Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump

Similar documents
Chapter 13. Gas Mixtures. Study Guide in PowerPoint. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A.

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property.

Chemical Engineering Department University of Washington

Lecture 38: Vapor-compression refrigeration systems

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD

Force = F Piston area = A

(b) The heat transfer can be determined from an energy balance on the system

NUCLEAR THERMAL-HYDRAULIC FUNDAMENTALS

Given: Hot fluid oil, Cold fluid - water (T 1, T 2 ) (t 1, t 2 ) Water

CHAPTER 10 ROTATIONAL MOTION

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

total If no external forces act, the total linear momentum of the system is conserved. This occurs in collisions and explosions.

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F)

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

Physics 123. Exam #1. October 11, 2006

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 6 Second Law of Thermodynamics

PHYS 1441 Section 002 Lecture #15

On Pfaff s solution of the Pfaff problem

CHAPTER 4. The First Law of Thermodynamics for Control Volumes

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter One Mixture of Ideal Gases

ME 412 Heat Transfer Laboratory

11/19/2013. PHY 113 C General Physics I 11 AM 12:15 PM MWF Olin 101

Multivariate Ratio Estimator of the Population Total under Stratified Random Sampling

How does the momentum before an elastic and an inelastic collision compare to the momentum after the collision?

Chapter 8. Linear Momentum, Impulse, and Collisions

Axial Turbine Analysis

Chapter 20 The First Law of Thermodynamics

ENT 254: Applied Thermodynamics

KNOWN: Pressure, temperature, and velocity of steam entering a 1.6-cm-diameter pipe.

System in Weibull Distribution

Chapter 07: Kinetic Energy and Work

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

,..., k N. , k 2. ,..., k i. The derivative with respect to temperature T is calculated by using the chain rule: & ( (5) dj j dt = "J j. k i.

Physical Chemistry I for Biochemists. Lecture 18 (2/23/11) Announcement

Elastic Collisions. Definition: two point masses on which no external forces act collide without losing any energy.

General Formulas applicable to ALL processes in an Ideal Gas:

Name: SID: Discussion Session:

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

m 5 ME-200 Fall 2017 HW-19 1/2 Given Diffuser and two-stage compressor with intercooling in a turbojet engine

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

ME 300 Exam 2 November 18, :30 p.m. to 7:30 p.m.

The First Law of Thermodynamics. By: Yidnekachew Messele

PHYS 1443 Section 002 Lecture #20

MAE 320 Thermodynamics HW 5 Assignment

Solution Set #3

Chapter 5 rd Law of Thermodynamics

Numerical Differentiation

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

first law of ThermodyNamics

SE Story Shear Frame. Final Project. 2 Story Bending Beam. m 2. u 2. m 1. u 1. m 3. u 3 L 3. Given: L 1 L 2. EI ω 1 ω 2 Solve for m 2.

Physics 231. Topic 8: Rotational Motion. Alex Brown October MSU Physics 231 Fall

Chapter 21 - The Kinetic Theory of Gases

8-4 P 2. = 12 kw. AIR T = const. Therefore, Q &

Multigrid Methods and Applications in CFD

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum

Class: Life-Science Subject: Physics

An Algorithm to Solve the Inverse Kinematics Problem of a Robotic Manipulator Based on Rotation Vectors

Compressor 1. Evaporator. Condenser. Expansion valve. CHE 323, October 8, Chemical Engineering Thermodynamics. Tutorial problem 5.

1. Int In e t rnal Losses: tak ta e k place plac in the inner passages adding heat to the flow medium 2. External losses:

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2)

COMP4630: λ-calculus

On a nonlinear compactness lemma in L p (0, T ; B).

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale.

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e.

MAE 11. Homework 8: Solutions 11/30/2018

ME Thermodynamics I = = = 98.3% 1

(SP 1) DLLL. Given: In a closed rigid tank,

EMU Physics Department

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax

Simulation and verification of a plate heat exchanger with a built-in tap water accumulator

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points)

Applied Mathematics Letters

Chapter 3 and Chapter 4

Chapters 19 & 20 Heat and the First Law of Thermodynamics

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis

The Governing Equations

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2013

Linear Momentum. Center of Mass.

University Physics AI No. 10 The First Law of Thermodynamics

Physics 41 Chapter 22 HW Serway 7 th Edition

ME Thermodynamics I

Heat Transfer/Heat Exchanger

Chapter 5: The First Law of Thermodynamics: Closed Systems

Module 3: The Whole-Process Perspective for Thermochemical Hydrogen

Numerical Solution of Ordinary Differential Equations

Thermodynamics Lecture Series

Chapter 7: Conservation of Energy

Thermodynamics Lecture Series

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

Lecture 26 Finite Differences and Boundary Value Problems

36.1 Why is it important to be able to find roots to systems of equations? Up to this point, we have discussed how to find the solution to

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

ME 300 Thermodynamics II Exam 2 November 13, :00 p.m. 9:00 p.m.

Transcription:

Introducton to Terodynacs, Lecture -5 Pro. G. Cccarell (0 Applcaton o Control olue Energy Analyss Most terodynac devces consst o a seres o coponents operatng n a cycle, e.g., stea power plant Man coponents o te above cycle are: Boler (stea generator eat excanger Turbne generates work Condenser eat excanger Pup Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page o 0

Oters coponents nclude: nozzles, dusers, trottlng devces Nozzles and Dusers Devces tat ncrease or decrease te low velocty by passng te low troug a varable area duct, A A Applyng conservaton o ass assung steady low: dm C dt A A A A Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page o 0

For low subsonc low ( = A A Subsonc Nozzle: A < A > Subsonc Duser: A > A < Arcrat gas turbne duser nozzle Applyng te energy equaton (assung steady, no eat loss, PE=0: de dt q w s ( / gz ( e e / gz e 0 Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page o 0

Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page o 0 ( / / For a rocket nozzle >> (

Turbne A devce n wc sat work s generated as a result o gas passng troug a set o blades attaced to a reely rotatng sat Te rotatng blades redrect te low o axs, so you need a set o xed blades tat stragten out te low beore te next set o rotatng blades Rotatng blades Fxed blades Rotatng blades Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page 5 o 0

In ts course we are not nterested n te detals o te low troug eac blade, or row o blades. We are nterested n te overall energy balance Flow T W Applyng Frst Law (steady-state, neglect eat transer 0 q w ( ( w ( ( work per unt ass Oten te cange n KE s sall copared to cange n.e., w Note: work output ( w 0 Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page 6 o 0

Power s work output per unt te W w ( EXAMPLE Stea enters a turbne operatng at steady-state wt a ass low rate o 600 kg/. Te turbne develops a power output o 000 kw. At te nlet te pressure s 60 bars, te teperature s 00C and te velocty s 0 /s. At te ext te pressure s 0. bar, te qualty s 0.9 and te velocty s 50 /s. Calculate te rate o eat transer between te turbne and te surroundngs, n kw. stea = 600 kg/r P = 60 bar T = 00C = 0 /s T W lqud/vapor x = 0.9 P= 0. bar = 50 /s T 00C 76C 60 bar 0. bar v Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page 7 o 0

Assue steady-state and PE s neglgble 0 q w ( ( q w ( ( Need entalpy at states and State : Fro saturated water Table A- Tsat (60 bar= 75.6C snce T>Tsat at sae pressure ave supereated vapor Fro supereated water vapor Table A- (60bar, 00C= 77. kj/kg State : Fro saturated water Table A- (0. bar= 9.8 kj/kg g(0. bar= 58.7 kj/kg = + x(g- = 9.8 + 0.9(9.8= 5. kj/kg so - = 5. - 77. = -8.8 kj/kg Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page 8 o 0

0.5 = 0.5(50 00 s -0 =00 N kg /s /s J N 00 J kg Collectng ters: q w ( ( Q W ( ( 000 kw 600 kg r r 600 s 8.8 kj kg. kj kg Q 6. kw Negatve sgn ples eat loss ro turbne Note: Derence n agntude between and ke Magntude o eat loss Q (6 kw copared to agntude o power output W (000 kw Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page 9 o 0

Copressor/pup A devce n wc sat work nput s used to rase te pressure o a lud (lqud or vapor Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page 0 o 0

Agan we are not nterested n te detals o te low troug eac blade or row o blades. We are nterested n te overall energy balance Flow C W Applyng Frst Law (steady-state, neglect eat transer and PE 0 q w ( ( w ( ( work per unt ass Oten te cange n KE s sall copared to cange n.e., w Note: work nput ( w 0 Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page o 0

Trottlng Devce A devce tat generates a sgncant pressure drop va a low restrcton, e.g., partally closed valve. Applyng Frst Law (steady-state, neglect eat transer and PE 0 q w ( ( / I te state s taken ar downstrea ro te blockage te cange n velocty s neglgble,.e., Trottlng process s caracterzed by constant entalpy Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page o 0

Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page o 0 Heat Excangers Tese are devces tat transer energy between lud streas at derent teperatures cool or eat one o te luds. Te ollowng s a tube-n-tube eat excanger Can ave cross-low or parallel-low type Applyng Frst law to above cross low eat excanger assung steady low, no eat loss to te envronent and KE and PE s neglgble ( ( ( ( 0 gz gz gz gz W Q Steady low so and ( ( 0

Solvng we get To get te rate o eat transer ro one strea to te oter peror C analyss on only te nner-tube (assue nner-strea s otter tan outer-strea Q Agan Applyng Frst Law wt sae assuptons 0 ( Q ( Q ( Snce Q 0, so T > T (lud cools down Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page o 0

Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page 5 o 0 A C analyss o te outer-strea would gve ( ( ( 0 Q Q o o Snce 0 Q o, so T > T (lud eats up Note, te agntude o te energy transer rate ro te nner strea Q equals te agntude o te energy transer rate nto te outer-strea o Q Q Q o Qo

Note we recover te sae relatonsp obtaned usng te global energy balance Anoter coon type o eat excanger s a drect contact eat excanger, e.g., open eed water eater. Hot strea, War strea, Cold strea, Ts type o eat excanger conssts o a vessel were a ot strea and cold strea o te sae lud are xed and ext at an nteredate teperature troug a sngle outlet. Apply conservaton o ass and Frst Law to te C and assung steady state, neglgble KE and PE cange to get: dm C dt 0 Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page 6 o 0

de C dt Q W ( ( ( 0 Transent Control olue Analyss Apples wen te C as only one nlet or one ext Reservor: constant T constant P valve C Consderng te llng o a rgd tank o volue cv wt a gas suppled at a constant pressure and teperature Applyng conservaton o ass dm dt C e Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page 7 o 0

Applyng Frst Law, neglectng eat transer to envronent, KE and PE de dt C du dt C Q W ( / gz e (... Note: constant entalpy across te valve (trottlng devce gas specc entalpy,, nto te C equals te gas specc entalpy n te reservor, R du dt C R Substtutng Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page 8 o 0

du dt C R dm dt C Integratn g ro te ntal state ""to te nal state "" U du U R M dm M U U ( M M R M u M u ( M M R Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page 9 o 0

I te tank s ntally epty (vacuu = 0 M u M R c T c P T R T c c P T R kt R Work done gettng gas nto te C results n a nal tank gas teperature ger tan te reservor teperature Source URL: ttp://e.queensu.ca/courses/0/lecturenotes.tl Saylor URL: ttp://www.saylor.org/courses/me0/#.. Cccarcell/Queens Unversty (www.queens.ca Saylor.org Used by persson. Page 0 o 0