19 0.19 S 7 1.83 4.25 0.00 0.00 6.08 0.08 S 8 1.79 4.30 0.00 0.00 6.09 0.09 S 9 1.83 4.25 0.00 0.00 6.08 0.08 S 10 1.88 4.31 0.00 0.00 6.20 0.20 Co 1 0.48 0.32 7.87 0.00 8.67 0.33 Co 2 0.44 0.56 7.89 0.00 8.89 0.11 Co 3 0.43 0.53 7.93 0.00 8.89 0.11 Co 4 0.44 0.56 7.89 0.00 8.88 0.12 Co 5 0.48 0.32 7.90 0.00 8.71 0.29 Co 6 0.43 0.57 7.90 0.00 8.90 0.10 Co 7 0.41 0.54 7.95 0.00 8.90 0.10 Co 8 0.43 0.57 7.89 0.00 8.89 0.11 www.thenanoresearch.com www.springer.com/journal/12274 Nano Research

Table S6 Atomic populations of (110) facets of CoS Species Ion s p d f Total Charge (e) S 1 1.86 4.34 0.00 0.00 6.20 0.20 S 2 1.79 4.28 0.00 0.00 6.07 0.07 S 3 1.79 4.28 0.00 0.00 6.07 0.07 S 4 1.79 4.28 0.00 0.00 6.07 0.07 S 5 1.86 4.34 0.00 0.00 6.20 0.20 S 6 1.86 4.34 0.00 0.00 6.20 0.20 S 7 1.79 4.28 0.00 0.00 6.07 0.07 S 8 1.79 4.28 0.00 0.00 6.07 0.07 S 9 1.79 4.28 0.00 0.00 6.07 0.07 S 10 1.86 4.34 0.00 0.00 6.20 0.20 Co 1 0.50 0.41 7.92 0.00 8.84 0.16 Co 2 0.41 0.55 7.93 0.00 8.89 0.11 Co 3 0.40 0.55 7.97 0.00 8.92 0.08 Co 4 0.41 0.55 7.94 0.00 8.90 0.10 Co 5 0.50 0.41 7.93 0.00 8.84 0.16 Co 6 0.50 0.41 7.92 0.00 8.84 0.16 Co 7 0.41 0.55 7.94 0.00 8.89 0.11 Co 8 0.40 0.55 7.97 0.00 8.92 0.08 Co 9 0.41 0.55 7.94 0.00 8.89 0.11 Co 10 0.50 0.41 7.93 0.00 8.84 0.16 Figure S12 Calculated projected DOS for bulk Co 1 x S (110) and CoS (110). Table S7 Free energy of (110) facets of Co 1-x S and CoS with intermediates Free energy (ev) Co 1 x S (110) CoS (110) Clean surface 11,124.944 13,210.575 OH* 11,577.498 13,663.375 O* 11,560.548 13,645.824 OOH* 12,011.361 14,096.681 www.editorialmanager.com/nare/default.asp

Table S8 Calculated reaction free energy (ΔG) with the E ZPE corrections ΔG (ev) Reaction step Co 1 x S (110) CoS (110) ΔG 1 * + OH *OH + e 2.1 1.9 ΔG 2 *OH + OH H 2 O + *O + e 0.43 0.09 ΔG 3 *O + OH *OOH + e 0.98 1.39 ΔG 4 *OOH + OH * + O 2 + e 0.69 0.42 References [S1] Dou, S.; Tao, L.; Huo, J.; Wang, S. Y.; Dai, L. M. Etched and doped Co 9 S 8 /graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 1320 1326. [S2] Liu, Y. W.; Cheng, H.; Lyu, M. J.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe 2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670 15675. [S3] Zhao, W. W.; Zhang, C.; Geng, F. Y.; Zhuo, S. F.; Zhang, B. Nanoporous hollow transition metal chalcogenide nanosheets synthesized via the anion-exchange reaction of metal hydroxides with chalcogenide ions. ACS Nano 2014, 8, 10909 10919. [S4] Yang, J.; Zhu, G. X.; Liu, Y. J.; Xia, J. X.; Ji, Z. Y.; Shen, X. P.; Wu, S. K. Fe 3 O 4 -decorated Co 9 S 8 nanoparticles in situ grown on reduced graphene oxide: A new and efficient electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 2016, 26, 4712 4721. [S5] Gao, M. R.; Xu, Y. F.; Jiang, J.; Zheng, Y. R.; Yu, S. H. Water oxidation electrocatalyzed by an efficient Mn 3 O 4 /CoSe 2 nanocomposite. J. Am. Chem. Soc. 2012, 134, 2930 2933. [S6] Gao, M. R.; Cao, X.; Gao, Q.; Xu, Y. F.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nitrogen-doped graphene supported CoSe 2 nanobelt composite catalyst for efficient water oxidation. ACS Nano 2014, 8, 3970 3978. [S7] Ganesan, P.; Prabu, M.; Sanetuntiku, J.; Shanmugam, S. Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: An efficient electrocatalyst for oxygen reduction and evolution reactions. ACS Catal. 2015, 5, 3625 3637. [S8] Shen, M. X.; Ruan, C. P.; Chen, Y.; Jiang, C. H.; Ai, K. L.; Lu, L. H. Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: Extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 2015, 7, 1207 1218. [S9] Chen, S.; Qiao, S. Z. Hierarchically porous nitrogen-doped graphene NiCo 2 O 4 hybrid paper as an advanced electrocatalytic water-splitting material. ACS Nano 2013, 7, 10190 10196. [S10] Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni 3 S 2 nanorods/ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921 2924. [S11] Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni 3 S 2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023 14026. [S12] Liu, X.; Liu, W.; Ko, M.; Park, M.; Kim, M. G.; Oh, P.; Chae, S.; Park, S.; Casimir, A.; Wu, G. et al. Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts. Adv. Funct. Mater. 2015, 25, 5799 5808. [S13] Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 127, 9483 9487. www.thenanoresearch.com www.springer.com/journal/12274 Nano Research