THERMAL SIMULATION REPORT. TCL2013-Origin-01 Prepared For:

Similar documents
Customer: Ashton Industrial Sales Ltd. South Road, Harlow Essex CM20 2AR UNITED KINGDOM. Project/Customer: Profilex HM spacer

Content. Thermal insulation

SIMULATION TEST REPORT NCTL E0A0

TREES Training for Renovated Energy Efficient Social housing

Performance Weather performance certified to BS 6375 Part 1. Window Security Manufactured and certified to BS 7950

of PASSIVE Europa 92 door with 44mm & 48mm glazing for Zyle Fenster UAB J. Jasinskio 16a LT Lithuania

Report No: NCTL NFRC THERMAL TEST SUMMARY REPORT Expiration Date: 12/14/15

Test Results: Results of the test period on 06/19/16 using the Equivalent CTS Method: Thermal transmittance at test conditions (U s ):

of PASSIVE Europa 92 door with 44mm & 48mm glazing for Zyle Fenster UAB J. Jasinskio 16a LT Lithuania

NFRC THERMAL TEST SUMMARY REPORT January 27, 1999 Test Specimen

ISO INTERNATIONAL STANDARD. Thermal performance of windows, doors and shutters Calculation of thermal transmittance Part 1: Simplified method

Calculating the heat transfer coefficient of frame profiles with internal cavities

Determination of thermal transmittance of window (test title)

Simulation Report (Revised) Rendered To: Showcase Custom Vinyl Windows 1002 Olde Towne Drive Irving, TX 75061

Report No: NCTL S NFRC THERMAL TEST SUMMARY REPORT Expiration Date: 07/14/15. Test Specimen

NFRC THERMAL TEST SUMMARY REPORT Expiration Date: 03/31/06

ISO INTERNATIONAL STANDARD

Window energy rating systems

Warm surfaces warm edges Insulated glass with thermally improved edge seal

THERMAL TRANSMITTANCE OF MULTI-LAYER GLAZING WITH ULTRATHIN INTERNAL PARTITIONS. Agnieszka A. Lechowska 1, Jacek A. Schnotale 1

NFRC THERMAL PERFORMANCE TEST REPORT. Rendered to: NORTH EAST WINDOWS USA, INC.

Introduction...COMB-2 Design Considerations and Examples...COMB-3

CAE 463/524 Building Enclosure Design Fall 2012

WINDOW SIMULATION REPORT

Effect of Surface Thermal Resistance on the Simulation Accuracy of the Condensation Risk Assessment for a High-Performance Window

Evidence of Performance Thermal transmittance

Puerta de Rebatir M-Tres (Lateral), con Poliamida de 25

Technical Data Sheet - Planibel

SHANGHAI MYLCH WINDOWS & DOORS THERMAL PERFORMANCE TEST REPORT

BRE Client Report. Calculation of summertime solar shading performance for MicroLouvre. Prepared for: Smartlouvre. BRE Watford, Herts WD25 9XX

Glazing selection for solar design

A SIMPLE MODEL FOR THE DYNAMIC COMPUTATION OF BUILDING HEATING AND COOLING DEMAND. Kai Sirén AALTO UNIVERSITY

Cálculo del coeficiente de transmisión térmica (Uf) Ventana y Puerta Corrediza M-Cinco (Lateral) Mediterránea RPT

Ventana y Puerta Corrediza M-Tres (Encuentro central), con Poliamida de 15 - Mediterránea RPT

Appendix 5.A11: Derivation of solar gain factors

Fundamentals of WUFI-Plus WUFI Workshop NTNU / SINTEF 2008

Thermal bridges in building construction Linear thermal transmittance Simplified methods and default values

CAE 331/513 Building Science Fall 2016

FUNDAMENTALS OF HVAC

Experimental Performance and Numerical Simulation of Double Glass Wall Thana Ananacha

Declarations of equivalence of Verosol sun screens. SilverScreen and EnviroScreen

CFD-SIMULATIONS OF TRANSPARENT COATED AND GAS-FILLED FACADE PANELS

CFD MODELLING AND ANALYTICAL CALCULATIONS OF THERMAL TRANSMITTANCE OF MULTI-LAYER GLAZING WITH ULTRATHIN INTERNAL GLASS PARTITIONS

ISO INTERNATIONAL STANDARD. Thermal bridges in building construction Linear thermal transmittance Simplified methods and default values

SIMULATED THERMAL PERFORMANCE OF TRIPLE VACUUM GLAZING. Yueping Fang, Trevor J. Hyde, Neil Hewitt

Solar Radiation 230 BTU s per Hr/SF. Performance Glazing Coatings, Layers & Gases

Publ. No. T Rev. a326 ENGLISH (EN) March 6,

Evaluation of Program Calculation Procedures according to Standards EN 673 and EN 410

Vinyl Products Pella Windows and Doors

Determination of installed thermal resistance into a roof of TRISO-SUPER 12 BOOST R

Determining of Thermal Conductivity Coefficient of Pressed Straw (Name of test)

Some critical remarks about the radiative heat transfer in air frame cavities according to EN ISO

JULY, 2016 E.C Architects - Please contact your Kawneer representative for further assistance.

AIR-INS inc. 1320, boul. Lionel-Boulet, Varennes (Quebec) J3X 1P7 Tél. : (450) Fax : (450)

Window air permeability measurement, watertightness and resistance to wind load (designation of the test)

Description of Benchmark Cases for Window and Shading Performance Calculation

THERMAL RESISTANCE MEASUREMENT OF GLAZING SYSTEM EDGE-SEALS

LOW E SATINÉ 5500 LOW E

Lecture 4 Insulated glass units

Norscot Windows & Doors

Collector test according to EN ,2:2002

Investigation of 3-d Heat Transfer Effects in Fenestration Products

Approaching energy-neutral window glazing

Aalborg Universitet. Comparative Test Case Specification Larsen, Olena Kalyanova; Heiselberg, Per Kvols. Publication date: 2007

KEYWORDS Glazing; Window; Low E; Teflon; U-value; Shading Coefficient INTRODUCTION

EN 10211:2007 validation of Therm 7.4. Therm 7.4 validation according to EN ISO 10211:2007

DYNAMIC INSULATION APPLIED TO THE RESIDENTIAL BUILDING (PART 2) Numerical Evaluation of Thermal Insulation Effect on Air Supply Window System

Baker House Dining Room: Thermal Balance Report. + Q c. + Q v. + Q s. + Q e. + Q heating. + Q appliances. =Q appliances,21h Q appliances, x H

TECHNOLOGY IN MOTION MACO EMOTION HANDLES. A Sense of Elegance RHAPSODY

Comparison of methods to determine load sharing of insulating glass units for environmental loads

HIGHLY INSULATING AEROGEL GLAZING

Definitions of U- and g-value in case of double skin facades or vented windows

Increased thermal induced climatic load in insulated glass units

HFM 100 Series. Thermal Conductivity Meter for measurement of insulation and construction materials.

ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS

THE INFLUENCE OF GLAZING TYPE, FRAME PROFILES SHAPE AND SIZE OF THE WINODOW OF THE FINAL VALUE OF WINDOW THERMAL TRANSMITTANCE U

SIMULATION OF FRAME CAVITY HEAT TRANSFER USING BISCO v10w

Standard Test Method for Measuring the Steady-State Thermal Transmittance of Fenestration Systems Using Hot Box Methods 1

NFRC THERMAL PERFORMANCE TEST REPORT. Rendered to: NU VISTA WD, INC. SERIES/MODEL: Malibu 250 T TYPE: Fixed

NFRC Errata and Addendum Log

Winter Night. Thermos 6mm Outdoors # #

Attempt ALL QUESTIONS IN SECTION A and ANY TWO QUESTIONS IN SECTION B Linear graph paper will be provided.

NFRC THERMAL PERFORMANCE TEST REPORT. Rendered to: C.R. LAURENCE CO., INC.

CEN/TC 89/WG 7 N 178. Thermal performance of windows, doors and shutters Calculation of thermal transmittance Part 2: Numerical method for frames

WTS Table of contents. Layout

ISO INTERNATIONAL STANDARD. Thermal performance of windows, doors and shading devices Detailed calculations

DESIGN OF A SHELL AND TUBE HEAT EXCHANGER

Thermodynamics Introduction and Basic Concepts

Calio-Therm NC Type Series Booklet

TRANSPARENT INNOVATIVE MATERIALS: ENERGETIC AND LIGHTING PERFORMANCES EVALUATION

THERMAL PERFORMANCE TEST REPORT

Here Comes the Sun. Rachel Wagner. Duluth Energy Design Conference 26 February

Double-Skin Facade in Low-Latitude: Study on the Absorptance, Reflectance, and Transmittance of Direct Solar Radiation

Response function method

Attempt ALL QUESTIONS IN SECTION A and ANY TWO QUESTIONS IN SECTION B Graph paper will be provided.

JULY, 2016 E.C Architects - Please contact your Kawneer representative for further assistance.

AR/IA 241 LN 231 Lecture 4: Fundamental of Energy

1040 SLIDING MALL FRONT

Model 3024 Albedometer. User s Manual 1165 NATIONAL DRIVE SACRAMENTO, CALIFORNIA WWW. ALLWEATHERINC. COM

reflect sunlight outdoors Serge 600 ARCHITECTS SELECTION GLASSFIBRE OF = 5%

Transcription:

THERMAL SIMULATION REPORT Report Number: TCL2013-Origin-01 Prepared For: Origin Frames Ltd Unit 3 Sunters End Hillbottom Road Sands Industrial Estate High Wycombe Bucks HP12 4HS Window System Identifier: Origin Window Fixed Outer Frame Identifier: Origin Outer Frame Mullion Frame Identifier: Origin Transom / Mullion Vent Frame Identifier: Origin Vent Glazing System: 4-20-4 Clear Float 90% Argon Planitherm 4S Spacer Bar: Swiss Spacer Ultimate Notes: Results Thermal Transmittance (U window ) 1.5 W/(m 2 K) (Window Configuration as per GGF Document 2.2) (1230mm wide x 1480mm high vent next to fixed light) Report Prepared By Dr Gary Morgan Therm Consulting Signed: G Morgan Date: 2 nd December 2013 The simulations in this report were performed using Win Iso 2D Pro version 7.57, strictly in accordance with the requirements of EN ISO 10077-2:2012 The simulation files generated are attached to this report as appendices

0.0034437 All 0.00132125 1mm, 0.00132125 F3 0.00112625 F5 0.00112625 F7 0.00344 F10 0.00324875 F11 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 1 Sample Style: Report Number: Issue No 22.1: 11/03/2013 Casement Fixed Light / Side Hung Report Date: Project Details: TCL2013-Origin01 2nd December 2013 Origin Window - Planitherm 4S and Swiss Ultimate THIS SPREADSHEET IS THE PROPERTY OF THE BFRC AND CAN ONLY BE USED IN CONJUNCTION WITH A BFRC LICENCE Frame offset: No Blue line illustrates opening light length (air leakage) Input Values: Yellow input, green intermediary, blue finals X' DP is no.of decimal places to enter Parameter Symbol Units Total window height 0DP l w 1480 mm Total window width 0DP b w 1230 mm Nominal 4mm etc to 0DP, others 1DP Glazing dimensions and properties: Thickness of pane 1 4 mm Pane 1/2 distance 20 mm Gas fill (1/2) Argon 90% Thickness of pane 2 4 mm Complete next 3 cells for TG IGU Pane 2/3 distance Thickness of pane 3 Gas fill (2/3) mm mm Glazing Trans. - 3DP U g 1.070 W/(m² K) g -value - 2DP g? Thermal transmittance of window from hot box test U w - 2DP W/(m² K) Window Dimensions: Area Length Width No With gasket gasket Section (m) (m) (m 2 ) (m 2 ) Fixed Light 1.3800 0.5310 0.7328 0.7233 Opening light 1.3020 0.4530 0.5898 0.5811 Total glazing, Ag 1.3226 1.3043 Frame (m) (m) (m 2 ) (m 2 ) F1 0.6150 0.0500 0.0287 0.0300 F2 0.6150 0.0500 0.0287 0.0300 F3 1.4800 0.0500 0.0715 0.0749 F4 0.6150 0.0500 0.0287 0.0287 F5 0.5310 0.0390 0.0192 0.0203 F6 0.6150 0.0500 0.0287 0.0287 F7 0.5310 0.0390 0.0192 0.0203 F8 1.4800 0.0500 0.0715 0.0715 F9 1.3800 0.0390 0.0523 0.0555 F10 1.4800 0.0680 0.0972 0.1007 F11 1.3800 0.0390 0.0523 0.0555 Total Frame 0.4978 0.5161 Total Window, Aw 1.8204 1.8204 Percentage fixed light glass area 40.25% 39.73% Percentage opening light glass area 32.40% 31.92% Percentage glass area (total) 72.65% 71.65% Solar Factor, g -value: F w 0.9 g w 0.00 Frame dimensions: Frame Gasket Frame & width, bf protrusion, gasket bgf widths (bf) (mm) (mm) (mm) frame values round to nearest F1 fixed sill 50 2.5 52.5 gaskets to 1DP F2 fixed head 50 2.5 52.5 fixed jamb 50 2.5 52.5 Total F4 + F5 sash sill F4 fixed sash sill 50 n/a 50.0 moving sash sill 39 2.5 41.5 91.5 F6 + F7 sash head F6 fixed sash head 50 n/a 50.0 moving sash head 39 2.5 41.5 91.5 F8 + F9 sash jamb F8 Fixed sash jamb 50 n/a 50.0 F9 moving sash jamb 39 2.5 41.5 91.5 F10 + F11 mullion fixed mullion 68 2.5 70.5 moving mullion 39 2.5 41.5 112.0 Total gasket area 0.01828 m 2 Where a Uw value from hot box testing is available, no L 1 f 2D or L Ψ 2D values need to be entered Frame conductance: All L values to 4DP. All b values to 0DP W/(m K) bp (mm) W/(m K) bg (mm) F1 fixed sill 0.3180 190 0.3640 190 Frame: F2 fixed head 0.3180 190 0.3640 190 F3 fixed jamb 0.3180 190 0.3640 190 L f 2D L Ψ 2D F4 + F5 sash sill 0.3830 190 0.4240 190 F6 + F7 sash head 0.3830 190 0.4240 190 F8 + F9 sash jamb 0.3830 190 0.4240 190 F10 + F11 mullion 0.6370 380 0.7200 380 Section Frame width, bf Frame U- value, Uf Frame areas, Af Frame heat inear trans, flow, HU Linear length, lg Junction heat flow, Hψ (m) (W/(m² K)) (m 2 ) (W/K) (W/(m K)) (m) (W/K) F1 fixed sill 0.0500 2.4425 0.0287 0.0700 0.0386 0.5310 0.0205 F2 fixed head 0.0500 2.4425 0.0287 0.0700 0.0386 0.5310 0.0205 F3 fixed jamb 0.0500 2.4425 0.0715 0.1746 0.0386 1.3800 0.0532 F4 + F5 sash sill 0.0890 2.1025 0.0478 0.1006 0.0336 0.4530 0.0152 F6 + F7 sash head 0.0890 2.1025 0.0478 0.1006 0.0336 0.4530 0.0152 F8 + F9 sash jamb 0.0890 2.1025 0.1238 0.2603 0.0336 1.3020 0.0437 F10 + F11 mullion 0.1070 2.2920 0.1495 0.3427 0.0682 1.3410 0.0914 Totals 0.4978 1.1188 Total 0.2597 Air Leakage loss: Air leakage at 50 Pa per hour & per unit length of opening light (BS 6375-1) - 2DP m³/(m h) Opening light length 3.8220 m Total air leakage 0.000 m 3 /h L 50 0.00 m 3 /(m 2?h) Heat loss = 0.0165 L 50 0.00 W/(m 2 K) U window No bars; or attached bars 1.53 Single cross bar in IGU 1.6 Multiple cross bar in IGU 1.7 Glazing bar (Georgian bar) 1.9 BFRC Rating kwh/(m 2 yr)?10 Label index N/A EWER Rating Scale A+ 0 to <10 A -10 to <0 B -20 to <-10 C -30 to <-20 D -50 to <-30 E -70 to <-50 F W/(m² K) Window Rating N/A Other parameters needed for calculation, taken from simulations: d p =d g = 0.028 m 0.13 m 2 K p = 0.035 W/(m K) R se = 0.04 K /W R se = /W R p = 0.8000 m 2 K /W R = tot 0.9700 K /W U p = 1.0309 W/(m² K) BFRC Rating = 218.6g window - 68.5 x (U window + Effective L50) = N/A Climate zone is: UK Thermal transmittance, W/(m 2 K) U window 1.5 Solar factor g window N/A Window air leakage heat loss, W/(m 2 K) L factor N/A BFRC Certified Simulator Name: Dr Gary Morgan Simulator 016

Simulation software: WinIso2D 7.57 Date: 02.12.2013 File: D:\MyDocs from Thermbridge\Therm Output Files\Origin Frames\December 2013\Winiso file\fixed - U value - Garys Swiss Ultimate.f2d Calculation of the linear thermal transmission coefficient Ψ according to EN ISO 10077-2 Simulation model: Dimensions (width x height): 240,00 x 100,00 mm Number of elements in simulation model: X-direction: 259; Y-direction: 228 Boundary conditions: External: Temperature Θe: 0,00 C Surface resistance Rse: 0,040 m²k/w Internal: Temperature Θi: 20,00 C Surface resistance Rsi 1: 0,130 m²k/w Surface resistance Rsi 2: 0,200 m²k/w Results: Temperature difference dt: 20,00 K Total heat flow Q: 7,274 W/m 2D thermal conductance L2D: 0,364 W/mK Length top/left: U-value top/left: 1,070 W/m²K Length bottom/right: 0,00 mm U-value bottom/right: 0,000 W/m²K Ψ-value: 0,039 W/mK

Materials: Material R T ( C) Q(gesamt) 10077 (m²k/w) (W/m) konform ****ADIABAT**** 0,000 0,000 0,000 1 boundary condition intside 0,13, 0,130 20,000 6,484 X 1 boundary condition outside 0,04, 0,040 0,000-7,272 X 0 C, 80% 1 boundary condition intside 0,20, 0,200 20,000 0,792 X profiles) profiles <=2mm) Material L Emiss 10077 (W/mK) konform 4 polyamide 6.6 25% GF 0,300 0,900 X 5 EPDM 0,250 0,900 X 2 float 1.0 1,000 0,837-3 alu (Si-Leg.) 160 copy 160,000 0,900-6 butyle 0,240 0,900 X 6 Swiss Ultimate Effective 0,140 0,900 X SZR L=0.0264 0,026 0,900 -

Simulation software: WinIso2D 7.57 Date: 02.12.2013 File: D:\MyDocs from Thermbridge\Therm Output Files\Origin Frames\December 2013\Winiso file\fixed - U value - Garys Swiss Ultimate.f2d Calculation of the thermal transmission coefficient U f according to EN ISO 10077-2:2003-12 Simulation model: Dimensions (width x height): 240,00 x 100,00 mm Number of elements in simulation model: X-direction: 259; Y-direction: 228 Boundary conditions: External: Temperature Θe: 0,00 C Surface resistance Rse: 0,040 m²k/w Internal: Temperature Θi: 20,00 C Surface resistance Rsi 1: 0,130 m²k/w Surface resistance Rsi 2: 0,200 m²k/w Results: Temperature difference dt: 20,00 K Total heat flow Q: 6,355 W/m 2D thermal conductance L2D: 0,318 W/mK Length 1: U-value 1: 1,031 W/m²K Length 2: 0,00 mm U-value 2: 0,000 W/m²K U f-value: 2,437 W/m²K

Materials: Material R T ( C) Q(gesamt) 10077 (m²k/w) (W/m) konform ****ADIABAT**** 0,000 0,000 0,000 1 boundary condition intside 0,13, 0,130 20,000 6,484 X 1 boundary condition outside 0,04, 0,040 0,000-7,272 X 0 C, 80% 1 boundary condition intside 0,20, 0,200 20,000 0,792 X profiles) profiles <=2mm) Material L Emiss 10077 (W/mK) konform 4 polyamide 6.6 25% GF 0,300 0,900 X 5 EPDM 0,250 0,900 X 2 float 1.0 1,000 0,837-3 alu (Si-Leg.) 160 copy 160,000 0,900-6 butyle 0,240 0,900 X 6 Swiss Ultimate Effective 0,140 0,900 X SZR L=0.0264 0,026 0,900 -

Simulation software: WinIso2D 7.57 Date: 02.12.2013 File: D:\MyDocs from Thermbridge\Therm Output Files\Origin Frames\December 2013\Winiso file\vent - U value Garys Swiss Ultimate.f2d Calculation of the linear thermal transmission coefficient Ψ according to EN ISO 10077-2 Simulation model: Dimensions (width x height): 278,67 x 100,00 mm Number of elements in simulation model: X-direction: 413; Y-direction: 309 Boundary conditions: External: Temperature Θe: 0,00 C Surface resistance Rse: 0,040 m²k/w Internal: Temperature Θi: 20,00 C Surface resistance Rsi 1: 0,130 m²k/w Surface resistance Rsi 2: 0,200 m²k/w Results: Temperature difference dt: 20,00 K Total heat flow Q: 8,479 W/m 2D thermal conductance L2D: 0,424 W/mK Length top/left: U-value top/left: 1,070 W/m²K Length bottom/right: 0,00 mm U-value bottom/right: 0,000 W/m²K Ψ-value: 0,033 W/mK

Materials: Material R T ( C) Q(gesamt) 10077 (m²k/w) (W/m) konform ****ADIABAT**** 0,000 0,000 0,000 1 boundary condition intside 0,13, 0,130 20,000 7,055 X 1 boundary condition outside 0,04, 0,040 0,000-8,477 X 0 C, 80% 1 boundary condition intside 0,20, 0,200 20,000 1,427 X profiles) profiles <=2mm) profiles, sparse ventilated) Material L Emiss 10077 (W/mK) konform 3 alu (Si-Leg.) 160 160,000 0,900 X 4 polyamide 6.6 25% GF 0,300 0,900 X 5 EPDM 0,250 0,900 X 2 float 1.0 1,000 0,837-5 Q-lon 0,060 0,900-6 butyle 0,240 0,900 X 6 Swiss Ultimate Effective 0,140 0,900 X SZR L=0.0264 0,026 0,900 -

Simulation software: WinIso2D 7.57 Date: 02.12.2013 File: D:\MyDocs from Thermbridge\Therm Output Files\Origin Frames\December 2013\Winiso file\vent - U value Garys Swiss Ultimate.f2d Calculation of the thermal transmission coefficient U f according to EN ISO 10077-2:2003-12 Simulation model: Dimensions (width x height): 278,67 x 100,00 mm Number of elements in simulation model: X-direction: 413; Y-direction: 309 Boundary conditions: External: Temperature Θe: 0,00 C Surface resistance Rse: 0,040 m²k/w Internal: Temperature Θi: 20,00 C Surface resistance Rsi 1: 0,130 m²k/w Surface resistance Rsi 2: 0,200 m²k/w Results: Temperature difference dt: 20,00 K Total heat flow Q: 7,667 W/m 2D thermal conductance L2D: 0,383 W/mK Length 1: U-value 1: 1,031 W/m²K Length 2: 0,00 mm U-value 2: 0,000 W/m²K U f-value: 2,106 W/m²K

Materials: Material R T ( C) Q(gesamt) 10077 (m²k/w) (W/m) konform ****ADIABAT**** 0,000 0,000 0,000 1 boundary condition intside 0,13, 0,130 20,000 7,055 X 1 boundary condition outside 0,04, 0,040 0,000-8,477 X 0 C, 80% 1 boundary condition intside 0,20, 0,200 20,000 1,427 X profiles) profiles <=2mm) profiles, sparse ventilated) Material L Emiss 10077 (W/mK) konform 3 alu (Si-Leg.) 160 160,000 0,900 X 4 polyamide 6.6 25% GF 0,300 0,900 X 5 EPDM 0,250 0,900 X 2 float 1.0 1,000 0,837-5 Q-lon 0,060 0,900-6 butyle 0,240 0,900 X 6 Swiss Ultimate Effective 0,140 0,900 X SZR L=0.0264 0,026 0,900 -

Simulation software: WinIso2D 7.57 Date: 02.12.2013 File: D:\MyDocs from Thermbridge\Therm Output Files\Origin Frames\December 2013\Winiso file\mullion - U value Garys Swiss Ultimate.f2d Calculation of the linear thermal transmission coefficient Ψ according to EN ISO 10077-2 Simulation model: Dimensions (width x height): 486,01 x 100,00 mm Number of elements in simulation model: X-direction: 586; Y-direction: 334 Boundary conditions: External: Temperature Θe: 0,00 C Surface resistance Rse: 0,040 m²k/w Internal: Temperature Θi: 20,00 C Surface resistance Rsi 1: 0,130 m²k/w Surface resistance Rsi 2: 0,200 m²k/w Results: Temperature difference dt: 20,00 K Total heat flow Q: 14,404 W/m 2D thermal conductance L2D: 0,720 W/mK Length top/left: U-value top/left: 1,071 W/m²K Length bottom/right: U-value bottom/right: 1,070 W/m²K Ψ-value: 0,068 W/mK

Materials: Material R T ( C) Q(gesamt) 10077 (m²k/w) (W/m) konform ****ADIABAT**** 0,000 0,000 0,000 1 boundary condition intside 0,13, 0,130 20,000 12,167 X 1 boundary condition outside 0,04, 0,040 0,000-14,400 X 0 C, 80% 1 boundary condition intside 0,20, 0,200 20,000 2,241 X profiles) profiles <=2mm) profiles, sparse ventilated) Material L Emiss 10077 (W/mK) konform 3 alu (Si-Leg.) 160 160,000 0,900 X 4 polyamide 6.6 25% GF 0,300 0,900 X 5 EPDM 0,250 0,900 X 2 float 1.0 1,000 0,837-5 Q-lon 0,060 0,900-6 butyle 0,240 0,900 X 6 Super Spacer Standard 0,122 0,900 X SZR L=0.0257 0,026 0,900-4 polyurethane(pur)-resin - 0.4 0,400 0,900 X 6 Swiss Ultimate Effective 0,140 0,900 X SZR L=0.0264 0,026 0,900 -

Simulation software: WinIso2D 7.57 Date: 02.12.2013 File: D:\MyDocs from Thermbridge\Therm Output Files\Origin Frames\December 2013\Winiso file\mullion - U value Garys Swiss Ultimate.f2d Calculation of the thermal transmission coefficient U f according to EN ISO 10077-2:2003-12 Simulation model: Dimensions (width x height): 486,01 x 100,00 mm Number of elements in simulation model: X-direction: 586; Y-direction: 334 Boundary conditions: External: Temperature Θe: 0,00 C Surface resistance Rse: 0,040 m²k/w Internal: Temperature Θi: 20,00 C Surface resistance Rsi 1: 0,130 m²k/w Surface resistance Rsi 2: 0,200 m²k/w Results: Temperature difference dt: 20,00 K Total heat flow Q: 12,735 W/m 2D thermal conductance L2D: 0,637 W/mK Length 1: U-value 1: 1,031 W/m²K Length 2: U-value 2: 1,031 W/m²K U f-value: 2,289 W/m²K

Materials: Material R T ( C) Q(gesamt) 10077 (m²k/w) (W/m) konform ****ADIABAT**** 0,000 0,000 0,000 1 boundary condition intside 0,13, 0,130 20,000 12,167 X 1 boundary condition outside 0,04, 0,040 0,000-14,400 X 0 C, 80% 1 boundary condition intside 0,20, 0,200 20,000 2,241 X profiles) profiles <=2mm) profiles, sparse ventilated) Material L Emiss 10077 (W/mK) konform 3 alu (Si-Leg.) 160 160,000 0,900 X 4 polyamide 6.6 25% GF 0,300 0,900 X 5 EPDM 0,250 0,900 X 2 float 1.0 1,000 0,837-5 Q-lon 0,060 0,900-6 butyle 0,240 0,900 X 6 Super Spacer Standard 0,122 0,900 X SZR L=0.0257 0,026 0,900-4 polyurethane(pur)-resin - 0.4 0,400 0,900 X 6 Swiss Ultimate Effective 0,140 0,900 X L=0.0264 0,026 0,900 -