Hyperon Photoproduction:

Similar documents
Electromagnetic Strangeness Production at GeV Energies

Hyperon Photoproduction:

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS

One of the foundational cornerstones of the physics program in Hall B with CLAS is the N* program. πn, ωn, φn, ρn, ηn, η N, ππn KΛ, KΣ, K Y, KY

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

Production and Searches for Cascade Baryons with CLAS

The Regge-plus-Resonance (RPR) model for Kaon Production on the Proton and the Neutron

Properties of the Λ(1405) Measured at CLAS

Extraction Of Reaction Amplitudes From Complete Photo-Production Experiments

Light Baryon Spectroscopy What have we learned about excited baryons?

Highlights on hadron physics at CLAS. K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011

arxiv: v1 [nucl-th] 14 Aug 2012

Baryon Spectroscopy: Recent Results from the CBELSA/TAPS Experiment

Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory

Kaon Photoproduction Results from CLAS

Report on NSTAR 2005 Workshop

Baryon Spectroscopy at ELSA

in high statistics experiments at CLAS

Nucleon Spectroscopy with CLAS

16) Differential cross sections and spin density matrix elements for the reaction p p, M. Williams

MENU Properties of the Λ(1405) Measured at CLAS. Kei Moriya Reinhard Schumacher

The Beam-Helicity Asymmetry for γp pk + K and

Vector-Meson Photoproduction

Exotic baryon resonances in the chiral dynamics

Experiments using polarized photon beam and polarized hydrogen-deuteride (HD) target

Measurement of Double-Polarization

Overview of N* Physics

Study of Excited Baryons with the Crystal-Barrel Detector at ELSA

Baryon spectroscopy with polarization observables from CLAS

Exciting Baryons. with MAMI and MAID. Lothar Tiator (Mainz)

arxiv: v1 [nucl-th] 6 Aug 2008

Beam Asymmetry measurement in Pion Photoproduction on the neutron using CLAS

Photoproduction of the f 1 (1285) Meson

L-T Separation in Pseudoscalar Meson Production

Light-Meson Spectroscopy at Jefferson Lab

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron

N* and Y* baryon spectroscopy using high momentum pion beam (+ kaon beam) Hiroyuki Kamano (RCNP, Osaka U.)

Electroexcitation of Nucleon Resonances BARYONS 02

The Determination of Beam Asymmetry from Double Pion Photoproduction

Electroexcitation of Nucleon Resonances BARYONS 02

Shape and Structure of the Nucleon

Search for Pentaquarks at CLAS. in Photoproduction from Proton

Recent Results from Jefferson Lab

Excited Nucleons Spectrum and Structure

The search for missing baryon resonances

Timelike Compton Scattering

M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy. A Forward Photon Tagging Facility for CLAS12

Hadron Spectroscopy: Results and Ideas.

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton

Spin Physics in Jefferson Lab s Hall C

The Fascinating Structure of Hadrons: What have we learned about excited protons?

Hadron Spectroscopy at COMPASS

Why? How? to test strong QCD! SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD

The Jefferson Lab 12 GeV Program

arxiv: v1 [nucl-th] 13 Apr 2011

Dynamical coupled-channels channels study of meson production reactions from

A Measurement of the Induced polarization of electro-produced Λ(1116) with CLAS

What about the pentaquark?

A NEW RESONANCE IN K + Λ ELECTROPRODUCTION: THE D 13 (1895) AND ITS ELECTROMAGNETIC FORM FACTORS. 1 Introduction

Meson-baryon interactions and baryon resonances

What do we learn from the inclusion of photoproduction data into the multichannel excited baryon analysis?

Hall D & GlueX Update. Alex Barnes, University of Connecticut

Strangeness Production Experiments at. Reinhard Schumacher Carnegie Mellon University

Deeply Virtual Compton Scattering and Meson Production at JLab/CLAS

Outline. Comparison with MAID2000: Could it be a narrow state? Fermi motion correction: Some preliminaries Summary

New results on N* spectrum/structure with CLAS and preparation for the CLAS12 era

Cascade Production in K- and Photon-induced Reactions. Collaboration: Benjamin Jackson (UGA) Helmut Haberzettl (GWU) Yongseok Oh (KNU) K. N.

Nucleon Resonance Physics

The MAID Legacy and Future

A search for baryon-number violating Λ ml decays using JLab

Nucleon Valence Quark Structure

Investigation of K0 + photoproduction with the CBELSA/TAPS experiment

The Jlab 12 GeV Upgrade

Spin Structure of the Nucleon: quark spin dependence

Structure and reactions of Θ +

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1

Qweak Transverse Asymmetry Measurements

Photoproduction of vector mesons

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV

Hadronic Cross Section Measurements for New Aspects of Hadron Spectroscopy. K. Hicks (Ohio U.) and H. Sako (JAEA) J-PARC PAC July 14, 2012

HASPECT in action: CLAS12 analysis of

arxiv: v1 [hep-ex] 22 Jun 2009

Photoexcitation of N* Resonances

The Search for Exotic Mesons in Photoproduction. Diane Schott

Baryon resonance production at. LIU Beijiang (IHEP, CAS) For the BESIII collaboration ATHOS3/PWA8 2015, GWU

Understanding the basic features of Cascade Photoproduction

Two photon exchange: theoretical issues

Photoproduction of K 0 Σ + with CLAS

arxiv: v1 [nucl-th] 4 Dec 2014

Production cross sections of strange and charmed baryons at Belle

Challenges of the N* Program

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Double Charm Baryon Studies in SELEX: Further Studies and Production Questions James Russ, Carnegie Mellon Outline

Overview of Light-Hadron Spectroscopy and Exotics

Strange Sea Contribution to the Nucleon Spin

Overview of the LEPS facility Recent Results

The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production

Probing nucleon structure by using a polarized proton beam

Probing Generalized Parton Distributions in Exclusive Processes with CLAS

Chiral dynamics and baryon resonances

Transcription:

Hyperon Photoproduction: What Has Been Learned at Jefferson Lab? Reinhard Schumacher for the CLAS & GlueX Collaborations May 20, 2015, CIPANP, Vail, Colorado

Outline /Overview Strangeness and the N* spectrum of states & photo- and electro-production spin observables Dimensional scaling of photoproduction Constituent-counting rule supported Excited Y* cross sections measured at CLAS (J P = ); (J P = ); (J P = 3/2 ) Structure of the line shapes; J P Support for chiral unitary models: 2-pole structure Strangeness suppression in exclusive electroproduction Low and high energy reactions similar behavior Outlook at GlueX and CLAS12 CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 2

Jefferson Lab Located in Newport News, Virginia Ran for ~14 yrs at 6 GeV in Halls A, B, C Upgrading to 12 GeV, new Hall D Most Y, Y* publications from Hall B Upgrading as CLAS12 for 12 GeV CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 3

CLAS Experiment CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 4

CLAS Experiment Photoproduction: Targets: unpolarized LH 2, polarized p, & HD-ice Beams: unpolarized, circular, linear, to ~5 GeV Reconstructed p or n 20x10 9 triggers 1.41x10 6 Y events in g11a Electroproduction: Q 2 from ~0.5 to ~3 (GeV/c) 2 Structure functions from Rosenbluth and beamhelicity separations CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 5

Strangeness and the N* Spectrum of States - Photoproduction CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 6

S 11 P 13 D 13 G 17 Strangeness in Physics: Status What role has JLab strangeness physics in unraveling N* and properties? Worldwide effort to determine resonance poles, branching fractions, helicity couplings, etc. Bottom line: Stars & new resonances added to world database A. V. Anisovich (BoGa) et al., Eur.Phys. J. A 48, 15 (2012) CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 7

Define the Spin Observables (for unpolarized nucleon ) P ˆx ŷ ẑ cm.. K K + proton P ˆx ŷ ẑ ˆx ŷ ẑ p proton 1 P cos2 d cos sin 2P O cos C x P x x x 0 d cos sin 2P O cos P C z z z z cos P cos P T cos 2 y y CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 8

Pseudoscalar Meson Photoproduction 4 Complex amplitudes: 16 real polarization observables. Complete measurement with at least 8 suitably chosen observables. πn has large cross section but in KY recoil is self- analysing πn recoil target target recoil KY I. S. Barker, A. Donnachie, J. K. Storrow, Nucl. Phys. B95 347 (1975). circ polarized photons longitudinally polarized target linearly polarized photons transversely polarized target CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 9

Theory: Bonn Gatchina Model (Just one of several models on the market) Coupled channels (K-matrix) framework Input: from elastic inelastic to ± 0 N N, K ± 0 Y, N Use ALL experimental channels, including the strangeness channels & spin observables Partial Wave Analysis First extract each J P wave Fit N* and resonance pole parameters Short list of References: A. Sarantsev, V. Nikonov, A. Anisovich, E. Klempt, U. Thoma; Eur. Phys. J. A 25, 441 (2005) A.V. Anisovich et al., Eur. Phys J. A 25 427 (2005); Eur. Phys J. A 24, 111 (2005); V. A. Nikonov et al., Phys Lett. B 662, 246 (2008). A. Anisovich, E. Klempt, V. Nikonov, A. Sarantsev, U. Thoma; Eur. Phys. J. A 47, 153 (2011). CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 10

p Λcross section R. Bradford et al., Phys.Rev. C 73, 035202 (2006) Forward peaking indicates t-channel processes at high W Angular dependence at lower W consistent with s- and u-channel processes. CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 11

p : recoil polarization P Kaon-MAID model (green) F.X. Lee et al., Nucl. Phys. A695, 237 (2001). Single-channel BW resonance fits No longer up-to-date Bonn-Gatchina model (blue) Multi-channel, unitary, BW resonance fit Large suite of N* contributions Was not predictive for recoil polarization A.V. Sarantsev et al., Eur. Phys. J., A 25, 441 (2005). CIPANP Vail 2015 M. McCracken et al, (CLAS) Phys. Rev. C 81, 025201 (2010). R. A. Schumacher, Carnegie Mellon University 12

p : beam asymmetry d d d d K K unpol. 1P cos2 BoGa 2011-1 BoGa 2011-2 Bonn-Gatchina model is not predictive in newly-measured kinematics CLAS/Glasgow CIPANP Vail 2015 Preliminary R. A. Schumacher, Carnegie Mellon University 13

p : target asymmetry CLAS/Glasgow Preliminary Bonn-Gatchina model is not predictive in newly-measured kinematics CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 14

pk + Beam-Recoil O x and O z O x The Bonn- Gatchina model is not predictive at newly-measured kinematics O z CLAS/Glasgow CIPANP Vail 2015 Preliminary R. A. Schumacher, Carnegie Mellon University 15

pk + Beam-Recoil C x and C z pk + multipole model Kaon-MAID pk + Nikanov et al. s refit of Bonn-Gatchina coupled-channel isobar model mix includes: S 11 -wave, P 13 (1720), P 13 (1900), P 11 (1840) K + cross sections also better described with P 13 (1900) C x C z without N*(1900)P 13 C x C z with N*(1900)P 13 R. Bradford et al., (CLAS Collaboration) Phys. Rev. C 75, 035205 (2007). V. A. Nikanov et al., Phys Lett. B 662, 246 (2008). see also: A.V. Anisovich et al., Eur. Phys J. A 25 427 (2005). CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 16

Seeking New S=0 Baryons via Mesons off the Proton: published, acquired, FroST(g9b) σ Σ T P E F G H T x T z L x L z O x O z C x C z CLAS run Period pπ 0 g1, g8, g9 nπ + g1, g8, g9 pη g1, g11, g8, g9 pη g1, g11, g8, g9 pω g11, g8, g9 K + Λ g1, g8, g11 K + Σ 0 g1, g8, g11 K 0* Σ + g1, g8, g11 Source: V. D. Burkert CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 17

Lots more could be said Omit results for photoproduction Omit discussion of reactions on the neutron (deuteron), which accesses photon coupling isospin dependence. Overall goal: measure enough observables for complete determination of amplitudes extract N* and content CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 18

Strangeness and the N* Spectrum of States - Electroproduction CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 19

Structure Functions For unpolarized target & polarized e - beam: Transverse d d K d dq dw d Longitudinal (sensitive to J=0 ± exchange in t-channel: kaons, diquarks) d 4 2 2 ( Q, W) Q, W,,, 2 K K dk Transverse-transverse interference Virtual photon flux Meson cross section Transverse-longitudinal interference Helicity structure cos(2 ) 2 ( 1) cos( ) h 2 (1 ) u Unseparated T L L TT L LT L LT' CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 20

Structure Functions E = 5.5 GeV, W: thr 2.6 GeV, Q 2 = 1.80, 2.60, 3.45 GeV 2 [Carman et al., PR C 87, 025204 (2013)] CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 21

L/T Separation at Q 2 =1.0 (GeV/c) 2 [Ambrozewicz et al., PR C 75, 045203 (2007)] CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 22

CLAS e p Data Set Overview # Period E b (GeV) Events (M) 1 e1c 2.567 900 2 e1c 4.056 370 3 e1c 4.247 620 4 e1c 4.462 420 5 e1d 4.817 300 6 e1-6 5.754 4500 7 e1f 5.499 5000 8 e1g 3.178 2500 K + recoil polariazation W=1.6-2.7 GeV, <Q 2> =1.9 GeV 2 [Gabrielyan et al., PR C 90, 035202 (2014)] Publications: K + beam-recoil pol. transfer W=1.6-2.15 GeV, Q 2 =0.3 1.5 GeV 2 [Carman et al., PRL 90, 131804 (2003)] K + L / T ratio from pol. transfer data W=1.72-1.98 GeV, Q 2 ~0.7 GeV 2 [Raue & Carman, PR C 71, 065209 (2005)] K +, K + 0 separated structure functions W=thr-2.4 GeV, Q 2 =0.5-2.8 GeV 2 U, LT, TT, L, T -K +, K + 0 [Ambrozewicz et al., PR C 75, 045203 (2007)] W=thr-2.6 GeV, Q 2 =1.4-3.9 GeV 2 U, LT, TT, LT K +, K + 0 [Carman et al., PRC 87, 025204 (2013)] K + fifth structure function LT W=1.6-2.1 GeV, Q 2 =0.65, 1.0 GeV 2 [Nasseripour et al., PR C 77, 065208 (2008)] K +, K + 0 beam-recoil pol. transfer W=thr-2.6 GeV, Q 2 =1.6-2.6 GeV 2 [Carman et al., PR C 79, 065205 (2009)] CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 23

Dimensional Scaling of Publication: Scaling and Resonances in Elementary Photoproduction, R.A.Sch. and M.M. Sargsian Phys.Rev.C83 025207 (2011). CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 24

Constituent-Counting Scaling N N d t f s dt s 2n M B M B n=9 n=10 Constituent counting rules for exclusive scattering Valid for s and t/s fixed t/s ~ cos( cm ) as s n = number of pointlike constituents Follows from pqcd but also other models Does it work for? S. J. Brodsky and G. R. Farrar, PRL 31, 1153 (1973) CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 25

Resonance Fit to Cross Section p K cos S 11 (1690) P 13 (1920) D 13 (2100) pqcd-like scaling CIPANP Vail 2015 R.A. Schumacher and M.M. Sargsian Phys. Rev. C83 025207 (2011). R. A. Schumacher, Carnegie Mellon University 26

Excited Y* Cross Sections Publication: Differential Photoproduction Cross Sections of 0 (1385), (1405) and (1520), K. Moriya et al. (CLAS Collaboration), Phys. Rev. C 88, 045201 (2013). CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 27

Detect p or n MeV (1520) (1405) (1385) to (1385) has small branching fraction into the states CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 28

Differential 0 (1385) Cross Section + p K + + (1385) Experiment: see t- channel-like forward peaking & u-channel backward rise Agreement with LEPS Theory by Oh et al. 1 : contact term dominant; included four high-mass N* and resonances Prediction was fitted to preliminary CLAS total cross section (years ago) 1. Y. Oh, C. M. Ko, K. Nakayama, Phys. Rev. C 77, 045204 (2008) CIPANP Vail 2015 cos cm K.. R. A. Schumacher, K. Moriya Carnegie Mellon et al. University (CLAS), Phys. Rev. C 88, 045201 (2013). 29

Differential (1520) Cross Section + p K + + (1520) Experiment: see t- channel-like forward peaking & u-channel backward rise Agreement with LEPS 1,2 Theories: Nam & Kao 3 : contact term dominant; no or u- channel exchanges He & Chen 4 : and N(2080)D 13 J P =3/2 added CIPANP Vail 2015.. cos cm K R. A. Schumacher, Carnegie Mellon University 1. H. Kohri et al. (LEPS) Phys Rev Lett 104, 172001 (2010) 2. N. Muramatsu et al. (LEPS) Phys Rev 103, 012001 (2009) 3. S.I. Nam & C.W. Kao, Phys. Rev. C 81, 055206 (2010) 4. J. He & X.R. Chen, Phys. Rev. C 86, 035204 (2012) K. Moriya et al. (CLAS), Phys. Rev. C 88, 045201 (2013). 30

Differential (1405) Cross Section + p K + + (1405) Experiment: first-ever measurements Low W: See strong isospin dependence Charge channels differ WHY?!? High W: See t-channellike forward peaking & u-channel backward rise at high W Channels merge together at high W CIPANP Vail 2015 cos cm K.. R. A. Schumacher, K. Moriya Carnegie Mellon et al. University (CLAS), Phys. Rev. C 88, 045201 (2013). 31

Total Cross Sections Comparison + p K + + Y (*) All three Y * s have similar total cross sections Ground state and are comparable to Y * in size 1 CIPANP Vail 2015 1. R. Bradford et al. (CLAS) Phys. Rev. C 73, 035202 (2006) K. Moriya et al. (CLAS), Phys. Rev. C 88, 045201 (2013). R. A. Schumacher, Carnegie Mellon University 32

(1405) Structure Publications: Measurement of the Photo-production Line Shapes Near the (1405), K. Moriya et al. (CLAS Collaboration), Phys. Rev. C 87, 035206 (2013); Isospin Decomposition of the Photoproduced System near the (1405), R. A. Sch. & K. Moriya, Nucl. Phys A 914, 51 (2013). CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 33

What is the (1405)? An issue since its prediction/discovery Dynamically generated resonance, via unitary meson-baryon channel coupling R. Dalitz & S.F.Tuan, Phys. Rev. Lett. 2, 425 (1959), Ann. Phys. 10, 307 (1960). Chiral unitary models (present-day theoretical industry!) SU(3) singlet 3q state, I=0, J = ½ p K KN KN sub-threshold state Recent first Lattice QCD result: J. Hall et al., Phys Rev Lett 114, 132002 (2015) (1405) (1385) (1520) (1670)? Signal may be an overlay of I=0 and I=1 states Missing Mass (GeV) CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 34

Chiral Unitary Models (example 1) SU(3) baryons irreps 1+8 s +8 a combine with 0 - Goldstone bosons to generate: Two octets and a singlet of ½ - baryons generated dynamically in SU(3) limit SU(3) breaking leads to two S = -1 I = 0 poles near 1405 MeV ~1420 mostly KN ~1390 mostly Possible weak I=1 pole also predicted D. Jido, J.A. Oller, E. Oset, A. Ramos, U-G Meissner Nucl. Phys. A 725, 181 (2003) CIPANP Vail 2015 J.A. Oller, U.-G. Meissner Phys. Lett B 500, 263 (2001). R. A. Schumacher, Carnegie Mellon University 35

Example at W=2.30 GeV I=0 contributions with threshold break 0 0 CIPANP Vail 2015 I=1 contribution R. A. Sch. & K. Moriya, Nucl. Phys A 914, 51 (2013) 36 R. A. Schumacher, Carnegie Mellon University

Isospin Interference p Y* K + Final state 3 =, Three charge combinations: CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 37

Compare Line Shapes Cross Sections Charge-dependence is NOT seen for the Λ(1520). No model calculation has computed cross section and line shapes together. CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 38

What is the I=1 piece? I=1 resonance? I=1 continuum amplitude? L. Roca and E. Oset model 1 : Possible I=1 resonance in vicinity of threshold B.-S. Zou et al. model 2 : 1 is a [ ud][ us] s NK state: part of a new nonet 2 No interference seen in (1520) mass range: therefore it s not a continuum amplitude More investigation needed! 1. L. Roca, E. Oset On the isospin 0 and 1 resonances from πσ photoproduction data Phys. Rev. C 88 055206 (2013). 2. Bing-Song Zou Five-quark components in baryons, Nucl Phys A 835 199 (2010). CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 39

Spin and Parity of (1405) Publication: Spin and Parity of the (1405) Baryon, K. Moriya et al. (CLAS Collaboration), Phys. Rev. Lett. 112, 082004 (2014). CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 40

Parity and Spin of (1405) How does one measure these things? Find a reaction wherein is created polarized Decay angular distribution to relates to J J = 1/2 : flat distribution is the best possible evidence J = 3/2 : smile or frown distribution, where p is the fraction 3(1 2 p) I( Y) 1 cos 2p 1 Parity given by polarization transfer to daughter No model dependence: pure kinematics 2 Y CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 41

S-wave, P-wave Scenarios L=0 (s-wave) L=1 (p-wave) +2( J P = ½ J P = ½ CIPANP Vail 2015 (1405) R. A. Schumacher, Carnegie Mellon University 42

Parity and Spin of (1405) (one bin of nine) J P = ½ s-wave p-wave confirms quark model expectation Polarization axis is along ẑ ˆ ˆ K Used W=2.55 to 2.85.. GeV, cos cm K 0.6 Decay is isotropic ( p = 0.5), so J 1/2 Weak decay asymmetry for is = 0.98 (big!) Decay is s-wave, P" negative" and is produced ~ +45% polarized CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 43

Electroproduction Publication: First Observation of the (1405) Line Shape in Electroproduction, H. Lu et al. (CLAS Collaboration), Phys. Rev. C 88, 045202 (2013). CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 44

Electroproduction of (1405) Fit to PDG Free fit (1520) CIPANP Vail 2015 Two poles fit (1520) R. A. Schumacher, Carnegie Mellon University Two-bump structure seen Possible evidence for two I=0 poles PDG (1405) values fail utterly Calculation needed! H. Lu et al. (CLAS), Phys. Rev. C 88, 045202 (2013). 45

Strangeness Suppression of qq Creation in Exclusive Reactions Publication: M. D. Mestayer, K. Park et al. (CLAS Collaboration), Phys. Rev. Lett. 113, 152004 (2014). CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 46

K + + n: 0 p Electroproduction Ratios Ratio / / K + + n 0.19 0.03 - K + 0 p a 0.22 0.07 - K + 0 p b 0.28 0.07-0 p + n - 0.74 0.18 Motivation: Quark model picture of quark-pair creation and flux-tube breaking: does it apply in the low energy exclusive limit? Measurements: Ratio of processes in which only one qq pair is produced: an ss, dd, or uu, respectively In quark model picture, ratios are proportional to the relative production rates of ss, dd, or uu Physics conclusion: Ratio of pair creation relative to or is suppressed; 0.2 0.3 Consistent with high-energy results when 100 s of particles are produced CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 47

The Future: Outlook at GlueX and CLAS12 CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 48

Lattice QCD Predictions Lattice QCD now predicts rich baryon families Most states not identified by experiment yet flavor singlet flavor octet flavor decouplet R. Edwards et al., PRD 87, 054506 (2013) CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 49

Baryon Spectroscopy JLab at 12 GeV will surpass many Y* thresholds S = -1, -2, -3 Many states remain undiscovered Charm threshold (K. Moriya, priv. comm.) CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 50

JLab Hall D/GlueX New hall, finished construction Commissioning in progress now Approved for 220 days of high statistics running CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 51

Jlab Hall D/GlueX Real photon beam centered at 9 GeV Liquid hydrogen target Reconstruct both charged and neutral particles over large angular range Hermetic detector within solenoid magnetic field Meson & Baryon spectroscopy: search for new and exotic states CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 52

GlueX Study of Use simulated data to study γ Κ - K + K + π - p Final state is 5 charged particles, K +, K +, K -, p, π - Can GlueX reconstruct this? Reconstruction efficiency 10 MeV mass resolution Secondary vertex resolution: ~1 cm along beam line (z-direction) cτ=7.89 cm CIPANP (K. Moriya, Vail 2015 priv. comm.) R. A. Schumacher, Carnegie Mellon University 53

JLab Hall B / CLAS12 CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 54

CLAS12: Very Strange Baryons CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University (R. devita, priv. comm.) 55

Summary/Conclusions Hyperon photo- and electro-production used to pin down N* spectrum above 1.6 GeV Y* cross sections compared; (1405) weird Interference effects in (1405) line shapes demonstrated Direct J P measurement for (1405) made: ½ Cross section scaling demonstrated and strangeness suppression seen JLab at 12 GeV with CLAS12 and GlueX will explore Y* and meson spectra CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 56

Supplemental Slides CIPANP Vail 2015 R. A. Schumacher, Carnegie Mellon University 57