Fall 2004 Math Integrals 6.1 Sigma Notation Mon, 15/Nov c 2004, Art Belmonte

Similar documents
Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

1.3 Continuous Functions and Riemann Sums

Approximate Integration

1 Tangent Line Problem

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

MA123, Chapter 9: Computing some integrals (pp )

The Definite Integral

Definite Integral. The Left and Right Sums

Limits and an Introduction to Calculus

Review of the Riemann Integral

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Limit of a function:

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

f ( x) ( ) dx =

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1

18.01 Calculus Jason Starr Fall 2005

REVIEW OF CHAPTER 5 MATH 114 (SECTION C1): ELEMENTARY CALCULUS

We saw in Section 5.1 that a limit of the form. 2 DEFINITION OF A DEFINITE INTEGRAL If f is a function defined for a x b,

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

( ) dx ; f ( x ) is height and Δx is

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

BC Calculus Review Sheet

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles.

Review of Sections

POWER SERIES R. E. SHOWALTER

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

EVALUATING DEFINITE INTEGRALS

Math1242 Project I (TI 84) Name:

y udv uv y v du 7.1 INTEGRATION BY PARTS

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

the midpoint of the ith subinterval, and n is even for

Approximations of Definite Integrals

( ) = A n + B ( ) + Bn

denominator, think trig! Memorize the following two formulas; you will use them often!

Test Info. Test may change slightly.

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

Chapter 2 Infinite Series Page 1 of 9

1 Section 8.1: Sequences. 2 Section 8.2: Innite Series. 1.1 Limit Rules. 1.2 Common Sequence Limits. 2.1 Denition. 2.

Riemann Integration. Chapter 1

The Reimann Integral is a formal limit definition of a definite integral

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

5.3. The Definite Integral. Limits of Riemann Sums

Convergence rates of approximate sums of Riemann integrals

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

Crushed Notes on MATH132: Calculus

The Definite Riemann Integral

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

Chapter 7 Infinite Series

General properties of definite integrals

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled

Sequence and Series of Functions

Graphing Review Part 3: Polynomials

Indices and Logarithms

10.5 Test Info. Test may change slightly.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

Pre-Calculus - Chapter 3 Sections Notes

b a 2 ((g(x))2 (f(x)) 2 dx

INTEGRATION IN THEORY

4 The Integral. 4.0 Area. (base) (height). If the units for each side of the rectangle are meters,

( a n ) converges or diverges.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

lecture 16: Introduction to Least Squares Approximation

9.1 Sequences & Series: Convergence & Divergence

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

Math 153: Lecture Notes For Chapter 1

5.1 - Areas and Distances

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

MAS221 Analysis, Semester 2 Exercises

PROGRESSIONS AND SERIES

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

The Basic Properties of the Integral

9.5. Alternating series. Absolute convergence and conditional convergence

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

Application: Volume. 6.1 Overture. Cylinders

Section 3.6: Rational Exponents

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

MTH 146 Class 16 Notes

Infinite Sequences and Series. Sequences. Sequences { } { } A sequence is a list of number in a definite order: a 1, a 2, a 3,, a n, or {a n } or

Simpson s 1/3 rd Rule of Integration

Math 104: Final exam solutions

12.2 The Definite Integrals (5.2)

Course 121, , Test III (JF Hilary Term)

We will begin by supplying the proof to (a).

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Section 6.3: Geometric Sequences

INTEGRATION 5.1. Estimating with Finite Sums. Chapter. Area EXAMPLE 1. Approximating Area

Chapter 5 The Definite Integral

Convergence rates of approximate sums of Riemann integrals

Transcription:

Fll Mth 6 Itegrls 6. Sigm Nottio Mo, /Nov c, Art Belmote Summr Sigm ottio For itegers m d rel umbers m, m+,...,, we write k = m + m+ + +. k=m The left-hd side is shorthd for the fiite sum o right. The ide of summtio k tkes o iteger vlues from m to. Other idices m be used, such s i d j. Properties of fiite summtio Let c be costt. The c k = c k k=m k=m k + b k ) = k + b k k=m k=m k=m k b k ) = k b k k=m k=m k=m Prticulr sums ) = k= b) c = c k= c) k = k= d) k = e) f) + ) + )+) 6 k= ) k + ) = k= k = + )+) + ) k= Hd Emples Appl formuls from the Summr where pplicble. These problems re essetill eercises i ptter recogitio. As such, the re ripe for computer implemettio, s we ll see i the MATLAB emples! 68/ Write the sum We hve 68/8 6 i = Write the sum We hve 68/ + j = Write the sum 6 i= i epded form. i + i + = + + + + 6 + 7. + j= j i epded form. j = + + ) + + ) + + ). f i ) i i epded form. i= We hve f i ) i = f ) + f ) + + f ). i = 68/ Write the sum 7 + 8 + 9 + 6 + + 7 i sigm ottio. We hve k= k k +.

68/8 Write the sum + + 9 + 6 + + 6 i sigm ottio. This is sum of reciprocls of squres, 69/ 6 k= k. Write the sum + + + ) i sigm ottio. This is emple of ltertig sum, 69/ Fid the vlue of the sum 6 j+. j= ) k k. k= We use brute force. 6 j+ = + + + + 6 + 7 j= = 9 + 7 + 8 + + 79 + 87 = 76 69/6 Fid the vlue of the sum. i= We hve = = ) =. 69/ i= i= Fid the vlue of the sum i= ) i i. Appl the formuls. ) i i = i i i= i= i= i= ) +) +) [Stop; this is fie.] = = + + ) [Compre with MATLAB.] = + 69/ i ) ) ) i Fid the limit lim +. i= ) + First compute the sum. Note tht the ide of summtio is i. The letter is fied positive iteger. It is i tht vries! i ) ) ) i + i= = i + ) i i= = i + ) i i= i= = ) + ) + ) ) + ) = + + ) ) + + ) = + + ) ) + + = 7 + 9 + ) = + 8 + Now tke the limit: lim + 8 + ) =. i ) ) ) i Therefore, lim + =. i= If tht ws t world o hurt, I do t kow wht is! This is wh we we use computers: the re better t ptter recogitio th ou re. See the correspodig MATLAB emple.

69/c) Evlute the telescopig sum 99 i= i ). i + L = limits,, if) L = 8 + ---- + ---- The omeclture mes tht the sum collpses. ) ) ) ) ) 99 i i= i+ = + + 98 99 + 99 = = = 97 MATLAB Emples s69 [revisited] Fid the vlue of the sum i= ) i i. The MATLAB commd smsum smbolic summtio) mkes quick work of this oe! The swer grees with the oe we obtied b hd. -------------------------------------------------- Stewrt 69/ sms i our sum = simplifsmsumiˆ - i -, i,, )); prettour sum) echo off; dir off s697 Prove the formul for the sum of fiite geometric series with first term d commo rtio r. i= r i = + r + r + +r = r ) r -------------------------------------------------- Stewrt 69/7: Sum of fiite geometric series sms i r GS = smsum * rˆi-), i,, ); GS = simplifgs); prettgs) echo off; dir off s698 r - ) ---------- r - echo off; dir off / + / - / - / Evlute i= i. s69 [revisited] i ) ) ) i Fid the limit lim +. i= A hlf pge of hd smbolic mipultio is reduced to oe lie of code. C ou s power tool? I kew ou could... -------------------------------------------------- Stewrt 69/ sms i S = smsum/ * *i/)ˆ + **i/) ), i,, ); S = epds); pretts) Rewrite the sum s ) i, fiite geometric series with i= = dr =. The ppl the result from the precedig ) ) problem to obti the sum = 6 ). -------------------------------------------------- Stewrt 69/8: Sum of PARTICULAR fiite geometric series sms i S = simplif smsum / ˆi-), i,, ) ); pretts) echo off; dir off -) -6 + 6

s69 m Evlute i + j). i= j= This is double fiite sum. -------------------------------------------------- Stewrt 69/: A fiite DOUBLE sum sms i j m S = smsum smsumi+j, j,, ), i,, m ); S = simplifs); pretts) echo off; dir off / m + / m + m

Fll Mth 6 Itegrls 6. Are Mo, /Nov c, Art Belmote Summr Let f be fuctio defied o I = [, b] with f oi. We seek the re of the regio R bouded bove b the curve = f ),belowbthe-is, o the left b the verticl lie =, d o the right b the verticl lie = b. Approimte the re b ddig up the res of rectgulr strips s follows. ) We hve P = m {,,, } =, the legth of the logest subitervl i the prtitio. b) The sum of the res of pproimtig rectgles is f ) i i i= =.7))+.7))+9.7))+.7)) =. c) Here is grph of f d the pproimtig rectgles. Stewrt 77/: Midpoit rule b b Split the itervl [, b]itosubitervls whose edpoits costitute prtitio P : = < < < < < =b. Let i [ ] i, i be i the ith subitervl d i = i i be the legth of this subitervl. We defie the orm of P b P = m i. Now let the umber of subitervls icrese i idefiitel while the orm of P shriks to. The re A of R is A = lim f ) i i, P i= provided tht this limit of the sum of the res of the rectgles formed b the prtitios eists. Hd Emples Appl formuls from the Sectio 6. Summr whe ecessr. 77/ Let f ) = 6,[,b]=[, ], P = {,,,, }, d i =midpoit. ) Fid P, the orm of P. b) Fid f ) i i, the sum of the res of pproimtig i= rectgles s give i the Summr. c) Sketch the grph of f d the pproimtig rectgles. 77/8 Let f ) = cos,[,b]= [, π ] {,P=, π 6, π },π,π,d i =left edpoit. ) Fid P, the orm of P. b) Fid f ) i i, the sum of the res of pproimtig i= rectgles s give i the Summr. c) Sketch the grph of f d the pproimtig rectgles. ) We hve P = m { π 6, π, π, π 6 } = π 6, the legth of the logest subitervl i the prtitio. b) The sum of the res of pproimtig rectgles is f ) i i i= = ) π ) 6 + ) π ) + ) π ) + ) π6 ) = ) 6 + + 6 π.789. c) Here is grph of f d the pproimtig rectgles.

Stewrt 77/8: Left sum MATLAB Emples s77 Let f ) =. 77/... Fid the ect re uder the curve = f ) = + d bove the -is betwee = db=. Use equl subitervls d k to be the right edpoit of the kth subitervl. Also sketch the regio. NOTE: For brevit, we ll write for k= ). Here is sketch of the regio whose re we seek. Stewrt 77/ The legth of ech subitervl is k = = b = = wheres the right edpoit of the kth subitervl is k k = + k = +. The sum of the res of the pproimtig rectgles is f k ) = f k ) [sice is costt] = ) + k ) + + k ) = ) + 6 k + 9 k + + 9 k = 6 + = ) + = k) + 9 k ) + +) + 9+)+) ) 6 + ) + 9 ) + ) + ) = S Now let toobti A = lim S = 6 + + 9 = + = 7 = 7.. The re is 7. squre uits. Also see MATLAB emple.) ) ) Sketch the regio tht lies uder the curve = f ) bove the -is from = to=. b) Fid epressio for R, the sum of the res of the pproimtig rectgles, tkig k to be the right edpoit d usig subitervls of equl legth. c) Fid the umericl vlues of the pproimtig res R for =,,. d) Fid the ect re of the regio. A dir file t the ed shows ll computtios d plot commds. ) Here is sketch of the regio whose re we seek. Stewrt 77/......... b) We hve R =. c) Here re vlues of R for the requested vlues of. R.96.99.996 d) The ect re is lim = lim ) =. -------------------------------------------------- Stewrt 77/: Are of regio s limit of sum of res of pproimtig rectgles b) sms k f = ilie.* -.ˆ, ); = ; b = ; d = b-)/; d = step size k = + k*d; right edpoit of kth subitervl R = smsumfk)*d, k,, ); right sum R = epdsimplifr)); prettr) c) N = [ ]; RSN = []; for m = N RSN = [RSN subsr,, m)]; echo off ed R.96 - ----

.99.996 echo o d) A = limitr,, if) re A =.8.6 Stewrt 77/. echo off; dir off -------------------------------------------------- Stewrt 77/g: Sketch of regio f = ilie.* -.ˆ, ); = lispce, ); = f); f = [ ]; f = [ ]; fillf,f, m ); hold o plot[-..], [ ], k, LieWidth, ) plot[ ], [-..], k, LieWidth, ) grid o; is[-.. -..]) lbel ); lbel ); title Stewrt 77/ ) echo off; dir off s77 [revisited] Fid the ect re uder the curve = f ) = + d bove the -is betwee = db=. Use equl subitervls d k to be the right edpoit of the kth subitervl. MATLAB s smsum commd rpidl ields the eedful. -------------------------------------------------- Stewrt 77/: Are of regio s limit of sum of res of pproimtig rectgles sms k f = ilie.ˆ +.* -, ); = ; b = ; d = b-)/; d = step size k = + k*d; right edpoit of kth subitervl RS = smsumfk)*d, k,, ); right sum RS = epdsimplifrs)); prettrs) 6 7/ + ---- + 9/ ---- A = limitrs,, if) re A = 7/.. Here re vlues of R for the requested vlues of. R.98.9987.999 The ect re is lim R =. -------------------------------------------------- Stewrt 77/: Are of regio s limit of sum of res of pproimtig rectgles b) sms k f = ilie si), ); = ; b = pi; d = b-)/; d = step size k = + k*d; right edpoit of kth subitervl R = smsumfk)*d, k,, ); right sum R = epdsimplifr)); prettr) pi pi si----) - ----------------- / pi \ cos----) - \ / c) N = [ ]; RSN = []; for m = N RSN = [RSN subsr,, m)]; echo off ed R.98.9987.999 echo o d) A = limitr,, if) re A = echo off; dir off echo off; dir off s77 Cosider the regio below the curve = f ) = si bove the -is betwee = d=π. Compute the sum of the res of pproimtig rectgles usig equl subitervls d right edpoits for =,,. Guess the ect vlue of the re.

Fll Mth 6 Itegrls 6. The Defiite Itegrl Fri, 9/Nov c, Art Belmote Summr Defiitios Let f be fuctio defied o I = [, b]. NOTE: I this sectio we remove the restrictio tht f o I.) Split the itervl [, b]itosubitervls whose edpoits costitute prtitio P : = < < < < < =b. Ofte the i re equll spced d we hve regulr prtitio.) Let i [ ] i, i be i the ith subitervl d i = i i be the legth of this subitervl. Recll tht the orm of P is defied b P = m i. Now let the umber of subitervls icrese idefiitel while the orm of P shriksto. The defiite itegrl of f from to b is defied b b f ) d = lim f ) i i, P i= provided the limit eists. Whe this occurs, f is sid to be itegrble o [, b].hereresometerms. The process of computig the vlue of itegrl is clled itegrtio. The smbol is clled itegrl sig. It ws itroduced b Leibiz, oe of the ivetors of Clculus i the 68s. The fuctio f ) is the itegrd. The umbers d b re clled limits of itegrtio; is the lower limit d b the upper limit. The sums i= f i ) i re clled Riem sums. The itegrl defied bove is kow s the Riem itegrl. Sufficiet coditios for defiite itegrl to eist If oe of these coditios holds, the f is itegrble o [, b]. f is cotiuous o [, b]. f is piecewise cotiuous o [, b]; i.e., f is cotiuous o [, b] ecept for fiite umber of jump discotiuities. f is mootoic o [, b]; i.e., icresig o [, b]or decresig o [, b]. Properties of the defiite itegrl Let c, m,dmbe costts d let f d g be itegrble o [, b], where b. The the followig properties hold.. b cd =cb ). b. b f ) + g) d = b f ) g) d = b. b cf)d = c b. b f)d f ) d = c f)d + b c f)d + b g)d f)d b g)d f)d 6. If f o[,b], the b f ) d. I this cse, the itegrl represets the re uder the curve = f ) d bove the -is betwee = d = b, s i Sectio 6.. 7. If f g o [, b], the b f ) d b g)d. 8. If m f M o [, b], the b m b ) f ) d M b ). 9. b f ) d b f) d. Rules for pproimtig the defiite itegrl b f ) d These re ver es to implemet i MATLAB. Ech uses regulr prtitios with equl step size subitervl legth) h = b ). The Midpoit Rule is the most ccurte of these three rules. Left sum rule: L = h k= f + kh) Right sum rule: R = h k= f + kh) Midpoit Rule: M = h k= f + k + )h) Miscelleous defiitios If = b,the b If > b,the b f)d = f)d =. f)d = b f)d, provided the ltter eists s limit. Hd Emples Appl formuls from the Sectio 6. Summr whe ecessr. 86/9 Use the Midpoit Rule with = to pproimte d.

Here = db=. We hve h = b ) = ) = d + k + )h = k +, k =,,,,. Now f ) =, so Midpoit Rule: M = h f + k + )h) k= = f k + ) k= = f ) + f ) + f ) + f 7 ) + f 9 ) = 8 + 7 8 + 8 + 8 + 79 8 = = 8 8 =.. 87/6 7 Compute 6 db tkig the limit of right sums. Here = db=7, h = b ) = 7 )) = 9 d + kh = + 9k,k=,...,.Now f)=6,so Right sum rule: R = h f + kh) k= = 9 ) 9k f k= = 9 )) 9k 6 k= = 9 8 ) k k= = 9 ) )) 8 k k= k= = 9 8 ) + ) = 9 9) = 9 9 From sketch we see tht the vlue of the itegrl is the sum of the res of rectgle d trigle: ) + ) =. 8 7 6 Stewrt 87/ 87/ Evlute d b iterpretig it i terms of re. From sketch we see tht the vlue of the itegrl is the re of semicirculr regio: π ) = π..... Stewrt 87/ 87/7 Evlute d b iterpretig it i terms of res. From sketch we iterpret the itegrl to be the sum of siged res. The positive res bove the -is ectl ccel out the egtive res below the -is. Hece d =. 7 As,wehveR =9 9 9. Thus 6 d=9... Stewrt 87/7 87/ Evlute + db iterpretig it i terms of res...

87/8 Evlute d b iterpretig it i terms of res. From sketch we see tht the vlue of the itegrl is the sum of the res of two trigles: ) + ) = 6 = 6 6. 6 Stewrt 87/8 87/6 8 Write the sum f ) d + f)d s sigle itegrl. Swp d combie. 8 8 f ) d + f)d = f)d 87/8 / Write the combitio 6 f ) d f)d + f)d s sigle itegrl. 87/ Epress the limit lim s defiite itegrl. + i/) i= Emie the pieces d flesh them out little. lim ) i= + + i We recogize this s the limit of the right sums of the itegrl + d. 87/ Use the properties of the defiite itegrl to evlute f ) d + f)d + f)d. Rerrge d combie. ) f ) d + f)d ) = f)d + f)d = f)d f)d = + f)d Rerrge d combie. 87/ = = = 6 f)d ) 6 f ) d + f)d + ) f)d + f)d 6 f)d + f)d f)d 6 + f)d Use the properties of the defiite itegrl to verif the iequlit π 6 without evlutig the itegrl. π/ si d π π/6 For π 6 π,wehvem= si = M. Applig Propert 8 ields π π ) 6 π/ or π π/ 6 si d π π/6. π/6 π si d 6) π

88/6 Use Propert 8 to estimte + d. The right sum uderestimtes the itegrl, the left sum overestimtes it, d the middle sum gives the best estimte. Stewrt 86/8: Right sum Stewrt 86/8: Left sum Stewrt 86/8: Midpoit Rule For, we hve m = + = M. Applig Propert 8 ields ) + d ) or + d 6. 88/6 Use the properties of the defiite itegrl, together with Eercise see MATLAB emples below), to prove the iequlit 6 + d. O the itervl [, ], we hve +, whece d + d [Propert 7] + d [Eercise ] 6 + d. MATLAB Emples s868 The tble below gives vlues of fuctio obtied from eperimet. Use them to estimte 6 f ) d usig three equl subitervls with ) right edpoits, b) left edpoits, d c) midpoits. SUPPLEMENT: If the fuctio f is kow to be decresig fuctio, c ou s whether our estimtes re less th or greter th the ect vlue of the itegrl? 6 f ) 9. 9. 8. 6.. 7.6. Here re right, left, d middle sums. A dir file t the ed shows ll computtios.) R L M. 9.8.8 6 6 6 -------------------------------------------------- Stewrt 86/8 = ; b = 6; = ; = : : 6 = 6 d = diff) d = R = [8.. -.]; L = [9. 8..]; M = [9. 6. -7.6]; R = R * d R =. L = L * d L = 9.8 M = M * d M =.8 echo off; dir off s86 Use the Midpoit Rule with =,, to pproimte + d. Illustrte the cse for =. Here re the middle sums d plot, followed b dir file. M M M.8.876.887 Stewrt 86/: Midpoit rule....... -------------------------------------------------- Stewrt 86/: Midpoit rule =,, ) formt log = ; b = ; f = ilie sqrt +.ˆ), ); plot[..], [ ], k ) -is grid o; hold o

plot[ ], [- ], k ) -is is[.. - ]) lbel ); lbel ) title Stewrt 86/: Midpoit rule ) = ; = lispce, b, +); subitervls, prt pts d = diff); legths of subitervls! = f:) +.*b-)/); s = ; Riem sum S = * d midpoit rule S =.867 plot[) )], [ f))], k, LieWidth, ) plot[+) +)], [ f+))], k, LieWidth, ) for k = : midpoit fuc vls fill[k), k+), k+), k)],... [,, k), k)],, LieWidth, ) echo off ed echo o = lispce, b); = f); plot,, LieWidth, ); = ; = lispce, b, +); subitervls, prt pts d = diff); legths of subitervls! = f:) +.*b-)/); s = ; Riem sum S = * d midpoit rule S =.876688 = ; = lispce, b, +); subitervls, prt pts d = diff); legths of subitervls! = f:) +.*b-)/); s = ; Riem sum S = * d midpoit rule S =.8868786 formt short echo off; dir off -------------------------------------------------- Stewrt 87/ sms b k f = ilie.ˆ, ); d = b-)/; d = step size k = + k*d; right edpoit of kth subitervl RS = smsumfk)*d, k,, ); right sum RS = epdsimplifrs)); prettrs) b b b - / ---- - / ---- + / ---- b b - / + / b + / ---- + /6 ---- b - /6 ---- + / ---- - / ---- I = limitrs,, if); pretti) echo off; dir off / b - / s87 b Prove tht d= b. -------------------------------------------------- Stewrt 87/ sms b k f = ilie, ); d = b-)/; d = step size k = + k*d; right edpoit of kth subitervl RS = smsumfk)*d, k,, ); right sum RS = epdsimplifrs)); prettrs) b b - --- - / + / ---- + / b + / ---- I = limitrs,, if); pretti) echo off; dir off - / + / b s87 b Prove tht d = b.