Measurements of jets in heavy ion collisions

Similar documents
Strangeness production and nuclear modification at LHC energies

Jet Physics at ALICE. Oliver Busch. University of Tsukuba Heidelberg University

Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by STAR

Jet Properties in Pb-Pb collisions at ALICE

Jet Physics with ALICE

LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons

Heavy flavour production at RHIC and LHC

Jet quenching in PbPb collisions in CMS

Summary on high p T probes

arxiv: v1 [nucl-ex] 14 Oct 2013

Overview of anisotropic flow measurements from ALICE

arxiv: v1 [nucl-ex] 7 Jan 2019

Jet Results in pp and Pb-Pb Collisions at ALICE

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS

Learning about the QGP using Jets

arxiv: v1 [nucl-ex] 12 May 2008

Overview of ALICE results on azimuthal correlations using neutral- and heavy-flavor triggers

Correlations of Electrons from Heavy Flavor Decay with Hadrons in Au+Au and p+p Collisions arxiv: v1 [nucl-ex] 11 Jul 2011

arxiv: v1 [hep-ex] 14 Jan 2016

Small Collision Systems at RHIC

Jet Quenching at RHIC and LHC

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC

arxiv: v1 [hep-ex] 18 May 2015

Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions.

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV

Correlations, multiplicity distributions, and the ridge in pp and p-pb collisions

Photon and neutral meson production in pp and PbPb collisions at ALICE

The measurement of non-photonic electrons in STAR

Exploring the QGP with Jets at ALICE

Measurement of W-boson production in p-pb collisions at the LHC with ALICE

ALICE results in p Pb collisions at the LHC

PoS(DIS2017)208. Nuclear PDF studies with proton-lead measurements with the ALICE detector

The direct photon puzzle

et Experiments at LHC

Jet Energy Loss at RHIC

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC

arxiv: v1 [hep-ex] 18 Jan 2016

Prospective of gamma hadron correlation. study in CMS experiment

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

The parton cascade BAMPS with the improved Gunion-Bertsch matrix element

arxiv: v2 [nucl-ex] 17 Sep 2014

Pion and photon production in heavy ion collisions

Can hadronic rescattering explain the jet quenching at relativistic energies?

Soft physics results from the PHENIX experiment

arxiv: v1 [hep-ex] 10 Jan 2019

Jet Physics at the LHC

Assessment of triangular flow in jet background fluctuations for Au+Au collisions First look at dijet imbalance (A J )

Measurement of inclusive charged jet production in pp and Pb-Pb

arxiv: v1 [nucl-ex] 10 Jan 2009

arxiv: v1 [hep-ph] 22 Sep 2017

arxiv: v1 [nucl-ex] 17 Oct 2011

LHC: Status and Highlights

Phenomenology of prompt photon production. in p A and A A collisions

Proton-lead measurements using the ATLAS detector

PHENIX measurements of bottom and charm quark production

67. W.M. Snow et al. (M. Sarsour), NSR collaboration, Parity violating neutron spin rotation in He-4 and H., Nuovo Cim. C035N04, (2012).

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Review of collective flow at RHIC and LHC

Identified charged hadron production in pp, p Pb and Pb Pb collisions at LHC energies with ALICE

Jet quenching in heavy-ion collisions at the LHC. Marta Verweij CERN

Matt Nguyen Rencontres QGP-France September 13 th, 2013

using photons in p A and A A collisions

Progress in the MC simulation of jets and jet quenching. Abhijit Majumder Wayne State University

arxiv:nucl-ex/ v2 1 Mar 2007

The Quark-Gluon Plasma and the ALICE Experiment

Heavy-flavor production in pp and Pb Pb collisions at LHC with ALICE

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

11th International Workshop on High-pT Physics in the RHIC & LHC Era

Probing parton densities with γ and γ +Q production. in p A collisions. François Arleo. Workshop on proton-nucleus collisions at the LHC

Background Subtraction Methods on Recoil Jets from Proton-Proton Collisions

Review of photon physics results at Quark Matter 2012

Exploring quark-gluon plasma in relativistic heavy-ion collisions

Heavy-ion collisions in a fixed target mode at the LHC beams

Preparations for the ATLAS Heavy Ion Physics Program at the LHC. Deepak Kar IKTP, TU Dresden On behalf of the ATLAS Collaboration

arxiv: v1 [nucl-ex] 29 Feb 2012

Measurement of Inclusive Charged Jet Production in pp and Pb-Pb collisions at snn = 5.02 TeV with ALICE

Zhong-Bo Kang Los Alamos National Laboratory

Introduction to Relativistic Heavy Ion Physics

arxiv:nucl-th/ v2 8 Jun 2006

Quark Matter 2018 Review

Studies of QCD Matter From E178 at NAL to CMS at LHC

Angular correlations of identified particles in the STAR BES data

Flow of strange and charged particles in ppb and PbPb collisions at LHC energies

arxiv: v1 [nucl-th] 23 Jan 2019

On the double-ridge effect at the LHC

Low Momentum Direct Photons in Au+Au collisions at 39 GeV and 62.4 GeV measured by the PHENIX Experiment at RHIC

Monte Carlo Non-Linear Flow modes studies with AMPT

Heavy Ion Collision Measurements at the LHC Using the CMS Detector

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Overview of experimental results in Pb-Pb collisions at s NN = 2.76 TeV by the CMS Collaboration

Charged jets in p Pb collisions measured with the ALICE detector

PoS(EPS-HEP2015)214. Spectra and elliptic flow of charmed hadrons in HYDJET++ model

HEAVY-ION SESSION: A (quick) INTRODUCTION

Di muons and the detection of J/psi, Upsilon and Z 0 Jets and the phenomenon of jet quenching

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

arxiv: v1 [nucl-th] 11 Aug 2013

JET FRAGMENTATION DENNIS WEISER

arxiv: v1 [hep-ex] 9 Jan 2019

Transcription:

Measurements of jets in heavy ion collisions Christine Nattrass 1, 1 University of Tennessee, Knoxville, TN, USA-37996 Abstract. The Quark Gluon Plasma (QGP) is created in high energy heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). This medium is transparent to electromagnetic probes but nearly opaque to colored probes. Hard partons produced early in the collision fragment and hadronize into a collimated spray of particles called a jet. The partons lose energy as they traverse the medium, a process called jet quenching. Most of the lost energy is still correlated with the parent parton, contributing to particle production at larger angles and lower momenta relative to the parent parton than in proton-proton collisions. This partonic energy loss can be measured through several observables, each of which give different insights into the degree and mechanism of energy loss. The measurements to date are summarized and the path forward is discussed. 1 Introduction A hot, dense liquid of quarks and gluons called the Quark Gluon Plasma (QGP) is formed when heavy ions collide at relativistic speeds. High energy partons scattered early in the collision can be used as probes of the medium. In high energy collisions where a QGP is not formed, such as p+p collisions, these hard scattered partons will fragment into a collimated spray of particles called a jet. Partons traversing a QGP can lose energy either radiatively or through collisions with medium partons. These interactions lead to jets which are broader on average than those in p+p collisions, with fewer particles carrying a large fraction of the jet s energy, z = p T /E jet, and more particles at lower z. This picture of partonic energy loss, concurrent with broadening of the jet and softening of the fragmentation function, has been qualitatively confirmed by several measurements [1]. Recently a number of novel observables, mostly used in particle physics for distinguishing between quark and gluon jets, have been investigated as a means for measuring the modifications of the struture of jets through medium interactions in greater detail. While there are extensive measurements, the constraints of the properties of the QGP from measurements of jets are largely informed by only a handful of measurements of the modifications of single particle spectra [2]. As the field works to measure jet observables to higher precision, it is worth remembering some of the lessons from particle physics about the complications of measurements of jets. The background in heavy ion collisions is very large and the experimental techniques may lead to a number of biases in the results. e-mail: christine.nattrass@utk.edu The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

2 Measurements of jets In p+p collisions, hard partons scattered early in the collision fragment into collimated sprays of particles called jets. As high energy partons traverse the medium, they lose energy though emission of gluons and collisions with medium partons. This lost energy retains most of its spatial correlations with the parent parton, so jet quenching will result in a suppression of final state hadrons carrying a large fraction of the parton s momentum and an enhancement in particles carrying a small fraction of the parton s momentum. On average the final state hadrons will be somewhat less correlated with the parent parton s momentum than before medium interactions, resulting in a broadening of the distribution of jet constituents. 2.1 Energy loss The most straightforward way to measure partonic energy loss is through the measurement of the nuclear modification factor R AA = σnn d 2 N AA /dp T dη (1) N coll d 2 σ pp /dp T dη where σ NN is the integrated nucleon-nucleon cross section, N coll is the average number of binary nucleon-nucleon collisions for a given range of impact parameter, N AA is the number of particles, p T is the transverse momentum, η is the pseudorapidity, and σ pp is the inelastic cross section in p+p collisions. If nucleus-nucleus collisions were simply a superposition of nucleon-nucleon collisions, R AA would be approximately one because the high p T particle cross section would scale with the number of binary collisions. The R AA has been measured for several different final state hadrons, ranging in mass from pions [3, 4] to B mesons [5], and the production rate of all of these colored probes are suppressed at high momenta in central heavy ion collisions. In contrast, the medium is nearly transparent to electroweak probes. The R AA of reconstructed jets is also substantially suppressed [6 8]. Even heavy quarks are suppressed at comparable levels to light hadrons, as shown by measurements of single final state particles [5, 9, 10] and reconstructed jets [11 13]. This energy loss has also been seen using dihadron correlations [14 16], hadron-jet correlations [17, 18], the azimuthal anisotropies of jets [19, 20], and di-jet energy asymmetries [21 23]. 2.2 Fragmentation The most direct observations of the broadening of the distribution of jet constituents and the softening of those constituents is through measurements of the fragmentation function. At leading order, isolated direct photons are produced in inverse Compton scattering, q+g q+γ. The energy of the outgoing quark jet will equal the energy of the photon. Fragmentation functions can be measured through this process and demonstrate both a suppression of high z = p T /E jet hadrons and an enhancement of low z processes [24]. Measurements of fragmentation functions using reconstructed jets also show this suppression [25 27]. As for energy loss, modified fragmentation in heavy ion collisions has been observed through high momentum di-hadron correlations [28], jet-hadron correlations [29, 30], and measurements of di-jet energy asymmetries [23]. Partonic energy loss is expected to be path length dependent. The path length can be varied using measurements of jets relative to the reaction plane. Studies of jet-hadron correlations with the angle of the jet relative to the reaction plane varied found no path length dependence within uncertainties [31]. This can be explained by theoretical models which include jet-by-jet fluctuations in the amount of energy lost [32], meaning that while on average jets traveling out-of-plane will lose more energy and 2

be more modified by interactions with the medium than those traveling in-plane because they see more medium, a particular jet going out-of-plane may lose less energy than a particular jet going in-plane. This indicates that fluctuations such as these can have a large impact on observables and may be more important than the path length dependence of energy loss in some cases. 2.3 Jet structure and new observables Recent studies have begun investigating new observables to see if they may be more sensitive to medium modifications of jets in the medium than traditional observables. Many of these observables are used in particle physics for separating quark and gluon jets. The jet girth, g, is given by g = i p i T p jet T r i, (2) where r i is the angular distance between the jet axis and particle i. The dispersion is given by p D T = Σ i p 2 T,i /Σ ip T,i (3) where p T,i is the momentum of a constituent and the sum is over the constituents. The girth and the dispersion both are measures of the width of the jet. Measurements by ALICE indicate that, if anything, surviving jets in Pb + Pb collisions are narrower than in p+p collisions [33]. This apparent contradiction with the observations of modified fragmenation can be explained by a bias in the surviving jets reconstructed by a jet finder. Jets which are reconstructed at high momenta may be more likely to be unmodified or to have been quark jets, which are narrower. It is important to note that nearly every observable is biased towards a particular selection of jets, so it is necessary to look at multiple observables to get a complete picture of partonic energy loss. LeS ub, the difference between the momenta of the leading and subleading jet constituents, has also been measured in Pb + Pb collisions and is consistent with expectations for both unmodified jets and jets which have interacted with the medium [33]. This observable is robust to a high background but may not be sensitive. Jet grooming, a technique to measure the substructure of jets, is also under investigation [34, 35], as are measurements of the jet mass [36, 37]. 3 The path forward Several important steps were proposed in [1] in order to determine the properties of the medium with higher precision from measurements of jets. The main improvements required are to understand the biases in measurements, make more quantitative measurements, make more quantitative comparisons to theory, and to come to an agreement on the treatment of background in heavy ion collisions. Each of these points is summarized below. 3.1 Understand bias The techniques used for the suppression and subtraction of background impose biases in the results. Even the use of a jet finder may bias the sample towards less modified jets. This is unavoidable because of the large backgrounds in central heavy ion collisions, but the discussions of these techniques should not be relegated to the method section. Attempts to correct for these biases often use jets from PYTHIA embedded in a heavy ion collision. Jets in heavy ion collisions fragment differently so such corrections may skew the results. Rather than trying to correct for such biases, the bias should be considered part of the definition of the measurement. Theoretical calculations should apply the same techniques in order to be comparable to the data. 3

3.2 An agreement on the treatment of background The history of the definition of jets in particle physics provides some useful lessons for measurements in heavy ion collisions. After years of different definitions of jets in theory and experiment, the Snowmass Accord postulated that a good jet finding algorithm must be both infrared and colinear safe, meaning that the same jet would be found in the presence of either soft radiation (which cannot be calculated to high precision perturbatively) and if a leading parton had a colinear splitting [38]. Seeded cone algorithms were replaced by sequential algorithms [39]. The definition of the jet is a combination of the jet finding algorithm and the resolution parameter, which limits the size of the jet. There are several experimental approaches to the treatment of background. For example, ALICE explicitly requires a jet to have a constituent of at least 5 GeV/c [6] and ATLAS requires jets to be matched to a track jet consisting of high momentum tracks [7]. In the limit of high energy jets, these algorithms appear to give consistent results, but at lower energies they may not. An example of this is the tension between ALICE, ATLAS, and CMS measurements of jet R AA [1]. Since these background subtraction and suppression algorithms impose a bias, a similar approach to that in particle physics is probably necessary, that the background suppression and subtraction techniques be considered part of the definition of a jet. Experimentally, the operational distinction between the jet signal and the background is based on whether or not final state hadrons retain some short range correlations with the parent parton, typically R = η 2 + φ 2 1. Theoretically, it is less clear what should be considered a background particle. We therefore called for a meeting in [1] to discuss the definition of the background and come to an agreement between theorists and experimentalists on the definition and treatment of the background. 3.3 Make more quantitative comparisons to theory The best constraint of the properties of the medium to date comes from the JET collaboration [2]. In this study, the partonic energy loss of a hard parton traveling through a static brick of QGP was calculated using several different theoretical models for partonic energy loss. These calculations were systematically compared to measurements of single hadron R AA in order to constrain ˆq, the partonic energy loss in the medium squared divided by the path length. While this is a monumental achievement, theoretical developments allowing more accurate calculations of partonic energy loss and comparisons to other observables would likely constrain the properties of the medium better. The JETSCAPE collaboration is working on developing realistic event generators combining realistic hydrodynamical simulations with realistic partonic energy loss models. The final stage of the JETSCAPE project will be to use these models to do a Bayesian analysis in order to constrain the properties of the QGP. Such analyses have been done incorporating measurements of single hadron spectra and azimuthal anisotropies [40, 41]. These Bayesian analyses require detailed accounting of systematic uncertainties and their correlations with each other and possibly with other experiments. This detailed accounting of systematic uncertainties is not currently the norm in the field, but without it we cannot optimize our constraints of QGP properties. 3.4 Make more differential measurements Since the field to date has not had a full simulation of jets in a hydrodynamical fluid, it has not yet been possible to apply experimental methods to a model to see which observables are least sensitive to the background and most sensitive to the properties of the QGP. In the era of JETSCAPE such studies will be possible. It may turn out that some of the new observables to measure jet structure are the most sensitive, however, it is still unclear. It is important that the field do these detailed studies to 4

find the best observables and to stop focusing on observables which turn out to be insensitive to the properties of the QGP. Measurements of jets by the sphenix experiment will also be important for constraining the properties of the medium at RHIC energies. 4 Conclusions Jets are used to measure partonic energy loss, a process which can lead to constraints on the properties of the QGP. An impressive array of measurements have demonstrated that the theoretical picture of partonic energy loss in the medium is correct, however, very few of these measurements have yet informed quantitative constraints on the properties of the QGP. Forthcoming theoretical developments will allow the incorporation of jet observables into Bayesian analyses so that they can be used to constrain QGP properties. However, to do this successfully requires an agreement between theorists and experimentalists on the appropriate treatment of the background. It furthermore requires an understanding of measurement biases and the sensitivities of various observables to medium properties. It will also require careful reporting of systematic uncertainties and their correlations. We will only be able to make precision constraints of the properties of the medium by doing these things. References [1] M. Connors, C. Nattrass, R. Reed, S. Salur (2017), 1705.01974 [2] K.M. Burke et al. (JET), Phys.Rev. C90, 014909 (2014) [3] A. Adare et al. (PHENIX), Phys. Rev. Lett. 101, 232301 (2008) [4] J. Adam et al. (ALICE), Phys. Rev. C93, 034913 (2016) [5] A.M. Sirunyan et al. (CMS), Phys. Rev. Lett. 119, 152301 (2017), 1705.04727 [6] J. Adam et al. (ALICE), Phys.Lett. B746, 1 (2015) [7] G. Aad et al. (ATLAS), Phys.Rev.Lett. 114, 072302 (2015) [8] V. Khachatryan et al. (CMS), Phys. Rev. C96, 015202 (2017), 1609.05383 [9] A. Adare et al. (PHENIX Collaboration), Phys.Rev. C84, 044905 (2011) [10] J. Adam et al. (ALICE), JHEP 03, 081 (2016) [11] S. Chatrchyan et al. (CMS), Phys. Rev. Lett. 113, 132301 (2014), [Erratum: Phys. Rev. Lett.115,no.2,029903(2015)] [12] V. Khachatryan et al. (CMS), Phys. Lett. B754, 59 (2016) [13] A.M. Sirunyan et al. (CMS), Phys. Lett. B772, 306 (2017) [14] C. Nattrass, N. Sharma, J. Mazer, M. Stuart, A. Bejnood, Phys. Rev. C94, 011901 (2016) [15] J. Adams et al. (STAR), Phys.Rev.Lett. 97, 162301 (2006) [16] K. Aamodt et al. (ALICE), Phys.Rev.Lett. 108, 092301 (2012) [17] J. Adam et al. (ALICE), JHEP 09, 170 (2015) [18] L. Adamczyk et al. (STAR) (2017), 1702.01108 [19] J. Adam et al. (ALICE), Phys. Lett. B753, 511 (2016) [20] G. Aad et al. (ATLAS), Phys.Rev.Lett. 111, 152301 (2013) [21] G. Aad et al. (ATLAS), Phys.Rev.Lett. 105, 252303 (2010) [22] S. Chatrchyan et al. (CMS), Phys. Rev. C84, 024906 (2011) [23] L. Adamczyk et al. (STAR), Phys. Rev. Lett. 119, 062301 (2017), 1609.03878 [24] A. Adare et al. (PHENIX), Phys.Rev. D82, 072001 (2010) [25] G. Aad et al. (ATLAS), Phys.Lett. B739, 320 (2014) 5

[26] S. Chatrchyan et al. (CMS), Phys.Rev. C90, 024908 (2014) [27] S. Chatrchyan et al. (CMS), JHEP 1210, 087 (2012) [28] G. Agakishiev et al. (STAR), Phys.Rev. C85, 014903 (2012) [29] V. Khachatryan et al. (CMS), JHEP 02, 156 (2016) [30] L. Adamczyk et al. (STAR), Phys.Rev.Lett. 112, 122301 (2014) [31] J. Mazer (ALICE), J. Phys. Conf. Ser. 832, 012010 (2017), 1703.09287 [32] K.C. Zapp, Phys.Lett. B735, 157 (2014) [33] L. Cunqueiro (ALICE), Nucl. Phys. A956, 593 (2016) [34] Y.j. Lee, These proceedings (2017) [35] A.M. Sirunyan et al. (CMS) (2017), 1708.09429 [36] A. Majumder, J. Putschke, Phys. Rev. C93, 054909 (2016) [37] S. Acharya et al. (ALICE) (2017), 1702.00804 [38] J.E. Huth et al., Toward a standardization of jet definitions, in 1990 DPF Summer Study on Highenergy Physics: Research Directions for the Decade (Snowmass 90) Snowmass, Colorado, June 25-July 13, 1990 (1990), pp. 0134 136, http://lss.fnal.gov/cgi-bin/find_paper.pl? conf-90-249 [39] G.P. Salam, Eur.Phys.J. C67, 637 (2010) [40] J. Novak, K. Novak, S. Pratt, J. Vredevoogd, C. Coleman-Smith, R. Wolpert, Phys. Rev. C89, 034917 (2014) [41] J.E. Bernhard, J.S. Moreland, S.A. Bass, J. Liu, U. Heinz, Phys. Rev. C94, 024907 (2016) 6