functions on localized Morrey-Campanato spaces over doubling metric measure spaces

Similar documents
336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f

arxiv: v1 [math.ca] 25 Sep 2013

Boundedness for Marcinkiewicz integrals associated with Schrödinger operators

7 Wave Equation in Higher Dimensions

On Control Problem Described by Infinite System of First-Order Differential Equations

BMOA estimates and radial growth of B φ functions

Research Article A Note on Multiplication and Composition Operators in Lorentz Spaces

@FMI c Kyung Moon Sa Co.

THE MODULAR INEQUALITIES FOR A CLASS OF CONVOLUTION OPERATORS ON MONOTONE FUNCTIONS

GRADIENT ESTIMATES, POINCARÉ INEQUALITIES, DE GIORGI PROPERTY AND THEIR CONSEQUENCES

ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS

POSITIVE SOLUTIONS WITH SPECIFIC ASYMPTOTIC BEHAVIOR FOR A POLYHARMONIC PROBLEM ON R n. Abdelwaheb Dhifli

Research Article Weak Type Inequalities for Some Integral Operators on Generalized Nonhomogeneous Morrey Spaces

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

Hardy spaces for semigroups with Gaussian bounds

arxiv: v1 [math.ca] 15 Jan 2019

Deviation probability bounds for fractional martingales and related remarks

Extremal problems for t-partite and t-colorable hypergraphs

STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE WEIBULL DISTRIBUTION

Research Article Weighted Hardy Operators in Complementary Morrey Spaces

K. G. Malyutin, T. I. Malyutina, I. I. Kozlova ON SUBHARMONIC FUNCTIONS IN THE HALF-PLANE OF INFINITE ORDER WITH RADIALLY DISTRIBUTED MEASURE

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Fuzzy Hv-submodules in Γ-Hv-modules Arvind Kumar Sinha 1, Manoj Kumar Dewangan 2 Department of Mathematics NIT Raipur, Chhattisgarh, India

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions

BOUNDEDNESS OF MAXIMAL FUNCTIONS ON NON-DOUBLING MANIFOLDS WITH ENDS

Variance and Covariance Processes

A note on characterization related to distributional properties of random translation, contraction and dilation of generalized order statistics

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

Heat kernel and Harnack inequality on Riemannian manifolds

Reichenbach and f-generated implications in fuzzy database relations

arxiv: v1 [math.co] 4 Apr 2019

Order statistics and concentration of l r norms for log-concave vectors

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

Computer Propagation Analysis Tools

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

Intrinsic Square Function Characterizations of Hardy Spaces with Variable Exponents

Lecture 22 Electromagnetic Waves

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

4 Sequences of measurable functions

A STOCHASTIC MODELING FOR THE UNSTABLE FINANCIAL MARKETS

Lecture 10: The Poincaré Inequality in Euclidean space

On the local convexity of the implied volatility curve in uncorrelated stochastic volatility models

Dual Hierarchies of a Multi-Component Camassa Holm System

GRADIENT ESTIMATES FOR A SIMPLE PARABOLIC LICHNEROWICZ EQUATION. Osaka Journal of Mathematics. 51(1) P.245-P.256

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sobolev-type Inequality for Spaces L p(x) (R N )

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

arxiv: v1 [math.fa] 20 Dec 2018

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t

2017Ψ9 ADVANCES IN MATHEMATICS (CHINA) Sep., 2017

Measure Estimates of Nodal Sets of Polyharmonic Functions

[ ] 0. = (2) = a q dimensional vector of observable instrumental variables that are in the information set m constituents of u

On the Semi-Discrete Davey-Stewartson System with Self-Consistent Sources

Research Article Littlewood-Paley Operators on Morrey Spaces with Variable Exponent

BEST CONSTANTS FOR UNCENTERED MAXIMAL FUNCTIONS. Loukas Grafakos and Stephen Montgomery-Smith University of Missouri, Columbia

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Essential Maps and Coincidence Principles for General Classes of Maps

CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR

On The Estimation of Two Missing Values in Randomized Complete Block Designs

An Automatic Door Sensor Using Image Processing

Lecture 20: Riccati Equations and Least Squares Feedback Control

GLOBAL REGULARITY IN ORLICZ-MORREY SPACES OF SOLUTIONS TO NONDIVERGENCE ELLIPTIC EQUATIONS WITH VMO COEFFICIENTS

Triebel Lizorkin space estimates for multilinear operators of sublinear operators

CONTRIBUTION TO IMPULSIVE EQUATIONS

arxiv: v2 [math.pr] 19 Feb 2016

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

A Necessary and Sufficient Condition for the Solutions of a Functional Differential Equation to Be Oscillatory or Tend to Zero

Monochromatic Wave over One and Two Bars

Secure Frameproof Codes Through Biclique Covers

On Functions of Integrable Mean Oscillation

Properties of the interface of the symbiotic branching model

Convergence of the Neumann series in higher norms

CS 188: Artificial Intelligence Fall Probabilistic Models

LOGARITHMIC ORDER AND TYPE OF INDETERMINATE MOMENT PROBLEMS

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type

On Oscillation of a Generalized Logistic Equation with Several Delays

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

On Two Integrability Methods of Improper Integrals

An Introduction to Malliavin calculus and its applications

Chapter 2. First Order Scalar Equations

On a Fractional Stochastic Landau-Ginzburg Equation

Journal of Inequalities in Pure and Applied Mathematics

Math-Net.Ru All Russian mathematical portal

SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

On Ternary Quadratic Forms

The sudden release of a large amount of energy E into a background fluid of density

arxiv: v1 [math.pr] 19 Feb 2011

arxiv:math/ v1 [math.nt] 3 Nov 2005

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

Low-complexity Algorithms for MIMO Multiplexing Systems

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Orthotropic Materials

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

SOME GENERAL NUMERICAL RADIUS INEQUALITIES FOR THE OFF-DIAGONAL PARTS OF 2 2 OPERATOR MATRICES

Existence of multiple positive periodic solutions for functional differential equations

Transcription:

JOURNAL OF FUNCTION SPACES AND APPLICATIONS Volume 9, Numbe 3 2), 245 282 c 2, Scienific Hoizon hp://www.jfsa.ne oundedness of Lusin-aea and gλ funcions on localized Moey-Campanao spaces ove doubling meic measue spaces Haibo Lin, Eiichi Nakai and Dachun Yang Communicaed by Fenando Cobos) 2 Mahemaics Subjec Classificaion. Pimay 4225; Seconday 4235, 463. Keywods and phases. Doubling meic measue space, Popey P ), admissible funcion, Schödinge opeao, localized Moey-Campanao space, Lusin-aea funcion, gλ funcion. Absac. Le X be a doubling meic measue space and ρ an admissible funcion on X. In his pape, he auhos esablish some equivalen chaaceizaions fo he localized Moey-Campanao spaces Eρ X ) and Moey-Campanao-LO spaces Ẽ ρ X ) when α, ) and p, ). If X has he volume egulaiy Popey P ), he auhos hen esablish he boundedness of he Lusin-aea funcion, which is defined via kenels modeled on he semigoup geneaed by he Schödinge opeao, fom Eρ X )oẽ ρ X ) wihou invoking any egulaiy of consideed kenels. The same is ue fo he gλ funcion and, unlike he Lusin-aea funcion, in his case, X is even no necessay o have Popey P ). These esuls ae also new even fo R d wih he d-dimensional Lebesgue measue and have a wide applicaions.. Inoducion The heoy of Moey-Campanao spaces plays an impoan ole in hamonic analysis and paial diffeenial equaions; see, fo example,, 5, 6, 22, 23, 25, 27, 29, 3] and hei efeences. I is well-known ha Coesponding auho

246 oundedness of Lusin-aea and g λ funcions he dual space of he Hady space H p R d ) wih p, ) is he Moey- Campanao space E /p, R d ). Noice ha he Moey-Campanao spaces on R d ae essenially elaed o he Laplacian Δ d j= 2. x 2 j On he ohe hand, hee exiss an inceasing inees on he sudy of Schödinge opeaos on R d and he sub-laplace Schödinge opeaos on conneced and simply conneced nilpoen Lie goups wih nonnegaive poenials saisfying he evese Hölde inequaliy; see, fo example, 6, 7, 8, 9, 7, 8, 26, 35, 37]. Le L Δ+V be he Schödinge opeao on R d, whee he poenial V is a nonnegaive locally inegable funcion. Denoe by q R d ) he class of nonnegaive funcions saisfying he evese Hölde inequaliy of ode q. Fo V d/2 R d ) wih d 3, Dziubański e al. 6, 7, 8] sudied he MO-ype space MO L R d ) and he Hady space H p L Rd ) wih p d/d +), ] and, especially, poved ha he dual space of HL Rd )ismo L R d ); moeove, hey obained he boundedness on hese spaces of he Lilewood-Paley g -funcion associaed o L. Le X be a doubling meic measue space, which means ha X is a space of homogeneous ype in he sense of Coifman and Weiss 2, 3], bu X is endowed wih a meic insead of a quasi-meic. Le ρ be a given admissible funcion modeled on he known auxiliay funcion deemined by V d/2 R d ) see 35] o 2.4) below). The localized aomic Hady space Hρ p, q X ) wih p, ] and q, ] p, ], he localized Moey- Campanao space Eρ X ) and localized Moey-Campanao-LO space X ) wih α R and p, ) wee inoduced in 34]. Moeove, he Ẽ ρ boundedness fom Eρ X )oẽα, ρ p X ) of seveal maximal opeaos and he Lilewood-Paley g -funcion, which ae defined via kenels modeled on he semigoup geneaed by he Schödinge opeao, was obained in 34]. Meanwhile, he boundedness fom localized MO-ype space MO ρ X ) o LO-ype space LO ρ X ) of he Lusin-aea and gλ funcions was esablished in 9]. The pupose of his pape is o invesigae behavios of he Lusinaea and gλ funcions on Moey-Campanao spaces ove doubling meic measue spaces. Pecisely, le X be a doubling meic measue space and ρ an admissible funcion on X. In his pape, we fis esablish some equivalen chaaceizaions fo Eρ X )andẽα, ρ p X )whenα, ) and p, ). To obain he boundedness of he Lusin-aea funcion on he Moey-Campanao spaces, we need o assume ha X has he volume egulaiy Popey P ), which was inoduced in 9], moivaed by Colding-Minicozzi II 4] and Tessea 3]. We emak ha he volume egulaiy popey is elaed o he Følne sequence of a compac geneaing se of a compacly geneaed locally compac goup wih polynomial gowh

H. Lin, E. Nakai, D. Yang 247 in 3] and used o esablish he genealized Liouville heoems fo hamonic secions of Hemiian veco bundles ove a complee meic space in 4]. In his pape, if X has Popey P ), we hen esablish he boundedness of he Lusin-aea funcion fom Eρ X )oẽρ X ) wihou invoking any egulaiy of consideed kenels. The coesponding boundedness of gλ funcion fom Eρ X )oẽα, ρ p X ) is also esablished in his pape. oh he Lusin-aea funcion and he gλ funcion ae defined via kenels modeled on he semigoup geneaed by he Schödinge opeao. Moeove, an ineesing phenomena is ha unlike he Lusin-aea funcion, he boundedness of he gλ funcion needs neihe he egulaiy of he kenels no Popey P ) of X, which eflecs he specialiy of he sucue of he gλ funcion. These esuls ae new even on Rd wih he d-dimensional Lebesgue measue and he Heisenbeg goup, and apply in a wide ange of seings, fo insance, o he Schödinge opeao o he degeneae Schödinge opeao on R d, o he sub-laplace Schödinge opeao on Heisenbeg goups o conneced and simply conneced nilpoen Lie goups. This pape is oganized as follows. Le X be a doubling meic measue space and ρ an admissible funcion on X. InSecion2,weesablishsome equivalen chaaceizaions fo Eρ X ) and Ẽα, ρ p X ) when p, ) and α, /p) oα /p, ); see Theoems 2. and 2.2 below. Moeove, unde he assumpion ha sup x X μx, ρx))) =, wepove ha he Moey-Campanao-LO space Ẽα, ρ p X ) is a pope subspace of he Moey-Campanao space Eρ X )whenp, ) andα /p, ); see Theoem 2.2iii) below. In Secion 3, assuming ha X has Popey P ) and he Lusin-aea funcion Sf) is bounded on L p X ) wih p, ), we pove ha if f Eρ X ), hen Sf)] 2 p/2 Ẽ2α, ρ X ) wih nom no moe han C f 2 Eρ X ),wheec is a posiive consan independen of f ; see Theoem 3. below. As a coollay, we obain he boundedness of he Lusin-aea funcion fom Eρ X ) o Ẽα, ρ p X ); see Coollay 3. below. If he gλ funcion gλ f) is bounded on Lp X ) wih p, ), he coesponding esuls fo gλ f) ae also esablished, and moeove, in his case, X is no necessay o have Popey P ); see Theoem 3.2 and Coollay 3.2 below. We poin ou ha Theoems 3. and 3.2 and Coollaies 3. and 3.2 ae ue o he Schödinge opeao o he degeneae Schödinge opeao on R d, o he sub-laplace Schödinge opeao on Heisenbeg goups o conneced and simply conneced nilpoen Lie goups; see 34] fo he deailed explanaions. Noice ha Eρ,p X ) = MO ρ X ) and Ẽρ,p X )=LO ρ X ) when p, ). Thus, he esuls in his secion when α = wee aleady obained in 9].

248 oundedness of Lusin-aea and g λ funcions We emak ha he esuls obained in Secion 3 ae also new even on R d wih he d-dimensional Lebesgue measue and he Heisenbeg goup, since we do no need any egulaiy of involved kenels. Howeve, o esablish he boundedness of Lusin-aea funcion on a doubling meic measue space X, we need ceain egulaiy of X, namely, he volume egulaiy Popey P ), which eflecs he specialiy of he Lusin-aea funcion, compaing wih he coesponding esuls of he gλ funcion. Moeove, Rd wih he Lebesgue measue and he Heisenbeg goup have he volume egulaiy Popey P ); see 9]. Finally, we make some convenions. Thoughou his pape, we always use C o denoe a posiive consan ha is independen of he main paamees involved bu whose value may diffe fom line o line. Consans wih subscips, such as C and K, do no change in diffeen occuences. If f Cg, wehenwief g o g f ;andiff g f,wehen wie f g. We also use o denoe a ball of X,andfoλ>, λ denoes he ball wih he same cene as, bu adius λ imes he adius of. Moeove, se X\. Also, fo any se E X, χ E denoes is chaaceisic funcion. Fo all f L loc X ) and balls,wealwaysse f μ) fy) dμy). 2. Some chaaceizaions of localized Moey-Campanao spaces Le X beadoublingmeicmeasuespaceandρ an admissible funcion on X. In his secion, we esablish some equivalen chaaceizaions fo Eρ X ) and Ẽα, ρ p X ) when α, ) and p, ). Moeove, unde he assumpion ha sup x X μx, ρx))) =, we pove ha he Moey-Campanao-LO space Ẽα, ρ p X ) is a pope subspace of he Moey-Campanao space Eρ X )whenp, ) andα /p, ). We begin wih ecalling he noion of doubling meic measue spaces 2, 3]. Definiion 2.. Le X,d) be a meic space endowed wih a oel egula measue μ such ha all balls defined by d have finie and posiive measues. Fo any x X and, ), se he ball x, ) {y X : dx, y) <}. The iple X,d,μ) is called a doubling meic measue space if hee exiss a consan C, ) such ha fo all x X and, ), 2.) μx, 2)) C μx, )) doubling popey).

H. Lin, E. Nakai, D. Yang 249 Fom Definiion 2., i is easy o see ha hee exis posiive consans C 2 and n such ha fo all x X,, ) andλ, ), 2.2) μx, λ)) C 2 λ n μx, )). Now we ecall he noion of admissible funcions inoduced in 35]. Definiion 2.2 35]). A posiive funcion ρ on X is called admissible if hee exis posiive consans C and k such ha fo all x, y X, 2.3) ρx) C ρy) + ) k dx, y). ρy) Obviously, if ρ is a consan funcion, hen ρ is admissible. Moeove, le x X be fixed. The funcion ρy) + dx,y)) s fo all y X wih s, ) also saisfies Definiion 2.2 wih k = s/ s) whens, ) and k = s when s, ). Anohe non-ivial class of admissible funcions is given by he well-known evese Hölde class q X,d,μ), which is wien as q X ) fo simpliciy. Recall ha a nonnegaive poenial V is said o be in q X ) wih q, ] if hee exiss a posiive consan C such ha fo all balls of X, ) /q V y)] q dy C V y) dy wih he usual modificaion made when q =. I is known ha if V q X ) fo ceain q, ], hen V is an A X ) weigh in he sense of Muckenhoup, and also V q+ɛ X ) fo ceain ɛ, ); see, fo example, 27] and 28]. Thus q X )= q q, ] q X ). Fo all V q X ) wih q, ] andallx X,se { 2.4) ρx) sup >: 2 } V y) dy ; μx, )) x, ) see, fo example, 26] and also 35]. I was also poved in 35] ha ρ in 2.4) is an admissible funcion if n, ), q max{, n/2}, ] and V q X ). The following localized Moey-Campanao space and localized Moey- Campanao-LO space associaed o he admissible funcion ρ wee fis inoduced in 34]. Definiion 2.3. Le ρ be an admissible funcion on X, D {x, ) : x X, ρx)}, p, ) andα R. Denoeby any ball of X.

25 oundedness of Lusin-aea and g λ funcions i) A funcion f L p loc X ) is said o be in he localized Moey- Campanao space Eρ X )if { f E ρ X ) sup / D μ)] +pα +sup D { μ)] +pα } /p fy) f p dμy) fy) p dμy)} /p <. ii) A funcion f L p loc X ) is said o be in he localized Moey- Campanao-LO space Ẽα, ρ p X )if { f Ẽ ρ X ) sup / D μ)] +pα +sup D { μ)] +pα fy) essinf ] } p /p f dμy) fy) p dμy)} /p <. iii) Le α, ). A funcion f on X is said o be in he localized Lipschiz space Lip ρ α; X ) if hee exiss a nonnegaive consan C such ha fo all x, y X and balls conaining x and y wih / D, fx) fy) Cμ)] α, and ha fo all balls D, f L ) Cμ)] α. The minimal nonnegaive consan C as above is called he nom of f in Lip ρ α; X ) and denoed by f Lipρ α; X ). iv) Le α, ). A funcion f L p loc X ) is said o be in he Moey space L X )if { f L X ) sup X μ)] +αp fx) p dμx)} /p <. Remak 2.. i) Fo all α R and p, ), Ẽρ X ) Eρ X ). ii) When α = and p, ), we denoe Eρ,p X )bymo p ρx )and MO ρx )bymo ρ X ). And we also denoe Ẽ,p ρ X )bylo p ρx )and LO ρx )bylo ρ X ). The localized LO space was fis inoduced in 3] in he seing of R d endowed wih a nondoubling measue. iii) If X is he Euclidean space R d and ρ, hen MO ρ X )isjus he localized MO space of Goldbeg ], and Lip ρ α; X ) wih α, ) is jus he inhomogeneous Lipschiz space see also ]). iv) When α, ), equivalen noms; see 34] fo deails. Ẽ ρ X ) = E ρ X ) = Lip ρ α; X ) wih Theoem 2.. Le X be a doubling meic measue space and ρ an admissible funcion on X.Lep, ) and α, /p).

H. Lin, E. Nakai, D. Yang 25 i) If μx )=, henẽα, ρ p X )=Eρ X )=L X )={}. ii) If μx ) <, henẽα, ρ p X )=Ẽ /p, ρ p X ), Eρ X )=Eρ /p, p X ) and L X )=L /p, p X )=L p X ) wih equivalen noms, especively. Poof. i) In his case, since μx ) =, hen, fo all x X, μx, )) as, which ogehe wih α, /p) implies ha if f L X ), hen fo all x, ) X, fy) p dμy) f p L X ) μx, ))]+αp, x, ) when,andiff Eρ X ), hen fo all x, ) X wih ρx), fy) p dμy) f p Eρ X ) μx, ))]+αp, x, ) as. Thus, in boh cases, we have ha X fy) p dμy), which implies ha fy) = fo almos all y X. Theefoe, L X ) = Eρ X ) = {}, which ogehe wih he fac ha Ẽα, ρ p X ) Eρ X ) yields i). ii) Since μx ) <, by 24, Lemmma 5.], hee exiss > such ha X x, ) fo all x X, which ogehe wih ha ρ is admissible and 2.2) implies ha < inf μx, ρx)/2)) = inf μx, )) x X x X,ρx)/2 <ρx) sup μx, )) μx ) <. x X,ρx)/2 <ρx) If <<ρx)/2, by +αp <, we hen have ] p μx, ))] +αp fy) essinf f dμy) x, ) x, ) μx, ρx)/2))] +αp fy) essinf and x, ρx)/2) fy) μx, ))] +αp f x, ) p dμy) x, ) μx, ρx)/2))] +αp 2 p μx, ρx)/2))] +αp x, ρx)/2) x, ρx)/2) x, ρx)/2) f fy) fx, ) p dμy) ] p dμy), fy) fx, ρx)/2) p dμy).

252 oundedness of Lusin-aea and g λ funcions Hence, sup x X, <<ρx) and = sup μx, ))] +αp fy) essinf x, ) x X,ρx)/2 <ρx) sup x X,ρx)/2 <ρx) sup x X, <<ρx) sup x X, <<ρx) μx, ))] +αp x, ) x, ) x, ) fy) essinf x, ) f fy) essinf x, ) f ] p f dμy) x, ) fy) essinf ] p dμy) ] p dμy), fy) fx, μx, ))] +αp ) p dμy) x, ) sup x X,ρx)/2 <ρx) sup x X,ρx)/2 <ρx) sup x X, <<ρx) which imply ha Ẽα, ρ p Similaly, μx, ))] +αp x, ) x, ) x, ) fy) fx, ) p dμy) fy) f x, ) p dμy), X )=Ẽ /p, ρ p ] p f dμy) x, ) fy) fx, ) p dμy) X ), and Eρ X )=Eρ /p, p X ). < inf μx, )) sup μx, )) μx ) <, x X,ρx) x X,ρx) and moeove, sup x X,> = sup μx, ))] +αp x X,ρx) sup x X,ρx) x, ) μx, ))] +αp fy) p dμy) x, ) fy) p dμy) x, ) fy) p dμy) sup x X,> x, ) fy) p dμy) f Lp X ), which leads o ha L X )=L /p, p X )=L p X ).

H. Lin, E. Nakai, D. Yang 253 Theoem 2.2. Le X be a doubling meic measue space and ρ an admissible funcion on X. Ifp, ) and α /p, ), hen he followings hold. i) Eρ X )=L X ) wih equivalen noms. ii) Fo all f, f Eρ X ) if and only if f Ẽα, ρ p X ) and moeove, f Ẽ ρ X ) f Eρ X ). iii) If M sup x X μx, ρx))) <, hen hee exiss a posiive consan C such ha fo all f saisfying < essinf X f<, ] f E ρ X ) f Ẽ ρ X ) C f E ρ X ) + M α essinf X f). iv) If sup x X μx, ρx))) =, hen hee exiss a funcion f Eρ X ) such ha < essinf X f< and f/ Ẽα, ρ p X ). Remak 2.2. i) I uns ou ha Theoem 2.2i), ii) and iii) hold fo α, ) and p, ) by Theoem 2.. ii) If X is an RD-space, Theoem 2.2i) & ii) ae aleady obained in 34], which ae used o pove Theoem 2.2i) & ii). Also we show Theoem 2.2iii) by fis assuming ha i is ue fo RD-space X,whichis poved in Poposiion 2. below. Recall ha he space X is said o have he evese doubling popey if hee exis consans κ, n]andk, ] such ha fo all x X,, 2diamX )) and λ, 2diamX )/), 2.5) K λ κ μx, )) μx, λ)). If X,d,μ) saisfies he condiions 2.2) and 2.5), hen X,d,μ) is called an RD-space, which was fis inoduced in 2] see also 2, 36] fo some equivalen chaaceizaions of RD-spaces). iii) y an agumen simila o ha used in he poof of Theoem 2.2i) & ii) when X,d,μ) is an RD-space wih d being a meic in 34], i is easy o see ha if X,d,μ) is an RD-space wih d being a quasi-meic, Theoem 2.2i) & ii) ae also ue. Moeove, a sligh modificaion of he poof below shows ha he whole Theoem 2.2 holds fo X wih d being a quasi-meic. iv) I was poved in 9] ha Theoem 2.2ii) is no ue when α =. To pove Theoem 2.2, we need some echnical lemmas. Following Macías and Segovia 2], we call a doubling meic measue space o be nomal if hee exis posiive consans K 2 and K 3 such ha fo all x X and μ{x}) <<μx ), 2.6) K 2 μx, )) K 3.

254 oundedness of Lusin-aea and g λ funcions Fo a doubling meic measue space X,d,μ), le { inf{μ) : is a ball conaining x and y} if x y, 2.7) δx, y) if x = y. Macías and Segovia 2] showed ha X,δ,μ) is a nomal space of homogeneous ype, namely, δ is a quasi-meic and μ saisfies 2.) and 2.6). Moeove, he opologies induced on X by d and δ coincide. In his secion, se d x, ) {y X : dx, y) <} and δ x, ) {y X : δx, y) <} fo all x X and >. Fo all x X,le 2.8) x) μ d x, ρx))). Lemma 2.. Le X be a doubling meic measue space and ρ an admissible funcion on X, and le be as in 2.8). If α, ) and p, ), henl X,d,μ)=L X,δ,μ) and Eρ X,d,μ)= X,δ,μ) wih equivalen noms, especively. E Lemma 2.2. Le X be a doubling meic measue space and ρ an admissible funcion on X,andle be as in 2.8). Le α, ) and p, ). If f, hen f Ẽ ρ X,d,μ) and f Ẽρ δ X,δ,μ) ae equivalen wih equivalen consans independen of f. Lemma 2.3. Le X be a doubling meic measue space and ρ an admissible funcion on X. Le be as in 2.8), α, ) and p, ). If M sup x X μ d x, ρx))) < and < essinf X f <, hen f Ẽ ρ X,d,μ) + M α essinf X f) and f Ẽ X,δ,μ) + M α essinf X f) ae equivalen wih equivalen consans independen of f. To pove Lemmas 2., 2.2 and 2.3, we fis sae some basic facs. Fo any d-ball d x, ), le μ d x, )). y he definiion of δ,wehave ha 2.9) d x, ) δ x, ) and μ δ x, )) K 3 μ d x, )). Moeove, 2.) <ρx) x), = ρx) = x), >ρx) x). Convesely, by 22, Lemma 3.9] o 4, Poposiion 2.], fo any δ -ball δ x, ), hee exiss a posiive consan, which may depend on x and

H. Lin, E. Nakai, D. Yang 255, such ha 2.) δ x, ) d x, ) and μ d x, )) C 3 μ δ x, )) fo some consan C 3, ), which is independen of x, and.inhis case, if < x)/c 3 K 3 ), hen μ d x, )) C 3 μ δ x, )) C 3 K 3 < x) =μ d x, ρx))). If > x)/k 2,hen μ d x, )) μ δ x, )) K 2 > x) =μ d x, ρx))). Tha is, 2.2) { < x)/c 3 K 3 ) <ρx), > x)/k 2 >ρx). Poof of Lemma 2.. y 2.9) and 2.), i is easy o see L X,d,μ)= L X,δ,μ) wih equivalen noms. Now, we pove ha Eρ X,d,μ) = Eρ δ X,δ,μ) wih equivalen noms. Pa ) Fo any d-ball = d x, ), le 2 = δ x, ), whee = μ d x, )). Fom 2.9), i follows ha μ ) μ 2 ). Case. <ρx). In his case, by 2.), < x) o = x), which ogehe wih 2.9) implies ha 2.3) { } /p μ )] α fy) f p dμy) μ ) { } /p 2 μ )] α fy) f 2 p dμy) μ ) { } /p μ 2 )] α fy) f 2 p dμy) f μ 2 ) E X,δ,μ). 2 Case 2. ρx). In his case, by 2.), x), which ogehe wih 2.9) leads o ha 2.4) { μ )] α μ 2 )] α μ ) { μ 2 ) } /p fy) p dμy) } /p fy) p dμy) f E 2 X,δ,μ).

256 oundedness of Lusin-aea and g λ funcions Theefoe, f E ρ X,d,μ) f E X,δ,μ). Pa 2) Fo any δ -ball δ x, ), le 2 d x, ), whee is as in 2.). Fom 2.), i follows ha μ ) μ 2 ). Case. < x)/c 3 K 3 ). In his case, by 2.2), <ρx). y an agumen simila o he esimae of 2.3), we have { } /p μ )] α fy) f p dμy) f μ ) E ρ X,d,μ). Case 2. > x)/k 2. In his case, by 2.2), > ρx). y an agumen simila o he esimae of 2.4), we have { } /p μ )] α fy) p dμy) f μ ) E ρ X,d,μ). Case 3. x)/c 3 K 3 ) x)/k 2. In his case, le δ x, ) and δ x, 2C 3 K 3 /K 2 )). Then μ ) μ ). Hence { } /p μ )] α fy) f p dμy) μ ) { } /p 2 μ )] α fy) f μ ) p dμy) { } /p μ )]α μ ) fy) f p dμy) { /p μ )]α μ ) fy) dμy)} p, and { } { /p μ )] α fy) p dμy) μ ) μ )]α μ ) Since 2C 3 K 3 /K 2 )> x)/k 2, using Case 2, we have { /p μ )]α μ ) fy) dμy)} p f E ρ X,d,μ). fy) p dμy)} /p. Theefoe, f E X,δ,μ) f E ρ X,d,μ) and we ae done.

H. Lin, E. Nakai, D. Yang 257 Poof of Lemma 2.2. Pa ) Fo any d-ball d x, ), le 2 δ x, ), whee μ d x, )). Fom 2.9), i follows ha μ ) μ 2 ). Case. <ρx). In his case, by 2.), < x) o = x), which implies ha 2.5) μ )] α { μ ) { μ ) { μ 2 ) μ )] α μ 2 )] α ] p /p fy) essinf f dμy)} 2 fy) essinf f 2 fy) essinf f 2 ] p dμy)} /p ] p } /p dμy) f E X,δ,μ). Case 2. ρx). In his case, by 2.), x). y an agumen simila o he esimae of 2.4), we have { } /p μ )] α fy) p dμy) f μ ) E X,δ,μ). Theefoe, f E ρ X,d,μ) f E X,δ,μ). Pa 2) Fo any δ -ball = δ x, ), le 2 = d x, ), whee is as in 2.). Fom 2.), i follows ha μ ) μ 2 ). Case. < x)/c 3 K 3 ). In his case, by 2.2), <ρx). y an agumen simila o he esimae of 2.5), we have { ] p } /p μ )] α fy) essinf f dμy) f μ ) E ρ X,d,μ). Case 2. > x)/k 2. In his case, by 2.2), > ρx). y an agumen simila o he esimae of 2.4), we have { } /p μ )] α fy) p dμy) f μ ) E ρ X,d,μ). Case 3. x)/c 3 K 3 ) x)/k 2. In his case, le δ x, ) and δ x, 2C 3 K 3 /K 2 )). Then μ ) μ ). Hence, if f,

258 oundedness of Lusin-aea and g λ funcions hen { μ )] α μ ) μ )] α μ )]α { μ ) { μ ) ] p /p fy) essinf f dμy)} } /p fy) p dμy) fy) p dμy)} /p, and { } { /p μ )] α fy) p dμy) μ ) μ )]α μ ) Since 2C 3 K 3 /K 2 )> x)/k 2, using Case 2, we have { /p μ )]α μ ) fy) dμy)} p f E ρ X,d,μ). fy) p dμy)} /p. Theefoe, if f, hen f E X,δ,μ) f E ρ X,d,μ). PoofofLemma2.3. Le M sup x X μ d x, ρx))) = sup x X x) <. y he same way as in he poof of Lemma 2.2, we divide he poof ino Pa ) and Pa 2). Then we have he same conclusions as in Case 2 of Pa ) and in Cases and 2 of Pa 2) of he poof of Lemma 2.2. So we only need o conside Case of Pa ) and Case 3 of Pa 2) heein. Pa ) Fo any d-ball d x, ), le 2 δ x, ), whee μ d x, )). Fom 2.9), i follows ha μ ) μ 2 ). Case. <ρx). In his case, by 2.), < x) o = x). If < x), hen we have he same inequaliy as 2.5). If = x), hen μ 2 ) x). Hence, if < essinf X f<, hen 2.6) { μ )] α μ ) μ 2 )] α μ 2 )] α { μ 2 ) { μ 2 ) ] p /p fy) essinf f dμy)} ] p /p fy) essinf f dμy)} 2 2 f Ẽ X,δ,μ) + M α essinf f X } /p fy) p dμy) + essinf X f 2 x)] α ).

Theefoe, if < essinf X f<, hen f Ẽ ρ H. Lin, E. Nakai, D. Yang 259 X,d,μ) f Ẽρ δ X,δ,μ) + M α essinf f X Pa 2) Fo any δ -ball δ x, ), le 2 d x, ), whee is as in 2.). Fom 2.), i follows ha μ ) μ 2 ). Case 3. x)/c 3 K 3 ) x)/k 2. In his case, le δ x, ) and δ x, 2C 3 K 3 /K 2 )). Then μ ) μ ) x). Hence, if < essinf X f<, hen μ )] α { μ ) { μ )]α { μ )]α μ )]α μ ) μ ) { μ ) ] p /p fy) essinf f dμy)} } p /p fy) essinf f] dμy) } /p fy) p dμy) + essinf X f x)] α ). fy) p dμy)} /p + M α essinf X and { } { /p μ )] α fy) p dμy) μ ) μ )]α μ ) ) f, fy) p dμy)} /p. Since 2C 3 K 3 /K 2 )> x)/k 2, using Case 2, we have { /p μ )]α μ ) fy) dμy)} ) p f Ẽ ρ X,d,μ) +M α essinf f. X Theefoe, if < essinf X f<, hen f Ẽ X,δ,μ) f Ẽρ X,d,μ) + M α essinf f X ). Lemma 2.4 c.f. 2, Lemma 3.3]). Le α /p, ). Then fo all X, χ L X ) =μ)] α.

26 oundedness of Lusin-aea and g λ funcions Poof. Fom he equaliy { /p μ)] α χ x) dμx)} p =μ)] α, μ) i follows ha χ L X ) μ)] α. Fo any balls z, ), if μz, )) <μ), hen { μz, ))] α μz, )) /p χ x) dμx)} p μz, )) α μ)] α. z, ) If μz, )) μ), hen { } /p μz, ))] α χ x) p dμx) μz, )) z, ) { } /p μ z, )) = μz, ))] α μz, )) ) α+/p μ z, )) = μ z, ))] α μ)] α. μz, )) Theefoe, χ L X ) μ)] α, which implies ha χ L X ) = μ)] α. Poof of Theoem 2.2. Since X,δ,μ) is nomal, X,δ,μ) is also an RD-space. i) y Lemma 2. and Remak 2.2iii), we have E ρ X,d,μ)=E X,δ,μ)=L X,δ,μ)=L X,d,μ). ii) If f, hen, by Remak 2.2iii), we obain ha f E, which ogehe wih Lemmas 2. and 2.2 yields ha f Ẽ X,δ,μ) f E ρ f E X,d,μ) f E X,δ,μ) f Ẽ X,δ,μ) X,δ,μ) f Ẽ X,δ,μ) f Ẽρ X,d,μ). iii) In he case M sup x X μx, ρx))) <, if < essinf X f<, hen, by Poposiion 2. below, we obain ha ), X,δ,μ) f Eρ δ X,δ,μ) + M α essinf f X

H. Lin, E. Nakai, D. Yang 26 which ogehe wih Lemmas 2. and 2.3 yields ha f E ρ X,d,μ) f Ẽ ρ X,d,μ) f Ẽρ δ X,δ,μ) + M α essinf X ) f ). f E X,δ,μ) + M α essinf X f E ρ X,d,μ) + M α essinf f X ) f iv) Since sup x X μx, ρx))) =, wechoose j z j,ρz j )/2), j N, sohaμ j ) as j. Then, we have wo siuaions ha I) fo all j, j i= i) j+ =, o II) hee exiss j N such ha j j2 = fo j <j 2 j, and ha j i= i) j fo all j>j. Le b>. Case I). Fo each j, choose j > so ha j < ρz j )/2 and μz j, j ))] α < /2 j. In his case, μz j, j )) < /2 j ) /α <. Le f b j f j and f j χ zj, j). Then essinf X f = b and by Lemma 2.4, we have f E ρ X ) 2 f L X ) 2b f j L X ) =2b μz j, j ))] α 2b. j= On he ohe hand, μ j )] α μ j ) j = μ j )] α μ j ) j b μ j )] α μ j ) j= ] p /p fx) essinf f dμx)) j bf j x) b)] p dμx) ) /p as j. ) /p Case II). Le f b j j= f j and f j x) χ j x). Then essinf X f = b and by Lemma 2.4, we have f E ρ X ) 2 f L X ) 2b j j= f j L X ) =2b j j= μ j )] α <.

262 oundedness of Lusin-aea and g λ funcions On he ohe hand, fo j>j, μ j )] α μ j ) = = μ j )] α b μ j )] α b μ j )] α j μ j ) μ j ) ] p /p fx) essinf f dμx)) j j j b j i= μ j ) μ i= μ i) μ j ) f i x) b)] p dμx) ) /p j ) ) ] ) /p i j i= ) /p as j. Combining he esimaes fo Cases I) and II) yields vi), which complees he poof of Theoem 2.2. In he poof of Theoem 2.2iii) above, we used he following poposiion. Poposiion 2.. Theoem 2.2 iii) holds if X is an RD-space. To pove Poposiion 2., we begin wih some echnical lemmas. A saighfowad compuaion via 2.5) leads o he following echnical lemma. Lemma 2.5. Le X be an RD-space and θ, ). Then,heeexiss a posiive consan C such ha fo all z X and <<s<, s d μz, ))] θ C μz, ))] θ. Le MOf,) fy) f dμy). μ) Then, by Lemma 2.4 in 24], hee exiss a posiive consan C such ha fo all z X and <<s<, 2.7) fz, ) f z, s) C 2s MOf,z, )) d. Lemma 2.6. Le X be an RD-space and α /p, ). Then hee exiss a posiive consan C such ha fo all f Eρ X ), z X and <<ρz), fz, ) f z, ρz)) C f E ρ X )μz, ))] α.

H. Lin, E. Nakai, D. Yang 263 Poof. Case. ρz)/2 <ρz). y 2.) and he Hölde inequaliy, we have fz, ) f z, ρz)) fx) dμx)+ fz, ρz)) μz, )) z, ) C +) fx) dμx) μz, ρz))) z, ρz)) ) /p C +) fx) p dμx) μz, ρz))) z, ρz)) C +) f E ρ X )μz, ))] α. Case 2. <<ρz)/2. Using 2.7) and Lemma 2.5, we have ρz) MOf,z, )) f z, ) f z,ρz)/2) d ρz) μz, ))] α f E ρ X ) d f E ρ X )μz, ))] α. Combining he esimaes fo Case and Case 2 complees he poof of Lemma 2.6. Poof of Poposiion 2.. Le M sup x X μx, ρx))) <. y Lemma 2.6, we have ha if <<ρz), hen fz, ) f z, ρz)) f E ρ X )μz, ))] α. Now, fo z, ), if <<ρz), hen μ)] α μ) μ)] α μ)] α μ) μ) p ) /p fx) essinf f] dμx) ] p /p fx) essinf dμx)) z, ρz)) f + μ)] α f z, ) f z, ρz)) + f E ρ X ) + μ)] α f z, ρz)) ) /p fx) f p dμx) μ)] α f z, ρz)) essinf f z, ρz)) essinf. z, ρz)) f

264 oundedness of Lusin-aea and g λ funcions If < essinf X f<, hen μ)] α f z, ρz)) essinf f z, ρz)) fz, μ)] α ρz)) + essinf μ)] α f X μz, ρz)))]α μz, ρz)))]α essinf X f μ)] α f E ρ X ) + μ)] α μz, ρz)))] α f E ρ X ) + M α essinf X f. Theefoe, if < essinf X f<, hen f E ρ X ) f Ẽ ρ X ) f Eρ X ) + M α essinf X f), which complees he poof of Poposiion 2.. 3. oundedness of Lusin-aea and g λ funcions Le X be a doubling meic measue space and ρ an admissible funcion. In his secion, we conside he boundedness of ceain vaians of Lusinaea and gλ p funcions fom Eα, ρ X )oẽα, ρ p X ). The boundedness fom MO ρ X )olo ρ X ) of hese opeaos wee obained in 9]. We emak ha unlike he boundedness of he gλ funcion, o obain he boundedness of he Lusin-aea funcion, we need o assume ha X has he following volume egulaiy Popey P ), which was inoduced in 9]; see also 4, 3]. Definiion 3. 9]). A doubling meic measue space X,d,μ)issaid o have Popey P ), if hee exis posiive consans δ and C such ha fo all x X, s, ) and s, ), s ) δ 3.) μx, + s)) μx, )) C μx, )). Remak 3.. Thee ae many examples of doubling meic measue spaces having Popey P ), such as R d,,dx), he d-dimensional Euclidean space endowed wih he Euclidean nom and he Lebesgue measue dx; R d,, wx)dx), he d-dimensional Euclidean space endowed wih he Euclidean nom and he measue wx)dx, wheew is an A 2 R d )weighanddx is he Lebesgue measue; H n,d,dx), he 2n +)- dimensional Heisenbeg goup H n wih a lef-invaian meic d and he

H. Lin, E. Nakai, D. Yang 265 Lebesgue measue dx; G, d,μ), he nilpoen Lie goup G wih a Cano- Caahéodoy conol) disance d and a lef invaian Haa measue μ and so on; see 9] fo moe deails. In wha follows, we always se V x) μx, )) and V x, y) μx, dx, y))) fo all x, y X and, ). Le ρ be an admissible funcion on X and {Q } > a family of opeaos bounded on L 2 X ) wih inegal kenels {Q x, y)} > saisfying ha hee exis consans C, δ, ), δ 2, ) and γ, ) such ha fo all, ) andx, y X, Q) i Q x, y) C V x)+v x, y) +dx, y) )γ ρx) +ρx) )δ ; Q) ii X Q x, z) dμz) C +ρx) )δ2. Fo all f L loc X )andx X, define he Lilewood-Paley g -funcion by seing { 3.2) gf)x) Q f)x) 2 d } /2, and Lusin-aea and g λ funcions, especively, by seing { 3.3) Sf)x) and 3.4) g λf)x) whee λ, ). { X, ) dx, y)< Q f)y) 2 dμy) V y) + dx, y) } /2 d, ) λ Q f)y) 2 dμy) V y) } /2 d, Theoem 3.. Le X be a doubling meic measue space having Popey P ). Le p, ), ρ be an admissible funcion on X, he Lusin-aea funcion Sf) as in 3.3) and α, min{γ/n, δ / + k )n], δ 2 /n, δ/2n)}). If Sf) is bounded on L p X ), hen hee exiss a posiive consan C such ha fo all f Eρ X ), Sf)] 2 p/2 Ẽ2α, ρ X ) and Sf)] 2 Ẽ 2/2 ρ X ) C f 2 Eρ X ). To pove Theoem 3., we begin wih he following wo echnical lemmas, which wee obained in 34]. Lemma 3. 34, Lemma 2.4]). Le α R, p, ), ρ be an admissible funcion on X and D as in Definiion 2.3. Then hee exiss a posiive consan C such ha fo all f E ρ X ),

266 oundedness of Lusin-aea and g λ funcions i) fo all balls x,) D, ) αn C ρx) μ)] α f E ρ X ), α >, fz) dμz) ) μ) C μ)] α f E ρ X ), α ; +log ρx) ii) fo all x X and < < 2, C f x, ) f x, 2) C 2 ) αn μx, )] α f E ρ X ), α >, ) +log 2 μx, )] α f E ρ X ), α. Lemma 3.2 34, Lemma 4.]). Le α, min{γ/n, δ 2 /n}), p, ) and ρ be an admissible funcion on X. Then hee exiss a posiive consan C such ha fo all f Eρ X ), x X and >, ) δ ρx) Q f)x) C μx, ))] α f + ρx) E ρ X ). PoofofTheoem3.. y similaiy, we only pove he case when α>. Le f Eρ X ). y he homogeneiy of E ρ X ) and Ẽ ρ X ),we may assume ha f E ρ X ) =. Le x,). We pove Theoem 3. by consideing he following wo cases. Case I. x,) D.Inhiscase, ρx ). We need o pove ha 3.5) Sf)x)] p dμx) μ)] +αp. Fo all x X,wie 8 Sf)x)] 2 = Q f)y) 2 dμy) d dx, y)< V y) + S f)x)] 2 +S 2 f)x)] 2. 8 dx, y)< y he L p X )-boundedness of Sf) and 2.), we have 3.6) S fχ 2 )x)] p dμx) fx) p dμx) μ)] +αp. Fix x. Noice ha if dx, y) <, hen fo all z X, 3.7) + dy, z) + dx, z) and V y)+v y, z) V x)+v x, z). 2

H. Lin, E. Nakai, D. Yang 267 Fom Q) i, 3.7), 2.2), he Hölde inequaliy and γ>αn, i follows ha fo all <8 and y X wih dx, y) <,wehave 3.8) ) γ fz) Q fχ 2) )y) dμz) 2) V y)+vy, z) + dy, z) ) γ fz) dμz) 2) V x)+vx, z) + dx, z) ) γ 2 jγ μ2 j+ fz) dμz) ) j= 2 j+ ) γμ)] α ) γμ)] 2 jγ αn) α. j= Noice ha fo all x, y X saisfying dx, y) <,wehave 3.9) V x) V y). I hen follows fom 3.8) and 3.9) ogehe wih γ, ) ha 3.) 8 ) ]p/2 2γ d S fχ 2) )x)] p dμx) μ)] +αp μ)] +αp, which ogehe wih 3.6) ells us ha 3.) S f)x)] p dμx) μ)] +αp. Obseve ha fo all y X wih dx, y) <, by 2.3), we have 3.2) ρy) + ρy) ρx) ) +k, and ha fo all x wih ρx ), by 2.3), we also have ha ρx). Combining hese wo obsevaions yields ha fo all x and y X wih dx, y) <, 3.3) ρy) ) + ρy) +k. I hen follows fom Lemma 3.2, 3.3) and 2.2) ha fo all x, 8 and y X wih dx, y) <,

268 oundedness of Lusin-aea and g λ funcions 3.4) ρy) ) δμy, Q f)y) ))] α + ρy) ) δ +k μx, ))] α ) δ +k αn μ)] α, which ogehe wih he assumpion ha δ > + k )αn implies ha ] ) p/2 2δ S 2 f)x)] p dμx) μ)] +αp +k 2αn d μ)] +αp. 8 y his and 3.), we obain 3.5). Moeove, i follows fom 3.5) ha Sf)x) < fo almos evey x X. Case II. x,) D.Inhiscase,<ρx ). We need o pove ha { 3.5) Sf)x)] 2 essinf Sf)]2} p/2 dμx) μ)] +αp. To his end, fo all x X,wie 8 Sf)x)] 2 = Q f)y) 2 dμy) d dx, y)< V y) + 8 S f)x)] 2 +S, x f)x)] 2 +S f)x)] 2. 8ρx) + 8ρx ) Then { Sf)x)] 2 essinf Sf)]2} p/2 dμx) { S f)x)] p dμx)+ S, x f)x)] 2 essinf S, x f)] 2} p/2 dμx) { + S f)x)] 2 essinf S f)] 2} p/2 dμx) S f)x)] p dμx)+μ) sup S, x f)x)] 2 S, x f)x )] 2 p/2 x, x +μ) sup S f)x)] 2 S f)x )] 2 p/2 I +I 2 +I 3. x, x Wie f f +f 2 +f, whee f f f )χ 2 and f 2 f f )χ 2). y he L p X )-boundedness of Sf) and 2.2), we have

H. Lin, E. Nakai, D. Yang 269 3.6) S f )x)] p dμx) f f p dμx) μ)] +αp. 2 I follows fom Q) i, 3.7), 2.2), he Hölde inequaliy, Lemma 3.ii) and γ>αnha fo all x and y X wih dx, y) < 8, ) γ Q f 2 )y) fz) f dμz) 2) V y)+vy, z) + dy, z) ) γ fz) f dμz) V x)+vx, z) + dx, z) 2) ) γ 2 jγ μ2 j+ ) j= ) γ μ)] α 2 jγ αn) j= which ogehe wih 3.9) leads o ha 3.7) S f 2 )x)] p dμx) μ)] +αp 8 2 j+ fz) f 2 j+ + f 2 j+ f ] dμz) ) γ μ)] α, ) ] 2γ p/2 d μ)] +αp. Obseve ha by 2.3), fo any a, ), hee exiss a consan C a, ) such ha fo all x, y X wih dx, y) aρx), 3.8) ρy)/ C a ρx) C a ρy). y his, we obain ha fo all x and y X saisfying dx, y) < wih, 8) and<ρx ), ρy) ρx ). Hence, by Q) ii and Lemma 3.i), we have ) δ2 ) δ2 ) αn ρx ) Q f )y) f μ)] α, ρy) ρx ) which ogehe wih δ 2 >αn, <ρx ) and 3.9) implies ha S f )x)] p dμx) μ)] +αp ρx ) μ)] +αp. ) αpn 8 Combining his, 3.6) and 3.7) yields I μ)] +αp. ) 2δ2 ] p/2 d ρx )

27 oundedness of Lusin-aea and g λ funcions Now we un ou aenion o pove ha fo all x, x, S, x f)x)] 2 S, x f)x )] 2 μ)] 2α. Wie S, x f)x)] 2 S, x f)x )] 2 = 8ρx) 8 8ρx) + dx, y)< 8 x, ) x,) 8ρx) 8 x, ) x,) Q f)y) 2 dμy) d V y) 8ρx) 8 Q f f )y) 2 dμy) d V y) dx,y)< Q f )y) 2 dμy) d V y) J +J 2, whee x, ) x,) x, ) \ x,)] x,)\ x, )]. y he facs ha x, x and 8, we have x, 2) x, ) x,)]. Since X has he volume egulaiy Popey P ), we obain ) δμx, μx, ) \ x,)) μx, )) μx, 2)) )). y symmey, we also have μx,)\ x, )) ) δμx,)), which ogehe wih 2.) implies ha ) δμx, 3.9) μx, ) x,)) )). y Q) i, 3.7), 3.9), 3.9), 2.2), he Hölde inequaliy and Lemma 3.ii), we obain J 8ρx) 8 8ρx) 8 + j= 8ρx) 8 ) δ ) δ X μ2) V x)+vx, z) fz) f dμz) 2 γ +2 j ) γ μ2 j+ ) ) δ + j= 2 j+ γ 2 jαn +2 j ) γ + dx, z) ) γ ] 2 d fz) f dμz) ] 2 d fz) f dμz) ] 2 d μ)]2α.

H. Lin, E. Nakai, D. Yang 27 Noice ha γ > αn and δ > 2αn. Choosing ɛ αn, min{γ,δ/2}), we have J + { + 8ρx) 8 8 ) δ ) δ 2ɛ d j= γ 2 jαn ] 2 d γ ɛ 2 j ) ɛ μ)]2α } μ)] 2α μ)] 2α. Thus, J μ)] 2α. Noice ha <ρx )and 8, 8ρx )). y 3.8), we have ha fo any x and y X wih dx, y) <, ρx ) ρx) ρy). Choosing η, ) such ha ηδ 2 = αn, hen by Lemma 3.i), Q) ii and 3.9), we have J 2 8ρx) 8 8 ) δ + ρx ) ) δ2 ρx ) ) αn μ)] α ] 2 d 8ρx) ) ) δ ηδ2 ) ] αn 2 ρx ) d μ)] α 8 ρx ) ) δ 2αn d μ)] 2α μ)]2α. Combining he esimaes fo J and J 2 yields I 2 μ)] +αp. To pove Theoem 3., i emains o esimae he em I 3. Fo all x, x,wie S f)x)] 2 S f)x )] 2 = Q f)y) 2 dμy) d 8ρx ) dx, y)< V y) 8ρx ) dx,y)< Q f)y) 2 dμy) d V y). 8ρx ) x, ) x,) Noice ha <ρx ). Hence, fo 8ρx ), ), 3.9) sill holds. On he ohe hand, fo all x and y X wih dx, y) <, by 3.2), Lemma 3.2, 2.2) and he fac ha ρx ) ρx), we obain ha Q f)y) ) δ ρy) μy, ))] α + ρy) ρx ) ) δ ) +k αn μ)] α.

272 oundedness of Lusin-aea and g λ funcions I follows fom his, 3.9), 3.9) and δ>2αn ha fo all x, x, S f)x)] 2 S f)x )] 2 8ρx ) μ)] 2α, ρx ) ) 2δ +k ) δ 2αn μ)] 2α d so ha I 3 μ)] +αp. This finishes he poof of Theoem 3.. As a consequence of Theoem 3., we have he following conclusion, which can be poved by an agumen simila o ha used in he poof of 34, Coollay 4.]. We omi he deails. Coollay 3.. Wih he assumpions same as in Theoem 3., hen hee exiss a posiive consan C such ha fo all f Eρ X ), Sf) Ẽα, ρ p X ) and Sf) Ẽ ρ X ) C f Eρ X ). Remak 3.2. i) If α =, Theoem 3. and Coollay 3. wee aleady obained in 9]. p/2 ii) If α >, hen by Remak 2.iv), he space Ẽ2α, ρ X ) in Theoem 3. and he space Ẽα, ρ p X ) in Coollay 3. ae exacly he spaces 2/2 Eρ X )andeρ X ), especively. iii) If α<, hen by Theoem 2.2 and he fac ha he Lusin-aea p/2 funcion is nonnegaive, we know ha if he space Ẽ2α, ρ X )intheoem 3. and he space Ẽα, ρ p X ) in Coollay 3. ae eplaced, especively, by 2/2 he spaces Eρ X )andeρ X ), we obain he same esuls. Now we sudy he boundedness of gλ funcion in localized Moey- Campanao spaces. In his case, X is no necessay o have Popey P ). Theoem 3.2. Le X be a doubling meic measue space. Le p, ), ρ be an admissible funcion on X,hegλ funcion g λ f) as in 3.4) wih λ 3n, ) and α, min{γ/n, δ / + k )n], δ 2 /n, λ 3n)/2 + k )n], /2n)}). If gλ f) is bounded on Lp X ), hen hee exiss a posiive consan C such ha fo all f Eρ X ), gλ f)]2 p/2 Ẽ2α, ρ X ) and gλ f)]2 Ẽ 2/2 ρ X ) C f 2 Eρ X ). Poof. y similaiy, we only pove he case when α >. Le f Eρ X ), by he homogeneiy of E ρ X ) and Ẽ 2/2 ρ X ),we may assume ha f E ρ X ) =. Le x,). Fo any nonnegaive inege k,le Jk) {y, ) X, ) : dy, x ) < 2 k+ and <<2 k+ }.

Fo any f Eρ X )andx X,wie gλ f)x)]2 = J) H. Lin, E. Nakai, D. Yang 273 ) λ Q f)y) 2 dμy) d + dx, y) V y) + X, )]\J) g λ, f)x)] 2 +g λ, f)x)] 2. We now conside he following wo cases. Case I. x,) D. Hee, ρx ). We fis pove ha 3.2) gλ, f)x)]p dμx) μ)] +αp. Fo any x,wie gλ, f)x)]2 +2 +2 J) dx, y)< J) dx, y) J) dx, y) I x)+i 2 x)+i 3 x). ) λ Q f)y) 2 dμy) d + dx, y) V y) ) λ Q fχ 8)y) 2 dμy) + dx, y) V y) ) λ Q fχ + dx, y) d 8) )y) 2 dμy) V y) Noe ha fo all x,i x) Sf)x)] 2 and hen 3.5) gives 3.2) I x)] p/2 dμx) μ)] +αp. We emak ha in he poof of 3.5), we did no use Popey P )ofx. y he L p X )-boundedness of gλ f) and 2.), we have 3.22) I 2 x)] p/2 dμx) fx) p dμx) μ)] +αp. dy, x )<2 dx, y) 8 To deal wih I 3 x), noicing ha fo all z 8) and y X wih dy, x ) < 2,wehavehady, z) dx,z) and V y, z) V x,z). Hence, fom he assumpions ha λ>n and γ>αn, i follows 2 ) λ I 3 x) + dx, y) 8) V y)+v y, z) d ) ] γ fz) 2 dμy) d dμz) + dy, z) V y)

274 oundedness of Lusin-aea and g λ funcions 2 dy, x )<2 dx, y) dμy) V y) 2 d dy, x )<2 dx, y) j=3 ) λ ) ] γ fz) 2 dμz) + dx, y) 8) V x,z) dx,z) + dx, y) ) λ ) γ 2 j μ2 j+ ) 2 j+ fz) dμz) 2 dμy) d V y) 2 λ ) γ 2 dy, x )<2 + dx, y)) jγ αn) μ)] α dx, y) j=3 2 ) 2γ μ)] 2α k= 2 k dx, y)<2 k+ 2 dμy) d V y) 2 kλ kn dμy) d 2 V 2 k+ x) μ)]2α, which implies ha I 3x)] p/2 dμx) μ)] +αp. Combining his, 3.2) and 3.22) poves 3.2). Now we pove ha 3.23) gλ, f)x)]p dμx) μ)] +αp. Noice ha fo y, ) Jk) \ Jk ) wih k N and x, + dx, y) 2 k.thus, gλ, f)x)]2 k= 2 k+4 + k= Jk)\Jk ) ) λ 2 k V y)+v y, z) Jk)\Jk ) ) γ ρy) + dy, z) + ρy) ) λ 2 k dμz) 2 k+4 ) ) ] δ fz) 2 dμy) d dμz) V y) ] 2 dμy) d V y) E x)+e 2 x).

H. Lin, E. Nakai, D. Yang 275 The fac ha ρx ) and 2.3) imply ha fo all y X dy, x ) < 2 k+, wih +k 3.24) ρy) ρx )] 2 k ) k +k. y he assumpions ha λ 3n, ), δ > + k )αn and λ 3n) > 2 + k )αn, wechooseη, δ ) + k )αn, λ 3n)/2)]. Theefoe, λ 2η 3n >. I hen follows fom 3.24) ha E x) k= 2 k+ dy, x )<2 k+ 2 2kαn 2α dμy) μ)] V y) μ)] 2α μ)] 2α k= k= 2 2kαn 2 d ) λ 2 k ) 2n ρx +k )] 2 k ) k 2 k k+ +k ) 2η ) λ 2 k ) 3n ρx +k )] 2 k ) k 2 k 2 2kαn ρx ) ] 2η +k μ)] 2α 2 k. Choosing η 2, δ ) +k )αn, λ 3n)/2)], hen λ+2γ 2η 2 n>. Noice ha fo z 2 k+4 ) and y X wih dy, x ) < 2 k+, dy, z) dx,z) and V y, z) V x,z). This ogehe wih 3.24) and γ>αnimplies ha E 2 x) k= 2 k+ j= μ)] 2α μ)] 2α 2 j+k+ k= k= dy, x )<2 k+ ) γ μ2 j+k+4 ) 2 2kαn 2 ) λ ρx +k )] 2 k ) k +k ) η2 2 k ] 2 dμy) fz) dμz) V y) k+ 2 j+k+4 ) λ+2γ n ρx +k )] 2 k ) k 2 k 2 2kαn ρx ) ] 2η 2 +k μ)] 2α 2 k, which ogehe wih he esimae of E x) yields 3.23). Combining 3.2) and 3.23) yields ha 3.25) gλf)x)] p dμx) μ)] +αp. d +k +k ) 2η d ) 2η2 d

276 oundedness of Lusin-aea and g λ funcions Moeove, fom 3.25), i follows ha gλ f)x) < fo almos evey x X. Case II. x,) D.Inhiscase,<ρx ). We need o pove ha { gλ f)x)]2 essinf g λ f)]2} p/2 dμx) μ)] +αp. To his end, fo all x X,wie { gλ f)x)]2 essinf g λ f)]2} p/2 dμx) { gλ, f)x)]p dμx)+ gλ, f)x)]p dμx)+μ) sup x, x g λ, f)x)]2 essinf Now we pove ha 3.26) gλ, f)x)] p dμx) μ)] +αp. g λ, f)]2} p/2 dμx) g λ, f)x)] 2 g λ, f)x )] 2 p/2. To his end, wie f f + f 2 + f, whee f f f )χ 8 and f 2 f f )χ 8). y he L p X )-boundedness of gλ f), 2.2) and Lemma 3.ii), we have 3.27) gλ, f )x)] p dμx) f f p dμx) μ)] +αp. 8 Noice ha fo z 8) and y X wih dy, x ) < 2, dy, z) dx,z) and V y, z) V x,z). This ogehe wih Q) i, 2.2), he Hölde inequaliy, Lemma 3.ii) and γ>αnyields ha ) γ Q f 2 )y) fz) f dμz) 8) V y)+vy, z) + dy, z) ) γ fz) f dμz) 8) V x,z) dx,z) ) γ ] 2 k μ2 k+3 fz) f ) 2 dμz)+ f k+3 2 k+3 f k= 2 k+3 ) γ ) γ μ)] α 2 kγ αn) μ)] α. k= y an agumen simila o he esimaes of 3.) and I 3 x), we obain

H. Lin, E. Nakai, D. Yang 277 3.28) gλ, f 2)x)] p dμx) 2 2 dx, y)< 2 + μ)] +αp. dx,y)<2 dx,y)<2 dx, y) + dx, y) ) 2γ μ)] + dx, y) ) λ ) 2γ μ)] 2α dμy) V y) 2α dμy) V y) ] p/2 d dμx) ) λ ) 2γ μ)] 2α dμy) V y) ] p/2 d dμx) ] p/2 d dμx) Fo y X wih dx,y) < 2 < 2ρx ), by 3.8), we have ha ρx ) ρy), which ogehe wih Q) ii, Lemma 3.i) and δ 2 >αn leads o ha ) δ2 ) δ2 ) αn ρx ) ) δ2μ)] Q f )y) f μ)] α α. ρy) ρx ) Then, similaly o he esimae of 3.28), we obain gλ, f )x)] p dμx) μ)] +αp, which ogehe wih 3.27) and 3.28) yields 3.26). The poof of Theoem 3.2 is educed o show ha fo all x, x, 3.29) gλ, f)x)]2 gλ, f)x )] 2 μ)] 2α. Wie g λ, f)x)] 2 gλ, f)x )] 2 k= + X, )\J) k= Jk)\Jk ) Jk)\Jk ) + dx, y) ) λ + dx,y) λ 2 k ) λ+ Q f f )y) 2 dμy) V y) λ 2 k ) λ+ Q f )y) 2 dμy) V y) ) λ d Q f)y) 2 dμy) V y) d G +G 2. d

278 oundedness of Lusin-aea and g λ funcions The assumpions ha λ 3n, ) andγ>αn, ogehe wih Q) i and Lemma 3.ii), imply ha G k= + Jk)\Jk ) 2 k+4 k= Jk)\Jk ) 2 k+ k= + k= λ 2 k ) λ+ ) γ fz) f dμz) V y)+vy, z) + dy, z) ] 2 λ dμy) 2 k ) λ+ dμz) 2 k+4 ) V y) λ 2 k ) 2n2 2kαn 2 k ) λ+ μ)] dy, x )<2 k+ 2 k+ μ)] 2α +μ)] 2α μ)] 2α k= k= k= dy, x )<2 k+ 2 k+ 2 2kαn 2 k+ 2 2kαn 2 2kαn 2 k μ)] 2α, λ ) 2γ2 2kαn 2 k ) λ+ 2 k μ)] λ 2 k ) 3n d 2 k ) λ+ λ 2 k ) n 2γ d 2 k ) λ+ ] 2 dμy) V y) d 2α dμy) V y) d 2α dμy) V y) whee in he las inequaliy, we used he assumpion ha 2αn <. Noice ha < ρx ), hee exiss a posiive inege k such ha 2 k <ρx ) 2 k.ifk {,,k },henfoy X wih dy, x ) < 2 k+, by 3.8), we have ha ρx ) ρy); if k {k +,k +2, }, hen by 2.3), fo, 2 k+ )andy X wih dy, x ) < 2 k+,wehave + ρy) ρy) + dy, x ) k ) k ) 2k + 2k 2 k ) +k. ρx ) ρx ) ρx ) ρx ) ρx ) Fom Q) ii, Lemma 3.i), δ 2 >αn, λ n, ) and 2αn <, i hen follows ha G 2 k= 2 k+ + ρy) dy, x )<2 k+ ) 2δ2 dμy) d V y) λ 2 k ) λ+ ) 2αn ρx ) μ)] 2α d d

H. Lin, E. Nakai, D. Yang 279 { k μ)] 2α + k=k + μ)] 2α k= 2 k+ k= 2 k+ λ 2 k ) λ+ ) 2αn ρx ) ) 2αn 2 k ) n d ρx ) ) 2αn ρx ) 2 k ) 2αn 2 k ) } n d ρx ) λ 2 k ) λ+ 2 k 2αn) μ)] 2α. Combining he esimaes fo G and G 2 yields 3.29), which complees he poof of Theoem 3.2. As a consequence of Theoem 3.2, we have he following conclusion. Coollay 3.2. Wih he assumpions same as in Theoem 3.2, hen hee exiss a posiive consan C such ha fo all f Eρ X ), gλ p f) Ẽα, ρ X ) and gλ f) Ẽρ X ) C f Eρ X ). We poin ou ha Remak 3.2 is also suiable o Theoem 3.2 and Coollay 3.2. The following is a simple coollay of Theoems 3. and 3.2, and Coollaies 3. and 3.2. We omi he deails hee; see 34, Secion 5]. Poposiion 3.. Theoems 3. and 3.2, and Coollaies 3. and 3.2 ae ue if Q 2 de sl ds s= 2, whee L = Δ +V is he Schödinge opeao o he degeneae Schödinge opeao on R d, o he sub-laplace Schödinge opeao on Heisenbeg goups o conneced and simply conneced nilpoen Lie goups, and V is a nonnegaive funcion saisfying ceain evese Hölde inequaliy; see he deails in 34, Secion 5]. Acknowledgemen. The fis auho was suppoed by Chinese Univesiies Scienific Funf Gan No. 2JS43) and he Mahemaical Tianyuan Youh Fund Gan No. 262) of Naional Naual Science Foundaion of China, he second auho was suppoed by Gan-in-Aid fo Scienific Reseach C), No. 25467, Japan Sociey fo he Pomoion of Science, and he hid auho was suppoed by he Naional Naual Science Foundaion Gan No. 8725) of China.

28 oundedness of Lusin-aea and g λ funcions Refeences ] S. Campanao, Popieà dihöldeianià di alcune classi di funzioni, Ann. Scuola Nom. Sup. Pisa, 3) 7 963), 75 88. 2] R. R. Coifman and G. Weiss, Analyse Hamonique Non-commuaive su Ceains Espaces Homogènes, Lecue Noes in Mah., 242, Spinge, elin, 97. 3] R. R. Coifman and G. Weiss, Exensions of Hady spaces and hei use in analysis, ull. Ame. Mah. Soc., 83 977), 569 645. 4] T. H. Colding and W. P. Minicozzi II, Liouville heoems fo hamonic secions and applicaions, Comm. Pue Appl. Mah., 5 998), 3 38. 5] X. T. Duong, J. Xiao and L. Yan, Old and new Moey spaces wih hea kenel bounds, J. Fouie Anal. Appl., 3 27), 87. 6] J. Dziubański, Noe on H spaces elaed o degeneae Schödinge opeaos, Illinois J. Mah., 49 25), 27 297. 7] J. Dziubański, G. Gaigós, T. Maínez, J. L. Toea and J. Zienkiewicz, MO spaces elaed o Schödinge opeaos wih poenials saisfying a evese Hölde inequaliy, Mah. Z., 249 25), 329 356. 8] J. Dziubański and J. Zienkiewicz, Hady space H associaed o Schödinge opeao wih poenial saisfying evese Hölde inequaliy, Rev. Ma. Ibeo., 5 999), 279 296. 9] C. Feffeman, The unceainy pinciple, ull. Ame. Mah. Soc., N. S.) 9 983), 29 26. ] D. Goldbeg, A local vesion of eal Hady spaces, Duke Mah. J., 46 979), 27 42. ] L. Gafakos, Moden Fouie Analysis, Second Ediion, Gaduae Texs in Mah., No. 25, Spinge, New Yok, 28. 2] Y. Han, D. Mülle and D. Yang, A heoy of esov and Tiebel-Lizokin spaces on meic measue spaces modeled on Cano-Caahéodoy spaces, Abs. Appl. Anal., 28, A. ID 89349, 25 pp. 3] G. Hu, Da. Yang and Do. Yang, h, bmo, blo and Lilewood-Paley g -funcions wih non-doubling measues, Rev. Ma. Ibeo., 25 29), 595 667. 4] G. Hu, D. Yang and Y. Zhou, oundedness of singula inegals in Hady spaces on spaces of homogeneous ype, Taiwanese J. Mah., 3 29), 9 35.

H. Lin, E. Nakai, D. Yang 28 5] P. G. Lemaié, Algèbes d opeaeus e semi-goupes de Poisson su un espace de naue homogène, Publ. Mah. d Osay, 984. 6] P. G. Lemaié-Rieusse, The Navie-Sokes equaions in he ciical Moey-Campa-nao space, Rev. Mah. Ibeo., 23 27), 897 93. 7] H. Li, Esimaions L p des opéaeus de Schödinge su les goupes nilpoens, J. Func. Anal., 6 999), 52 28. 8] C. Lin and H. Liu, MO L H n ) spaces and caleson measues fo Schödinge opeaos, Adv.Mah.,oappea. 9] H. Lin, E. Nakai and D. Yang, oundedness of Lusin-aea and gλ funcions on localized MO spaces ove doubling meic measue spaces, ull. Sci. Mah., 35 2), 59 88. 2] R. A. Macías and C. Segovia, Lipschiz funcions on spaces of homogeneous ype, Adv. Mah., 33 979), 257 27. 2] E. Nakai, A chaaceizaion of poinwise muliplies on he Moey spaces, Sci. Mah., 3 2), 445 454. 22] E. Nakai, The Campanao, Moey and Hölde spaces on spaces of homogeneous ype, Sudia Mah., 76 26), 9. 23] E. Nakai, Olicz-Moey spaces and he Hady-Lilewood maximal funcion, Sudia Mah., 88 28), 93 22. 24] E. Nakai and K. Yabua, Poinwise muliplies fo funcions of weighed bounded mean oscillaion on spaces of homogeneous ype, Mah. Japon., 46 997), 5 28. 25] J. Peee, On he heoy of L p, λ spaces, J. Func. Anal., 4 969), 7 87. 26] Z. Shen, L p esimaes fo Schödinge opeaos wih ceain poenials, Ann. Ins. Fouie Genoble), 45 995), 53 546. 27] E. M. Sein, Hamonic Analysis: Real-vaiable Mehods, Ohogonaliy, and Oscillaoy Inegals, Pinceon Univesiy Pess, Pinceon, N. J., 993. 28] J.-O. Sömbeg and A. Tochinsky, Weighed Hady Spaces, Lecue Noes in Mahemaics, 38, Spinge-Velag, elin, 989. 29] M. H. Taibleson and G. Weiss, The molecula chaaceizaion of ceain Hady spaces. Repesenaion heoems fo Hady spaces, pp. 67-49, Aséisque, 77, Soc. Mah. Fance, Pais, 98. 3] R. Tessea, Volume of sphees in doubling meic measued spaces and in goups of polynomial gowh, ull. Soc. Mah. Fance 35 27), 47 64.

282 oundedness of Lusin-aea and g λ funcions 3] H. Tiebel, Theoy of Funcion Spaces. II, ikhäuse Velag, asel, 992. 32] N. Th. Vaopoulos, L. Saloff-Cose and T. Coulhon, Analysis and Geomey on Goups, Cambidge Univesiy Pess, Cambidge, 992. 33] Da. Yang, Do. Yang and Y. Zhou, Localized MO and LO spaces on RD-spaces and applicaions o Schödinge opeaos, Commun. Pue Appl. Anal., 9 2), 779 82. 34] Da. Yang, Do. Yang and Y. Zhou, Localized Moey-Campanao spaces on meic measue spaces and applicaions o Schödinge opeaos, Nagoya Mah. J., 98 2), 77 9. 35] D. Yang and Y. Zhou, Localized Hady spaces H elaedoadmissible funcions on RD-spaces and applicaions o Schödinge opeaos, Tans. Ame. Mah. Soc., 363 2), 97 239. 36] D. Yang and Y. Zhou, New popeies of esov and Tiebel-Lizokin spaces on RD-spaces, Manuscipa Mah., 34 2), 59 9. 37] J. Zhong, The Sobolev esimaes fo some Schödinge ype opeaos, Mah. Sci. Res. Ho-Line 3:8 999), 48. College of Science, China Agiculual Univesiy eijing 83 People s Republic of China and School of Mahemaical Sciences, eijing Nomal Univesiy Laboaoy of Mahemaics and Complex Sysems Minisy of Educaion, eijing 875 People s Republic of China E-mail : linhaibo@mail.bnu.edu.cn) Depamen of Mahemaics, Osaka Kyoiku Univesiy Kashiwaa, Osaka 582-8582 Japan E-mail : enakai@cc.osaka-kyoiku.ac.jp) Cuen Addess : Depamen of Mahemaics, Ibaaki Univesiy Mio Ibaaki 3 582, Japan, E-mail : enakai@mx.ibaaki.ac.jp) School of Mahemaical Sciences, eijing Nomal Univesiy Laboaoy of Mahemaics and Complex Sysems Minisy of Educaion, eijing 875 People s Republic of China E-mail : dcyang@bnu.edu.cn) Received : June 29 )

Advances in Opeaions Reseach Hindawi Publishing Copoaion hp://www.hindawi.com Volume 24 Advances in Decision Sciences Hindawi Publishing Copoaion hp://www.hindawi.com Volume 24 Jounal of Applied Mahemaics Algeba Hindawi Publishing Copoaion hp://www.hindawi.com Hindawi Publishing Copoaion hp://www.hindawi.com Volume 24 Jounal of Pobabiliy and Saisics Volume 24 The Scienific Wold Jounal Hindawi Publishing Copoaion hp://www.hindawi.com Hindawi Publishing Copoaion hp://www.hindawi.com Volume 24 Inenaional Jounal of Diffeenial Equaions Hindawi Publishing Copoaion hp://www.hindawi.com Volume 24 Volume 24 Submi you manuscips a hp://www.hindawi.com Inenaional Jounal of Advances in Combinaoics Hindawi Publishing Copoaion hp://www.hindawi.com Mahemaical Physics Hindawi Publishing Copoaion hp://www.hindawi.com Volume 24 Jounal of Complex Analysis Hindawi Publishing Copoaion hp://www.hindawi.com Volume 24 Inenaional Jounal of Mahemaics and Mahemaical Sciences Mahemaical Poblems in Engineeing Jounal of Mahemaics Hindawi Publishing Copoaion hp://www.hindawi.com Volume 24 Hindawi Publishing Copoaion hp://www.hindawi.com Volume 24 Volume 24 Hindawi Publishing Copoaion hp://www.hindawi.com Volume 24 Discee Mahemaics Jounal of Volume 24 Hindawi Publishing Copoaion hp://www.hindawi.com Discee Dynamics in Naue and Sociey Jounal of Funcion Spaces Hindawi Publishing Copoaion hp://www.hindawi.com Absac and Applied Analysis Volume 24 Hindawi Publishing Copoaion hp://www.hindawi.com Volume 24 Hindawi Publishing Copoaion hp://www.hindawi.com Volume 24 Inenaional Jounal of Jounal of Sochasic Analysis Opimizaion Hindawi Publishing Copoaion hp://www.hindawi.com Hindawi Publishing Copoaion hp://www.hindawi.com Volume 24 Volume 24