Recent Nucleon Decay Results from Super-Kamiokande

Similar documents
Proton Decay searches -- sensitivity, BG and photo-coverage. Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Proton Decays. -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

UNO: Underground Nucleon Decay and Neutrino Observatory

( Some of the ) Lateset results from Super-Kamiokande

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors

Recent results from Super-Kamiokande

1 Introduction. 2 Nucleon Decay Searches

Analyzing Data. PHY310: Lecture 16. Road Map

PoS(FPCP2017)024. The Hyper-Kamiokande Project. Justyna Lagoda

Detectors for astroparticle physics

Reconstruction algorithms in the Super-Kamiokande large water Cherenkov detector

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements

Recent Results from Alysia Marino, University of Colorado at Boulder Neutrino Flux Workshop, University of Pittsburgh, Dec 6 8,2012

Super-KamiokaNDE: Beyond Neutrino Oscillations. A. George University of Pittsburgh

Neutrino oscillation physics potential of Hyper-Kamiokande

Super- Kamiokande. Super- Kamiokande (1996- ) h=41.4m. Hyper- K (201X? - ) Kamiokande ( ) M. Yokoyama Friday 14:30

The Hyper-Kamiodande Project A New Adventure in n Physics

Search for Astrophysical Neutrino Point Sources at Super-Kamiokande

Dear Radioactive Ladies and Gentlemen,

Neutrino Oscillations and the Matter Effect

XMASS: a large single-phase liquid-xenon detector

Review of Nucleon Decay Searches at Super-Kamiokande

Potential of Hyper-Kamiokande at some non-accelerator Physics and Nucleon Decay Searches

Super-Kamiokande (on the activities from 2000 to 2006 and future prospects)

1. Neutrino Oscillations

Multi-Megaton Water Cherenkov Detector for a Proton Decay Search TITAND (former name: TITANIC)

Figure 1 Overview of the T2K experiment

Review of Nucleon Decay Searches at Super-Kamiokande

Search for Neutron Antineutron Oscillations at Super Kamiokande I. Brandon Hartfiel Cal State Dominguez Hills May

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University

Cherenkov Detector. Cosmic Rays Cherenkov Detector. Lodovico Lappetito. CherenkovDetector_ENG - 28/04/2016 Pag. 1

Recent Results from T2K and Future Prospects

Proton Decay and GUTs. Hitoshi Murayama (Berkeley) Durham July 20, 2005

Super-Kamiokande. Alexandre Zeenny, Nolwenn Lévêque

PoS(NOW2016)003. T2K oscillation results. Lorenzo Magaletti. INFN Sezione di Bari

Grand Unified Theories & Proton Decay. Ed Kearns Boston University NEPPSR 2009

XI. Beyond the Standard Model

arxiv:hep-ex/ v1 1 Oct 1998

Next-Generation Water Cherenkov Detectors (1) Hyper-Kamiokande

NEW νe Appearance Results from the. T2K Experiment. Matthew Malek Imperial College London. University of Birmingham HEP Seminar 13 June 2012

Potential of the large liquid-scintillator detector LENA in particle and astrophysics

Tsuyoshi Nakaya (Kyoto Univ.)

Upward Showering Muons in Super-Kamiokande

Results from T2K. Alex Finch Lancaster University ND280 T2K

Recent Results from K2K. Masashi Yokoyama (Kyoto U.) For K2K collaboration 2004 SLAC Summer Institute

Radio-chemical method

Special Contribution Observation of Neutrinos at Super-Kamiokande Observatory

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Electroweak Physics at the Tevatron

The First Results of K2K long-baseline Neutrino Oscillation Experiment

Recent T2K results on CP violation in the lepton sector

Lecture 18 - Beyond the Standard Model

The first one second of the early universe and physics beyond the Standard Model

XMASS 1.5, the next step of the XMASS experiment

Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan

the demise of the proton

Search for Proton Decay in Super-Kamiokande

arxiv: v1 [physics.ins-det] 14 Jan 2016

R-hadrons and Highly Ionising Particles: Searches and Prospects

Overview of the COMET Phase-I experiment

R. D. McKeown. Jefferson Lab College of William and Mary

Search for supersymmetry with disappearing tracks and high energy loss at the CMS detector

Super-Kamiokande ~The Status of n Oscillation ~

SciBar and future K2K physics. F.Sánchez Universitat Aútonoma de Barcelona Institut de Física d'altes Energies

Atmospheric Neutrinos and Neutrino Oscillations

Interactions/Weak Force/Leptons

PMT Signal Attenuation and Baryon Number Violation Background Studies. By: Nadine Ayoub Nevis Laboratories, Columbia University August 5, 2011

Neutrino Oscillations

Interactions/Weak Force/Leptons

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010

Review Chap. 18: Particle Physics

Tau Neutrino Physics Introduction. Barry Barish 18 September 2000

Today: Part I: Neutrino oscillations: beam experiments. Part II: Next tutorials: making distributions with histograms and ntuples

Available online at ScienceDirect. Physics Procedia 61 (2015 ) K. Okumura

arxiv: v1 [hep-ex] 8 Nov 2010

(a) (c)

Showering Muons in Super Kamiokande. Scott Locke University of California, Irvine August 7 th, 2017

SK Atmospheric neutrino. Choji Saji ICRR,Univ. of Tokyo for the Super-Kamiokande collaboration

Search for heavy neutrinos in kaon decays

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe

The Standard Model of particle physics and beyond

F. TASNÁDI LINKÖPING UNIVERSITY THEORETICAL PHYSICS NEUTRINO OSCILLATIONS & MASS

Neutron background and possibility for shallow experiments

A Dissertation presented. Gabriel Chicca Santucci. The Graduate School. in Partial Fulfillment of the. Requirements.

arxiv: v1 [hep-ex] 11 May 2017

Hyper-K physics potentials and R&D

Split SUSY and the LHC

Search for Lepton Number Violation at LHCb

8.882 LHC Physics. High Energy Physics Overview. [Lecture 16, April 6, 2009] Experimental Methods and Measurements

Study of solar neutrino energy spectrum above 4.5 MeV in Super Kamiokande I

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Neutrinos From The Sky and Through the Earth

Indication of ν µ ν e appearance in the T2K EXPERIMENT

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

The XMASS experiment. Y. Kishimoto for the XMASS collaboration March 24 th, 2014 Recontres de Moriond, Cosmology

A first trip to the world of particle physics

Atmospheric neutrinos with Super-Kamiokande S.Mine (University of California, Irvine) for Super-Kamiokande collaboration

Measurements of the W Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron

Bari Osmanov, University of Florida. OscSNS - proposal for neutrino experiment at ORNL SNS facility

M.Nakahata. Kamioka observatory ICRR/IPMU, Univ. of Tokyo. 2016/11/8 M. Nakahata: Neutrino experiments - 30 years at Kamioka 1

Transcription:

Recent Nucleon Decay Results from Super-Kamiokande Jennifer L. Raaf Boston University April 14, 28 Motivation Super-Kamiokande n ν π decay search Results

Motivation Interesting candidate for grand unification: SUSY SO(1) model with B-L violation (by 126 Higgs field) predicts all neutrino mixings and ratio of experimental observations H.S.Goh, R.N.Mohapatra, S.Nasri, S-P. Ng, Phys Lett B587:15-116 (24) m 2 / m 2 atmos automatic R-parity conservation stable dark matter in agreement with prediction of upper limits on some proton decay modes requires some fine-tuning to make compatible with current experimental limits Model can be directly tested by searching for predicted modes! Imagine a beautiful Adobe Illustrator image here... J.L.Raaf, Boston University 2

Super-Kamiokande Gifu prefecture, Japan, Kamioka-Mozumi zinc mine 1 meters (27 meters-water-equivalent) beneath peak of Mt. Ikeno Water Cherenkov detector 5 ktons (22.5 ktons fiducial) ultra-pure water 7.5 x 1 33 protons 6. x 1 33 neutrons Instrumented with photomultiplier tubes (PMTs) 11146 5-cm PMTs in inner region 1885 2-cm PMTs in outer region SK-1, SK-2, and beyond... SK-1: 1996-21 4% photocathode coverage SK-2: Jan 23 - Oct 25 Recovery from accident, 2% photocathode coverage SK-3: May 26 - present Restore 4% coverage SK-4: Replace DAQ electronics, Autumn 28 J.L.Raaf, Boston University 3

Identifying particle types in Super-K Super-Kamiokande I Run 999999 Sub Ev 42 2-11-6::12:25 Inner: 3166 hits, 6293 pe Outer: hits, pe (in-time) Trigger ID: x3 D wall: 124. cm Fully-Contained Mode Charge(pe) >26.7 23.3-26.7 2.2-23.3 17.3-2.2 14.7-17.3 12.2-14.7 1.-12.2 8.-1. 6.2-8. 4.7-6.2 3.3-4.7 2.2-3.3 1.3-2.2.7-1.3.2-.7 <.2 Simulated p μ + π event 2 rings π γ γ 1 ring μ + 13 14 78 52 +1 subevt Cherenkov ring ID muon-like = crisp edge electron-like = fuzzy edge Outer detector (OD) activity clusters of hits in the OD may indicate event due to cosmic ray Decay electron count look for electron from muon decay in delayed coincidence with muon ring 26 1 dot = 1 PMT larger dot = more light collected 5 1 15 2 Times (ns) J.L.Raaf, Boston University 4

Nucleon decay: n ν π Mono-energetic π from n ν π decay (signal) would sit atop a large background of π s from atmospheric neutrino interactions in Super-K. n ν π (signal) Single π event selection: Fully contained in the fiducial volume (no activity in outer detector) 2 electron-like rings No decay electrons Reconstructed mπ 85-185 MeV/c 2 Atmospheric ν (background) J.L.Raaf, Boston University 5

χ 2 = nbins i=1 n ν π Fitting Method Minimize χ 2 with systematic pull terms to find best fit parameters (α,β): ( ( )) Ni obs N exp i 1 + N 2 syserr j=1 f j i ε ) j 2 σ 2 i + N syserr j=1 ( ε j σ j where N exp i = α N ν i + β N NDK i Atmospheric ν (background) n ν π (signal) Systematic error pull terms π absorption scattering charge exchange detection efficiency J.L.Raaf, Boston University 6

SK-1 n ν π Results χ 2 /DOF Unphysical fit Physical fit 3.9/8 4.1/8 Fit prefers unphysical NDK: -7.5 events 9% CL allowed: 15.6 events Corresponding 9% CL lifetime lower limit: > 7.6 x 1 32 years J.L.Raaf, Boston University 7

SK-2 n ν π Results Unphysical fit Physical fit χ 2 /DOF 6.41/8 6.43/8 Fit prefers unphysical NDK: -2.5 events 9% CL allowed: 11.7 events Corresponding 9% CL lifetime lower limit: > 5. x 1 32 years J.L.Raaf, Boston University 8

SK-1 + SK-2 n ν π Results Unphysical fit Physical fit χ 2 /DOF 9.9/18 1.2/18 Fit prefers unphysical NDK: -5. events 9% CL allowed: 2.2 events Corresponding 9% CL lifetime lower limit: > 8.8 x 1 32 years J.L.Raaf, Boston University 9

Conclusions Fitting via χ 2 with systematic pull terms allows Super-K to set a lower limit on the decay mode n ν π : SK-1+2 result: τ B.R. > 8.8 132 years Previous best experimental limit by IMB: τ B.R. > 1.12 132 years New Super-K limit begins to constrain SO(1) GUTs! Imagine another Adobe Illustrator image here... J.L.Raaf, Boston University 1

extras

Nucleon Decay Standard Model (SM) Represented by product of symmetry groups SU(3) x SU(2) x U(1) Local gauge symmetries responsible for forces that mediate EM, weak, and strong interactions Finite but unobservably long proton lifetime due to baryon number (B) conservation Introduced empirically! Other conserved quantities (e.g., electrical charge) result from gauge symmetries Grand Unified Theories (GUTs) Motivated partly by desire to constrain quantities that are seemingly arbitrary in SM Attempt to unify the 3 fundamental interactions: coupling constants that describe strong, weak, and EM forces unified at large energies fundamental forces are low energy manifestations of a single unified force e.g., MSSM Many GUTs result in proton lifetime ranges accessible to current experiments J.L.Raaf, Boston University 12

Super-Kamiokande Run 999999 Sub Ev 17 2-11-6::6:33 Inner: 3594 hits, 9239 pe Outer: 1 hits, 1 pe (in-time) Trigger ID: x3 D wall: 398.4 cm Fully-Contained Mode Decay mode: p e + π 1.9 Charge(pe) >26.7 23.3-26.7 2.2-23.3 17.3-2.2 14.7-17.3 12.2-14.7 1.-12.2 8.-1. 6.2-8. 4.7-6.2 3.3-4.7 2.2-3.3 1.3-2.2.7-1.3.2-.7 <.2 Simulated event 2 rings π γ γ 1 ring e + 12 96 Detection efficiency.8.7.6.5.4.3.2 SK-I SK-II 72.1 48 24 5 1 15 2 nring e-like decay e! mass m p p p Selection criterion Times (ns) Selection Criteria 3 e-like rings (1 from e +, 1 or 2 from π decay) no decay electrons 85 < mπ < 185 MeV/c 2 (3-ring events only) < pp < 25 MeV/c 8 < mp < 15 MeV/c 2 Efficiency (%) SK-1 4.8 SK-2 42.2 J.L.Raaf, Boston University 13

Event Signatures Super-Kamiokande Run 999999 Sub Ev 17 2-11-6::6:33 Inner: 3594 hits, 9239 pe Outer: 1 hits, 1 pe (in-time) Trigger ID: x3 D wall: 398.4 cm Fully-Contained Mode Charge(pe) >26.7 23.3-26.7 2.2-23.3 17.3-2.2 14.7-17.3 12.2-14.7 1.-12.2 8.-1. 6.2-8. 4.7-6.2 3.3-4.7 2.2-3.3 1.3-2.2.7-1.3.2-.7 <.2 Simulated p e + π event 2 rings π γ γ 1 ring e + Super-Kamiokande I Run 999999 Sub Ev 42 2-11-6::12:25 Inner: 3166 hits, 6293 pe Outer: hits, pe (in-time) Trigger ID: x3 D wall: 124. cm Fully-Contained Mode Charge(pe) >26.7 23.3-26.7 2.2-23.3 17.3-2.2 14.7-17.3 12.2-14.7 1.-12.2 8.-1. 6.2-8. 4.7-6.2 3.3-4.7 2.2-3.3 1.3-2.2.7-1.3.2-.7 <.2 Simulated p μ + π event 2 rings π γ γ 1 ring μ + 12 96 72 48 24 13 14 78 52 26 +1 subevt e + π selection 2 or 3 e-like rings (1 from e +, 1 or 2 from π decay) no decay electrons 85 < mπ < 185 MeV/c 2 (for 3-ring events only) pp < 25 MeV/c 8 < mp < 15 MeV/c 2 5 1 15 2 Times (ns) μ + π selection 2 or 3 rings, 1 μ-like (1 from μ +, 1 or 2 from π decay) 1 decay electron 85 < mπ < 185 MeV/c 2 (for 3-ring events only) pp < 25 MeV/c 8 < mp < 15 MeV/c 2 5 1 15 2 Times (ns) J.L.Raaf, Boston University 14

Decay mode: p e+ π SK-I atmospheric! 6 4 2 2 4 6 8 1 8 6 4 2 2 2 4 6 8 1 2 Proton mass (MeV/c ) 1 12 SK-I data 1 Proton momentum (MeV/c) 8 SK-I e+! 1 Proton momentum (MeV/c) Proton momentum (MeV/c) 1 Proton mass (MeV/c ) 8 6 4 2 12 2 4 6 8 1 12 Proton mass (MeV/c2).9 Detection efficiency.8.7.6.5.4.3.2 SK-I SK-II.1 nring e-like decay e! mass mppp Selection criterion J.L.Raaf, Boston University 15