Assessment of triangular flow in jet background fluctuations for Au+Au collisions First look at dijet imbalance (A J )

Size: px
Start display at page:

Download "Assessment of triangular flow in jet background fluctuations for Au+Au collisions First look at dijet imbalance (A J )"

Transcription

1 Assessment of triangular flow in jet background fluctuations for Au+Au collisions First look at dijet imbalance (A J ) Wayne State REU 2012 Research Advisor: Joern Putschke Research Undergraduate: Joshua Bell 1

2 Relativistic Heavy Ion Collider (RHIC) 1km STAR Collides heavy ions like Au, Cu, and U. Also, protons and deuterium. Experiments are conducted at energies around Long Island, New York 2

3 STAR experiment The Barrel Electromagnetic Calorimeter (BEMC) detects neutral particles such as a π 0 pion. The Time Projection Chamber (TPC) detects charged particles such as π +, π -, as well as protons. 3

4 Au+Au head-on collision at the Relativistic Heavy Ion Collider (RHIC) 4

5 pt per grid cell [GeV] η ϕ Dijet well explain by pqcd in p+p collisions. There is low probability that a high p T scattering will occur in a collision. 5

6 How do we define a jet event? To fire the online trigger of a BEMC tower, a particle must have E T > 5.4 GeV. This particle must be detected in a tower with Δφ x Δη = 0.05 x

7 Method ROOT is used with the Anti-k T jet clustering algorithm [1] and the cone radius parameter set at R=0.4 Events are read in Clustered into jets Integrated over η space Set in relative ( Δφ = φ Jet φ Bkg ) vs. p T space Projected onto the p T axis Divided for ratio analysis The area of study is Δφ = π/2 +/- 0.6 Using this area minimizes dijet affects. [1] M. Cacciari, G. P. Salam, and G. Soyez, Journal of High Energy Physics 2008, 063 (2008). 7

8 pt per grid cell [GeV] Au+Au 0-20% Δφ = φ Jet φ Bkg η ϕ In collisions, theoretically a Quark-Gluon Plasma (QGP) is formed. The QGP hadronizes into particles. 8

9 What I am trying to find Is there a distinctive flow pattern in background Δφ = Jet - Bkgspace governed by this equation? Can elliptic (v 2 ) and triangular (v 3 ) flow be quantified? How do elliptic and triangular flow affect the p T distribution? Is there a p T dependence on the coefficients? 9

10 pt per grid cell [GeV] First study Only particles with p T > 200 MeV were counted. η ϕ 10

11 p T Cluster (GeV/c) Area of study π/2-0.6 π/2 π/ Spatial coordinates in relative Δφ space. Background clusters relative to jets are studied. 11

12 p T projections Both bins projected onto the p T axis Now divide the left projection by the right projection p T Cluster (GeV/c) 12

13 The p T projection π/2-0.6 < Δφ < π/2 divided by the p T projection π/2 < Δφ < π/ Now comes the hard part: What does this ratio mean? p T Cluster (GeV/c) 13

14 Qualitative effects of elliptic and triangular flow π/2-0.6 π/2+0.6 π/2 v 2 =6% v 3 =2% Only elliptic flow: Symmetry around π/2 in Δφ space. 2% triangular flow: Shifts the mean. Alters the distribution. Destroys the symmetry. 14

15 p T Cluster (GeV/c) Can we convince ourselves the distribution is due to triangular flow? π/2-0.6 π/2 π/ Distribution could be due to a v 3 mimic by: Detector affects The jet finding algorithm. 2 tests conducted: 1) Particles in the Δφ area of study were randomized with a uniform Δφ distribution. 2) Particles in the Δφ area of study were modulated with v 2 =6% & v 3 =0%. 15

16 p T Cluster (GeV/c) For both tests, the pt division resulted in a uniform symmetry around π/2. 16

17 Does v 3 do what we expect? Background modulated with 6% v 2 & 1% v 3. The addition of the triangular flow coefficient indeed causes the p T distribution to reflect closer to what the data shows. p T Cluster (GeV/c) 17

18 Can we make a quantitative conclusion? More tests were conducted with modulating the background. Then the ratios are divided by the data ratio. If the equation of modulation matches with the data, there will be uniformity. Furthermore, fitting this ratio with a linear function should result in a slope of 0. The closest achieved was with a modulation of 6% v 2 & 1% v 3 More study is needed to make a definitive conclusion. Results are consistent with a v 3 modulation of 1%. 18

19 Is there a p T dependence? Since this analysis integrates over all η values, that dependence can be discounted. However, thus far all analysis has been conducted with a p T cut of 0.2 GeV. A. Adare (PHENIX Collaboration), Phys. Rev. Lett. 107, (2011). p T Particle (GeV/c) 19

20 p T cut 0.2 GeV 1.0 GeV 2.0 GeV p T Cluster (GeV/c) p T Cluster (GeV/c) Linearly decreasing trend. Increasing p T cut seems to have an effect on the distribution of energy among clusters. p T Cluster (GeV/c) 20

21 Conclusion It seems as though there is a p T dependence, which is consistent with expectations. More study needed on if the clusters follow a similar trend as single particles. A. Adare (PHENIX Collaboration), Phys. Rev. Lett. 107, (2011). 21

22 Next Study Dijet Asymmetry A J characterizes the balance or imbalance of the trigger and recoil jets. The asymmetry ratio is interesting, since it measures if the jet is altered due to partonic energy loss in the QGP. 22

23 Pb+Pb CMS data 23

24 Au+Au collisions 0-20% centrality Increasing nucleons: Shifts peak Peaks distribution Changes overall trend A J 24

25 p+p collisions Pythia does NOT match data Why is this? Detector affects? Analysis? More study needed. A J 25

26 Summary We observed a finite triangular flow (v 3 ) modulation consistent with 1%. More study needed on how increasing the p T cut affects triangular flow. More study needed on why p+p collision data doesn t match with pythia simulation. 26

Dijet Asymmetry in Pb+Pb Collisions at S NN = 2.76 TeV Using the ALICE Experiment

Dijet Asymmetry in Pb+Pb Collisions at S NN = 2.76 TeV Using the ALICE Experiment Dijet Asymmetry in Pb+Pb Collisions at S NN = 2.76 TeV Using the ALICE Experiment { Isaac Mooney Advisors: Joern Putschke, Rosi Reed Wayne State University National Science Foundation Friday, August 8,

More information

Jet quenching in PbPb collisions in CMS

Jet quenching in PbPb collisions in CMS Jet quenching in PbPb collisions in CMS Bolek Wyslouch École Polytechnique Massachusetts Institute of Technology arxiv:1102.1957 Orsay, February 18, 2011 1 Heavy Ions at the LHC Huge energy jump from RHIC:

More information

Di muons and the detection of J/psi, Upsilon and Z 0 Jets and the phenomenon of jet quenching

Di muons and the detection of J/psi, Upsilon and Z 0 Jets and the phenomenon of jet quenching collisions in CMS Bolek Wyslouch École Polytechnique Massachusetts Institute of Technology on behalf of CMS Collaboration CERN, December 2, 2010 1 Heavy Ions at the LHC Huge energy jump from RHIC: factor

More information

The measurement of non-photonic electrons in STAR

The measurement of non-photonic electrons in STAR The measurement of non-photonic electrons in STAR Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 11519, Prague 1, Czech Republic E-mail: olga.hajkova@fjfi.cvut.cz

More information

Photon and neutral meson production in pp and PbPb collisions at ALICE

Photon and neutral meson production in pp and PbPb collisions at ALICE Photon and neutral meson production in pp and PbPb collisions at ALICE Dieter Roehrich University of Bergen, Norway for the ALICE Collaboration Nuclear collisions at the LHC Photons as a probe for the

More information

Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by STAR

Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by STAR Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by SAR Nuclear Physics Institute, Academy of Sciencis of Czech Republic, Na ruhlarce 39/64, 180 86 Prague, Czech Republic

More information

Recent STAR Jet Results of the High-Energy Spin Physics Program at RHIC

Recent STAR Jet Results of the High-Energy Spin Physics Program at RHIC Recent STAR Jet Results of the High-Energy Spin Physics Program at RHIC Daniel L. Olvitt Jr. Temple University E-mail: daniel.olvitt@temple.edu The production of jets from polarized proton+proton collisions

More information

Inclusive Jet and Dijet Production in Polarized Proton-Proton Collisions at 200 GeV at RHIC

Inclusive Jet and Dijet Production in Polarized Proton-Proton Collisions at 200 GeV at RHIC Inclusive Jet and Dijet Production in Polarized Proton-Proton Collisions at 2 GeV at RHIC Measurement of Inclusive Jet Cross Section MIT Tai Sakuma for the collaboration Introduction and Jet measurement

More information

Jet Physics with ALICE

Jet Physics with ALICE Jet Physics with ALICE Oliver Busch for the ALICE collaboration Oliver Busch Tsukuba 2014 /03/13 1 Outline introduction results from pp jets in heavy-ion collisions results from Pb-Pb collisions jets in

More information

LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons

LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons HUGS 2015 Bolek Wyslouch Techniques to study the plasma Radiation of hadrons Azimuthal asymmetry and radial expansion Energy loss by quarks, gluons

More information

Studying Evolution with Jets at STAR. Renee Fatemi University of Kentucky May 28 th, 2015

Studying Evolution with Jets at STAR. Renee Fatemi University of Kentucky May 28 th, 2015 Studying Evolution with Jets at STAR Renee Fatemi University of Kentucky May 28 th, 2015 Relativistic Heavy Ion Collider Absolute Polarimeter (H jet) RHIC pc Polarimeters Siberian Snakes PHOBOS PHENIX

More information

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC Journal of Physics: Conference Series PAPER OPEN ACCESS Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN = 39-200 GeV at RHIC To cite this article: S S Vdovkina 2017 J.

More information

Azimuthal distributions of high-pt direct and 0. at STAR

Azimuthal distributions of high-pt direct and 0. at STAR Azimuthal distributions of high-pt direct and 0 w.r.t reaction plane For the at STAR Ahmed Hamed Collaboration Hot Quarks 2010 La Londe les Maures, 21-26th June, 2010 Ahmed Hamed (Texas A&M University)

More information

Charm production at RHIC

Charm production at RHIC 1 Charm production at RHIC Charm 2007 Conference Cornell University, Ithaca, NY 5 August 2007 2 The Quark Gluon Plasma T c Early universe quark-gluon plasma LHC RHIC Tri-critical point? Quark deconfinement

More information

JET FRAGMENTATION DENNIS WEISER

JET FRAGMENTATION DENNIS WEISER JET FRAGMENTATION DENNIS WEISER OUTLINE Physics introduction Introduction to jet physics Jets in heavy-ion-collisions Jet reconstruction Paper discussion The CMS experiment Data selection and track/jet

More information

Exploring Jet Properties in p+p Collisions at 200 GeV with STAR

Exploring Jet Properties in p+p Collisions at 200 GeV with STAR Exploring Jet Properties in p+p Collisions at 200 GeV with SAR Helen Caines - Yale University - for the SAR Collaboration Outline Quark Matter 2009 Knoxville,N, USA March 30 th -April 4 th What we know

More information

67. W.M. Snow et al. (M. Sarsour), NSR collaboration, Parity violating neutron spin rotation in He-4 and H., Nuovo Cim. C035N04, (2012).

67. W.M. Snow et al. (M. Sarsour), NSR collaboration, Parity violating neutron spin rotation in He-4 and H., Nuovo Cim. C035N04, (2012). 68. A. Adare et al. (M. Sarsour), PHENIX collaboration, J/ψ suppression at forward rapidity in Au + Au collisions at s NN =39 and 62.4 GeV, Phys. Rev. C 86, 064901 (2012). 67. W.M. Snow et al. (M. Sarsour),

More information

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS For the CMS Collaboration NPA Seminar Yale, USA 15 October, 2015 Relativistic Heavy Ion Collisions Trying to answer two important

More information

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC High- Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC K. Reygers for the WA98 and the PHENIX collaboration Institut für Kernphysik der Universität Münster Wilhelm-Klemm-Str. 9, D-4849 Münster,

More information

Charged jets in p Pb collisions measured with the ALICE detector

Charged jets in p Pb collisions measured with the ALICE detector Charged jets in p Pb collisions measured with the ALICE detector (CERN) for the ALICE collaboration (25.03.2015) Rencontres de Moriond, QCD and High Energy Interactions, La Thuile Motivation for p Pb Study

More information

arxiv: v1 [nucl-ex] 14 Oct 2013

arxiv: v1 [nucl-ex] 14 Oct 2013 Charged Jets in Minimum Bias p-pb Collisions at snn = 5.02 TeV with ALICE arxiv:1310.3612v1 [nucl-ex] 14 Oct 2013 for the ALICE collaboration Westfälische Wilhelms-Universität Münster, Germany E-mail:

More information

Summary on high p T probes

Summary on high p T probes Eur. Phys. J. C (2009) 61: 741 745 DOI 10.1140/epjc/s10052-009-0913-6 Regular Article - Experimental Physics Summary on high p T probes Saskia Mioduszewski a Cyclotron Institute, Texas A&M University,

More information

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC PHENIX! AGS! RHIC! STAR! Cover 3 decades of energy in center-of-mass s NN = 2.76 TeV 5.5 TeV (2015) CMS LHC! s NN = 5-200 GeV

More information

Soft physics results from the PHENIX experiment

Soft physics results from the PHENIX experiment Prog. Theor. Exp. Phys. 2015, 03A104 (15 pages) DOI: 10.1093/ptep/ptu069 PHYSICS at PHENIX, 15 years of discoveries Soft physics results from the PHENIX experiment ShinIchi Esumi, Institute of Physics,

More information

Background Subtraction Methods on Recoil Jets from Proton-Proton Collisions

Background Subtraction Methods on Recoil Jets from Proton-Proton Collisions Background Subtraction Methods on Recoil Jets from Proton-Proton Collisions Colby Ostberg San Francisco State University REU student at Texas A&M Cyclotron Institute 1 Motivation At the RHIC, heavy ions

More information

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV + High p T with ATLAS and CMS in Heavy-Ion Collisions @ 2.76TeV Lamia Benhabib On behalf of ATLAS and CMS HCP 2011, Paris lamia.benhabib@llr.in2p3.fr +Outlook Introduction : hard probes Strongly interacting

More information

Two-particle Correlations in pp and Pb-Pb Collisions with ALICE

Two-particle Correlations in pp and Pb-Pb Collisions with ALICE wo-particle Correlations in pp and Pb-Pb Collisions with ALICE Xiangrong Zhu, Ruina Dang (for the ALICE Collaboration) Institute Of Particle Physics, Central China Normal University he 9th Chinese Physical

More information

Angular correlations of identified particles in the STAR BES data

Angular correlations of identified particles in the STAR BES data Angular correlations of identified particles in the STAR BES data, for the STAR Collaboration Warsaw University of Technology E-mail: andrew.lipiec@gmail.com The angular correlation function (CF) in this

More information

ScienceDirect. Future Upgrades for the PHENIX Experiment at RHIC: From PHENIX to sphenix And Beyond

ScienceDirect. Future Upgrades for the PHENIX Experiment at RHIC: From PHENIX to sphenix And Beyond Available online at www.sciencedirect.com ScienceDirect Physics Procedia 66 (2015 ) 489 493 C 23rd Conference on Application of Accelerators in Research and Industry, CAARI 2014 Future Upgrades for the

More information

Summary of First results from Heavy Ion collisions at the LHC (ALICE, ATLAS, CMS)

Summary of First results from Heavy Ion collisions at the LHC (ALICE, ATLAS, CMS) Summary of First results from Heavy Ion collisions at the LHC (ALICE, ATLAS, CMS) Wen-Chen Chang 章文箴 Institute of Physics, Academia Sinica Weekly Journal Club for Medium Energy Physics at IPAS March 21,

More information

Gluon Polarization Measurements at STAR

Gluon Polarization Measurements at STAR Gluon Polarization Measurements at Matthew Walker for the Collaboration Outline! Brief theoretical motivation! Inclusive measurements: Jets and pions! Correlation measurements: Di-Jets! Status and Prospects

More information

11th International Workshop on High-pT Physics in the RHIC & LHC Era

11th International Workshop on High-pT Physics in the RHIC & LHC Era 11th International Workshop on High-pT Physics in the RHIC & LHC Era Contents Motivations Theoretical Predictions Results Summary and Outlook 2 Motivation: Parton Energy Loss in QGP q Energy loss: parton

More information

Heavy quark results from STAR

Heavy quark results from STAR Eur. Phys. J. C (2009) 61: 659 664 DOI 10.1140/epjc/s10052-009-0931-4 Regular Article - Experimental Physics Heavy quark results from STAR Xin Dong a for the STAR Collaboration Lawrence Berkeley National

More information

Ridge correlation structure in high multiplicity pp collisions with CMS

Ridge correlation structure in high multiplicity pp collisions with CMS Ridge correlation structure in high multiplicity pp collisions with CMS Dragos Velicanu for the CMS Collaboration MBUEWG CERN, Geneva, June 17 2011 Results from High Multiplicity pp Dragos Velicanu (MIT)

More information

Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR

Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR Katarzyna Kowalik for the STAR Collaboration Lawrence Berkeley National Laboratory, Berkeley, California 94720 Abstract. This contribution

More information

arxiv: v1 [nucl-ex] 12 May 2008

arxiv: v1 [nucl-ex] 12 May 2008 1 Highlights from PHENIX - II arxiv:0805.1636v1 [nucl-ex] 12 May 2008 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Terry C. Awes (for the PHENIX Collaboration ) Oak

More information

Strangeness production and nuclear modification at LHC energies

Strangeness production and nuclear modification at LHC energies Strangeness production and nuclear modification at LHC energies Oliver Busch for the ALICE collaboration 1 Outline introduction jet azimuthal anisotropy jet shapes 2 Introduction 3 Jets: seeing quarks

More information

Review of photon physics results at Quark Matter 2012

Review of photon physics results at Quark Matter 2012 Review of photon physics results at Quark Matter 2012 Jet Gustavo Conesa Balbastre 1/28 Why photons? Direct thermal: Produced by the QGP Measure medium temperature R AA > 1, v 2 > 0 Direct prompt: QCD

More information

Study of Dihadron Fragmentation Function Correlations in p-p collisions at 7 TeV. Derek Everett Dr. Claude Pruneau, Dr.

Study of Dihadron Fragmentation Function Correlations in p-p collisions at 7 TeV. Derek Everett Dr. Claude Pruneau, Dr. Study of Dihadron Fragmentation Function Correlations in p-p collisions at 7 TeV Derek Everett Dr. Claude Pruneau, Dr. Sidharth Prasad Outline Physics Motivation Definitions of Observables PYTHIA Monte

More information

Multi-hadron Triggered Azimuthal Correlations in Au+Au Collisions at s NN = 200 GeV from STAR. Brooke Haag UC Davis

Multi-hadron Triggered Azimuthal Correlations in Au+Au Collisions at s NN = 200 GeV from STAR. Brooke Haag UC Davis Multi-hadron Triggered Azimuthal Correlations in Au+Au Collisions at s NN = 200 GeV from STAR Brooke Haag UC Davis Outline Introduction / Analysis Technique Motivation for multi-hadron triggers Explanation

More information

Nikos Varelas. University of Illinois at Chicago. CTEQ Collaboration Meeting Northwestern November 20, Nikos Varelas. CTEQ Meeting Nov 20, 2009

Nikos Varelas. University of Illinois at Chicago. CTEQ Collaboration Meeting Northwestern November 20, Nikos Varelas. CTEQ Meeting Nov 20, 2009 QCD Physics at CMS University of Illinois at Chicago CTEQ Collaboration Meeting Northwestern November 0, 009 1 QCD Physics at CMS University of Illinois at Chicago CTEQ Collaboration Meeting Northwestern

More information

Overview of experimental results in Pb-Pb collisions at s NN = 2.76 TeV by the CMS Collaboration

Overview of experimental results in Pb-Pb collisions at s NN = 2.76 TeV by the CMS Collaboration Overview of experimental results in Pb-Pb collisions at s NN =.76 ev by the CMS Collaboration he MI Faculty has made this article openly available. Please share how this access benefits you. Your story

More information

Heavy-flavour meson production at RHIC

Heavy-flavour meson production at RHIC Heavy-flavour meson production at RHIC André Mischke ERC-Starting Independent Research Group QGP - Utrecht 1 Outline Introduction - heavy-flavour production and energy loss in QCD matter Total charm production

More information

Measurement of Inclusive Charged Jet Production in pp and Pb-Pb collisions at snn = 5.02 TeV with ALICE

Measurement of Inclusive Charged Jet Production in pp and Pb-Pb collisions at snn = 5.02 TeV with ALICE 1 Measurement of Inclusive Charged Jet Production in pp and Pb-Pb collisions at snn = 5.02 TeV with ALICE Hiroki Yokoyama for the ALICE collaboration LPSC, Université Grenoble-Alpes, CNRS/IN2P3 University

More information

PHENIX measurements of bottom and charm quark production

PHENIX measurements of bottom and charm quark production Journal of Physics: Conference Series PAPER OPEN ACCESS PHENIX measurements of bottom and charm quark production To cite this article: Timothy Rinn and PHENIX Collaboration 2018 J. Phys.: Conf. Ser. 1070

More information

Small Collision Systems at RHIC

Small Collision Systems at RHIC EPJ Web of Conferences 7, (8) SQM 7 https://doi.org/.5/epjconf/87 Small Collision Systems at RHIC Norbert Novitzky, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 79, USA

More information

Shingo Sakai Univ. of California, Los Angeles

Shingo Sakai Univ. of California, Los Angeles Shingo Sakai Univ. of California, Los Angeles Non-photonic e result in AuAu b/c separation in non-photonic electron by electron-hadron correlations @ pp Bottom production Discuss heavy flavor energy loss

More information

Prospective of gamma hadron correlation. study in CMS experiment

Prospective of gamma hadron correlation. study in CMS experiment Prospective of gamma hadron correlation. study in CMS experiment Yeonju Go (Korea University) for the CMS collaboration 5-6 Dec. 2014 HIM meeting Contents Physics Motivation Direct gamma-hadron correlation

More information

Outline: Introduction and Motivation

Outline: Introduction and Motivation Heavy ion collisions at lower energies: challenges and opportunities Beam Energy Scan (BES I and II) from RHIC Lijuan Ruan (Brookhaven National Laboratory) Outline: Introduction and Motivation Results

More information

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Lawrence Berkeley National Laboratory Berkeley, US 1 Introduction: Heavy Ion Physics Today t = 5 10 17 sec T=1

More information

Event geometrical anisotropy and fluctuation viewed by HBT interferometry

Event geometrical anisotropy and fluctuation viewed by HBT interferometry Event geometrical anisotropy and fluctuation viewed by HB interferometry akafumi Niida University of sukuba -- ennoudai, sukuba, Ibaraki 35-857, Japan Abstract Azimuthal angle dependence of the pion source

More information

Measurement of inclusive charged jet production in pp and Pb-Pb

Measurement of inclusive charged jet production in pp and Pb-Pb Measurement of inclusive charged jet production in pp and Pb-Pb collisions at S NN 5. 02TeV with ALICE Run2 Data Yan Li for the ALICE collaboration Central China Normal University CLHCP 2016 18/12/2016

More information

PoS(DIS2017)208. Nuclear PDF studies with proton-lead measurements with the ALICE detector

PoS(DIS2017)208. Nuclear PDF studies with proton-lead measurements with the ALICE detector Nuclear PDF studies with proton-lead measurements with the ALICE detector a,b for the ALICE Collaboration a Institute for Subatomic Physics, Department for Physics and Astronomy and EMMEφ, Faculty of Science,

More information

Correlations of Electrons from Heavy Flavor Decay with Hadrons in Au+Au and p+p Collisions arxiv: v1 [nucl-ex] 11 Jul 2011

Correlations of Electrons from Heavy Flavor Decay with Hadrons in Au+Au and p+p Collisions arxiv: v1 [nucl-ex] 11 Jul 2011 Correlations of Electrons from Heavy Flavor Decay with Hadrons in and Collisions arxiv:7.v [nucl-ex] Jul Anne M. Sickles, for the PHENIX Collaboration Brookhaven National Laboratory, Upton, NY E-mail:

More information

Jet Energy Loss at RHIC

Jet Energy Loss at RHIC QCD Session Jet Energy Loss at RHIC Nathan Grau Columbia University for the PHENIX Collaboration Fundamental Question in QED An early study in QED: charged particles losing energy in matter Bethe Formula

More information

The parton cascade BAMPS with the improved Gunion-Bertsch matrix element

The parton cascade BAMPS with the improved Gunion-Bertsch matrix element The parton cascade BAMPS with the improved Gunion-Bertsch matrix element Florian Senzel 6438 Frankfurt am Main, Germany E-mail: senzel@th.physik.uni-frankfurt.de Oliver Fochler 6438 Frankfurt am Main,

More information

The STAR Transverse Spin Program

The STAR Transverse Spin Program The STAR Transverse Spin Program Solenoidal Magnet 0.5 Tesla field Barrel Electromagnetic Calorimeter - BEMC End Cap Calorimeter - EEMC Beam Pipe DIFFRACTION 2012 Puerto del Carmen,Lanzarote Sept 1 10-15

More information

Jet Physics at ALICE. Oliver Busch. University of Tsukuba Heidelberg University

Jet Physics at ALICE. Oliver Busch. University of Tsukuba Heidelberg University Jet Physics at ALICE Oliver Busch University of Tsukuba Heidelberg University 1 2 Outline Introduction Results from pp collisions Identified jet fragmentation in pp Jets in heavy-ion collisions Jet shapes

More information

Future prospects of di-jet production at. forward rapidity constraining Δg(x) at low x in. polarized p+p collisions at RHIC

Future prospects of di-jet production at. forward rapidity constraining Δg(x) at low x in. polarized p+p collisions at RHIC Future prospects of di-jet production at forward rapidity constraining Δg(x at low x in polarized p+p collisions at RHIC Bernd Surrow QCD Evolution Workshop - QCD! Santa Fe, NM, May, Bernd Surrow Outline

More information

Global variables and identified hadrons in the PHENIX experiment

Global variables and identified hadrons in the PHENIX experiment PRAMANA cfl Indian Academy of Sciences Vol. 60, No. 5 journal of May 003 physics pp. 953 963 in the PHENIX experiment JOHN P SULLIVAN, for the PHENIX Collaboration P-5 MS-H846, Los Alamos National Laboratory,

More information

STRANGENESS PRODUCTION IN HEAVY ION COLLISIONS AT RELATIVISTIC ENERGIES *

STRANGENESS PRODUCTION IN HEAVY ION COLLISIONS AT RELATIVISTIC ENERGIES * Romanian Reports in Physics, Vol. 64, No. 3, P. 722 727, 2012 STRANGENESS PRODUCTION IN HEAVY ION COLLISIONS AT RELATIVISTIC ENERGIES * OANA RISTEA, A. JIPA, C. RISTEA, C. BEŞLIU, ŞTEFANIA VELICA University

More information

Effect of Multi-Hadron Triggers on Yields in d+au and Au+Au. Brooke Haag UC Davis. 14 June 2007 Brooke Haag, UC Davis 1

Effect of Multi-Hadron Triggers on Yields in d+au and Au+Au. Brooke Haag UC Davis. 14 June 2007 Brooke Haag, UC Davis 1 Effect of Multi-Hadron Triggers on Yields in d+au and Au+Au Brooke Haag UC Davis 14 June 2007 Brooke Haag, UC Davis 1 Introduction Fragmentation function D(z) depends on z defined as p T /E T,jet Current

More information

Measurement of light mesons at RHIC by the PHENIX experiment

Measurement of light mesons at RHIC by the PHENIX experiment Eur. Phys. J. C (2009) 61: 835 840 DOI 10.1140/epjc/s10052-009-0879-4 Regular Article - Experimental Physics Measurement of light mesons at RHIC by the PHENIX experiment M. Naglis a for the PHENIX Collaboration

More information

High p T Physics with ALICE/EMCal

High p T Physics with ALICE/EMCal High p T Physics with ALICE/EMCal Physics with ALICE/EMCal EMCal performance Physics performance (several topics) Collaboration EMCal/FRANCE : Subatech Nantes, LPSC Grenoble, IPHC Strasbourg Groupe Physique

More information

Monte Carlo Non-Linear Flow modes studies with AMPT

Monte Carlo Non-Linear Flow modes studies with AMPT Monte Carlo Non-Linear Flow modes studies with AMP Daniel Noel Supervised by: Naghmeh Mohammadi 2 July - 31 August 218 1 Introduction Heavy-ion collisions at the Large Hadron Collider (LHC) generate such

More information

et Experiments at LHC

et Experiments at LHC et Experiments at LHC (as opposed to Jet Physics at RHIC ) JET Collaboration Symposium Montreal June 2015 Heavy-ion jet results at LHC Dijet asymmetries Observation of a Centrality-Dependent Dijet Asymmetry

More information

Jet and bulk observables within a partonic transport approach

Jet and bulk observables within a partonic transport approach Jet and bulk observables within a partonic transport approach Florian Senzel with J. Uphoff, O. Fochler, C. Wesp, Z. Xu and C. Greiner based on Phys.Rev.Lett. 4 (25) 23 Transport meeting, 29.4.25 Outline

More information

COMPARISONS AMONG THE HADRON PRODUCTION IN ULTRA RELATIVISTIC HEAVY ION COLLISIONS IN DIFFERENT TRANSVERSE MOMENTUM RANGES. PRELIMINARY RESULTS *

COMPARISONS AMONG THE HADRON PRODUCTION IN ULTRA RELATIVISTIC HEAVY ION COLLISIONS IN DIFFERENT TRANSVERSE MOMENTUM RANGES. PRELIMINARY RESULTS * Romanian Reports in Physics, Vol. 67, No. 3, P. 831 836, 2015 COMPARISONS AMONG THE HADRON PRODUCTION IN ULTRA RELATIVISTIC HEAVY ION COLLISIONS IN DIFFERENT TRANSVERSE MOMENTUM RANGES. PRELIMINARY RESULTS

More information

Momentum Correlations in Nuclear Collisions

Momentum Correlations in Nuclear Collisions Momentum Correlations in Nuclear Collisions By: Patrick Carzon Advisors: Sean Gavin, George Moschelli August 2016 1 Introduction Covariance is a measure of how linearly two things change with each other.

More information

arxiv:nucl-ex/ v1 10 May 2004

arxiv:nucl-ex/ v1 10 May 2004 arxiv:nucl-ex/0405004v1 10 May 2004 Proc. 20th Winter Workshop on Nuclear Dynamics (2003) 000 000 Anisotropic flow at RHIC A. H. Tang 1 for the STAR Collaboration 1 NIKHEF and Brookhaven National Lab,

More information

Searching For p+ p+ Rapidity Dependent Correlations in Ultra-relativistic Quantum Molecular Data. Abstract

Searching For p+ p+ Rapidity Dependent Correlations in Ultra-relativistic Quantum Molecular Data. Abstract Searching For p+ p+ Rapidity Dependent Correlations in Ultra-relativistic Quantum Molecular Data Isaac Pawling (Dated: August 7, 2015) Abstract Finding rapidity dependent particle correlations in particle

More information

Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV

Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV Samantha G Brovko June 14, 2011 1 INTRODUCTION In ultra-relativistic heavy ion collisions a partonic state of

More information

Exploring quark-gluon plasma in relativistic heavy-ion collisions

Exploring quark-gluon plasma in relativistic heavy-ion collisions Exploring quark-gluon plasma in relativistic heavy-ion collisions Guang-You Qin 秦广友 Duke University @ University of Science and Technology of China July 12 th, 2011 Outline Introduction Collective flow

More information

Selected highlights from the STAR experiment at RHIC

Selected highlights from the STAR experiment at RHIC Selected highlights from the STAR experiment at RHIC Sonia Kabana for the STAR Collaboration Laboratoire de Physique Subatomique et des technologies associees (SUBATECH) and University of Nantes, France

More information

Overview of flow results from ALICE experiment

Overview of flow results from ALICE experiment Overview of flow results from ALICE experiment ShinIchi Esumi for the ALICE collaboration Inst. of Physics, Univ. of Tsukuba contents Multiplicity and transverse momentum distribution Source size measurement

More information

Ultra-Relativistic Heavy Ion Collision Results

Ultra-Relativistic Heavy Ion Collision Results Ultra-Relativistic Heavy Ion Collision Results I. Overview of Effects Observed in Large Nucleus-Nucleus Collision Systems (Au+Au, Pb+Pb) High p T Hadrons Are Suppressed at LHC & RHIC Central Pb-Pb and

More information

Jet Physics at the LHC

Jet Physics at the LHC Jet Physics at the LHC Oliver Busch University of Tsukuba Heidelberg University 1 pp jet cross sections and fragmentation pp identified jet fragmentation Nuclear modification factor Event plane dependence

More information

arxiv: v1 [nucl-ex] 10 Jan 2009

arxiv: v1 [nucl-ex] 10 Jan 2009 Hard Probes 2008 Conference Proceedings. June 9th, 2008. Illa da Toxa, Spain Two-particle Direct Photon-Jet Correlation Measurements in PHENIX J. Frantz a for the PHENIX Collaboration a State University

More information

Glauber modelling in high-energy nuclear collisions. Jeremy Wilkinson

Glauber modelling in high-energy nuclear collisions. Jeremy Wilkinson Glauber modelling in high-energy nuclear collisions Jeremy Wilkinson 16/05/2014 1 Introduction: Centrality in Pb-Pb collisions Proton-proton collisions: large multiplicities of charged particles produced

More information

Selected results and future prospects of the high-energy polarized p+p program at RHIC at BNL

Selected results and future prospects of the high-energy polarized p+p program at RHIC at BNL 1 Selected results and future prospects of the high-energy polarized p+p program at RHIC at BNL Outline 2 Selected results and future prospects Gluon related studies Quark / Anti-quark related studies

More information

Overview of anisotropic flow measurements from ALICE

Overview of anisotropic flow measurements from ALICE EPJ Web of Conferences 117, (2016) Overview of anisotropic flow measurements from ALICE You Zhou on behalf of the ALICE Collaboration Niels Bohr Institute, University of Copenhagen, Denmark Abstract Anisotropic

More information

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Single Au+Au Collision seen by STAR@RHIC Gunther Roland Gunther Roland/MIT July 15 2003 MPI Munich 15/7/2003 Gunther Roland/MIT www.spiegel.de

More information

First results with heavy-ion collisions at the LHC with ALICE

First results with heavy-ion collisions at the LHC with ALICE First results with heavy-ion collisions at the LHC with ALICE Domenico Elia INFN, Bari (Italy) on behalf of the ALICE Collaboration D. Elia (INFN Bari, Italy) PANIC 011 / Boston, MA (USA) July 4-9, 011

More information

Heavy quark production and elliptic flow at RHIC and LHC

Heavy quark production and elliptic flow at RHIC and LHC Heavy quark production and elliptic flow at RHIC and LHC Jan Uphoff with O. Fochler, Z. Xu and C. Greiner Institute for Theoretical Physics Hirschegg January 20, 2010 Outline Motivation Charm processes

More information

Quarkonia and open heavy-flavour production in high multiplicity pp collisions

Quarkonia and open heavy-flavour production in high multiplicity pp collisions Quarkonia and open heavy-flavour production in high multiplicity pp collisions Sarah Porteboeuf-Houssais for the ALICE Collaboration QGP France, Etretat, 9-12 Septembre 2013 Physics motivations in the

More information

Pion, Kaon, and (Anti-) Proton Production in Au+Au Collisions at s = 62.4 GeV

Pion, Kaon, and (Anti-) Proton Production in Au+Au Collisions at s = 62.4 GeV Pion, Kaon, and (Anti-) Proton Production in AuAu Collisions at s = 6.4 GeV NN Ming Shao 1, for the STAR Collaboration 1 University of Science & Technology of China, Anhui 3007, China Brookhaven National

More information

Jet Quenching in Heavy Ion collisions at the CMS detector

Jet Quenching in Heavy Ion collisions at the CMS detector Jet Quenching in Heavy Ion collisions at the CMS detector Raghav Kunnawalkam Elayavalli ( USA) For the CMS Collaboration GHP 2015 Baltimore, MD 8 th April 2015 1 HI Collisions QGP Quark Gluon Plasma The

More information

Low Momentum Direct Photons in Au+Au collisions at 39 GeV and 62.4 GeV measured by the PHENIX Experiment at RHIC

Low Momentum Direct Photons in Au+Au collisions at 39 GeV and 62.4 GeV measured by the PHENIX Experiment at RHIC Low Momentum Direct Photons in Au+Au collisions at 39 GeV and 6.4 GeV measured by the PHENIX Experiment at RHIC Vladimir Khachatryan for the PHENIX Collaboration Department of Physics and Astronomy, Stony

More information

Jet reconstruction in heavy-ion collisions

Jet reconstruction in heavy-ion collisions Jet reconstruction in heavy-ion collisions Grégory Soyez IPhT, Saclay CERN In collaboration with Gavin Salam, Matteo Cacciari and Juan Rojo BNL March 12 21 p. 1 Plan Motivations Why jets in heavy-ion collisions

More information

arxiv: v1 [hep-ex] 18 Jan 2016

arxiv: v1 [hep-ex] 18 Jan 2016 Jet measurements in pp, p Pb and Pb Pb collisions with ALICE at the LHC arxiv:6.446v [hep-ex] 8 Jan 6 Centre for Astroparticle Physics and Space Science, Bose Institute, Kolkata, 79 (INDIA) E-mail: sprasad@cern.ch

More information

Measurements of jets in heavy ion collisions

Measurements of jets in heavy ion collisions Measurements of jets in heavy ion collisions Christine Nattrass 1, 1 University of Tennessee, Knoxville, TN, USA-37996 Abstract. The Quark Gluon Plasma (QGP) is created in high energy heavy ion collisions

More information

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF of the Inclusive Isolated Cross at IFAE Barcelona HEP Seminar University of Virginia Outline Theoretical introduction Prompt photon production The The Photon detection prediction The pqcd NLO prediction

More information

Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions.

Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions. Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions. Cesar L. da Silva 1, 1 Los Alamos National Lab - USA Abstract. The use of probes containing heavy quarks is one of the pillars

More information

Direct Hadronic Reconstruction of D ± Mesons at STAR

Direct Hadronic Reconstruction of D ± Mesons at STAR Direct Hadronic Reconstruction of D ± Mesons at STAR Nathan Joseph Department of Physics and Astronomy, Wayne State University, Detroit, MI September 2, 2009 1 Introduction: Quark-Gluon Plasma The theory

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title High pt inclusive charged hadron spectra from Au+Au collisions at Sqrt(s_NN)=00 Gev Permalink https://escholarship.org/uc/item/3jp4v8vd

More information

What is a heavy ion? Accelerator terminology: Any ion with A>4, Anything heavier than α-particle

What is a heavy ion? Accelerator terminology: Any ion with A>4, Anything heavier than α-particle Outline Introduction to Relativistic Heavy Ion Collisions and Heavy Ion Colliders. Production of particles with high transverse momentum. Collective Elliptic Flow Global Observables Particle Physics with

More information

1 Introduction. 2 Charge Fluctuations

1 Introduction. 2 Charge Fluctuations Net Charge and Isospin Fluctuations in the World of Elementary Particles Vesna Mikuta-Martinis Rudjer Boskovic Institute 10001 Zagreb, Bijenicka c. 54, P.O.Box 1016, Croatia vmikuta@rudjer.irb.hr arxiv:nucl-th/0412007v2

More information

Jet Results in pp and Pb-Pb Collisions at ALICE

Jet Results in pp and Pb-Pb Collisions at ALICE Jet Results in pp and Pb-Pb Collisions at ALICE Oliver Busch for the ALICE Collaboration Motivation Jet reconstruction in ALICE Jets in pp Jets in Pb-Pb Hadron triggered recoil jets Motivation Jets originate

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

Transverse SSA Measured at RHIC

Transverse SSA Measured at RHIC May 21-24, 2007 Jefferson Lab Transverse SSA Measured at RHIC Jan Balewski, IUCF Exclusive Reactions Where does the proton s spin come from? p is made of 2 u and 1d quark S = ½ = Σ S q u u Explains magnetic

More information